Bases: astropy.utils.misc.OrderedDescriptor
Wraps individual parameters.
This class represents a model’s parameter (in a somewhat broad sense). It acts as both a descriptor that can be assigned to a class attribute to describe the parameters accepted by an individual model (this is called an “unbound parameter”), or it can act as a proxy for the parameter values on an individual model instance (called a “bound parameter”).
Parameter instances never store the actual value of the parameter directly. Rather, each instance of a model stores its own parameters parameter values in an array. A bound Parameter simply wraps the value in a Parameter proxy which provides some additional information about the parameter such as its constraints. In other words, this is a high-level interface to a model’s adjustable parameter values.
Unbound Parameters are not associated with any specific model instance, and are merely used by model classes to determine the names of their parameters and other information about each parameter such as their default values and default constraints.
See Parameters for more details.
Parameters: | name : str description : str
default : float or array
getter : callable
setter : callable
fixed : bool
tied : callable or False
min : float
max : float
bounds : tuple
model : Model instance |
---|
Attributes Summary
bounds | The minimum and maximum values of a parameter as a tuple |
constraints | Types of constraints a parameter can have. |
default | Parameter default value |
fixed | Boolean indicating if the parameter is kept fixed during fitting. |
max | A value used as an upper bound when fitting a parameter |
min | A value used as a lower bound when fitting a parameter |
name | Parameter name |
shape | The shape of this parameter’s value array. |
size | The size of this parameter’s value array. |
tied | Indicates that this parameter is linked to another one. |
validator | Used as a decorator to set the validator method for a Parameter. |
value | The unadorned value proxied by this parameter |
Methods Summary
copy([name, description, default, getter, ...]) | Make a copy of this Parameter, overriding any of its core attributes in the process (or an exact copy). |
Attributes Documentation
The minimum and maximum values of a parameter as a tuple
Types of constraints a parameter can have. Excludes ‘min’ and ‘max’ which are just aliases for the first and second elements of the ‘bounds’ constraint (which is represented as a 2-tuple).
Parameter default value
Boolean indicating if the parameter is kept fixed during fitting.
A value used as an upper bound when fitting a parameter
A value used as a lower bound when fitting a parameter
Parameter name
The shape of this parameter’s value array.
The size of this parameter’s value array.
Indicates that this parameter is linked to another one.
A callable which provides the relationship of the two parameters.
Used as a decorator to set the validator method for a Parameter. The validator method validates any value set for that parameter. It takes two arguments–self, which refers to the Model instance (remember, this is a method defined on a Model), and the value being set for this parameter. The validator method’s return value is ignored, but it may raise an exception if the value set on the parameter is invalid (typically an InputParameterError should be raised, though this is not currently a requirement).
The decorator returns the Parameter instance that the validator is set on, so the underlying validator method should have the same name as the Parameter itself (think of this as analogous to property.setter). For example:
>>> from astropy.modeling import Fittable1DModel
>>> class TestModel(Fittable1DModel):
... a = Parameter()
... b = Parameter()
...
... @a.validator
... def a(self, value):
... # Remember, the value can be an array
... if np.any(value < self.b):
... raise InputParameterError(
... "parameter 'a' must be greater than or equal "
... "to parameter 'b'")
...
... @staticmethod
... def evaluate(x, a, b):
... return a * x + b
...
>>> m = TestModel(a=1, b=2)
Traceback (most recent call last):
...
InputParameterError: parameter 'a' must be greater than or equal
to parameter 'b'
>>> m = TestModel(a=2, b=2)
>>> m.a = 0
Traceback (most recent call last):
...
InputParameterError: parameter 'a' must be greater than or equal
to parameter 'b'
On bound parameters this property returns the validator method itself, as a bound method on the Parameter. This is not often as useful, but it allows validating a parameter value without setting that parameter:
>>> m.a.validator(42) # Passes
>>> m.a.validator(-42)
Traceback (most recent call last):
...
InputParameterError: parameter 'a' must be greater than or equal
to parameter 'b'
The unadorned value proxied by this parameter
Methods Documentation
Make a copy of this Parameter, overriding any of its core attributes in the process (or an exact copy).
The arguments to this method are the same as those for the Parameter initializer. This simply returns a new Parameter instance with any or all of the attributes overridden, and so returns the equivalent of:
Parameter(self.name, self.description, ...)