This module implements the functions
AUTHORS:
Return a list of all CM -invariants in the field
.
INPUT:
OUTPUT:
(list) – A list of CM -invariants in the field
.
EXAMPLE:
sage: cm_j_invariants(QQ)
[-262537412640768000, -147197952000, -884736000, -12288000, -884736, -32768, -3375, 0, 1728, 8000, 54000, 287496, 16581375]
Over imaginary quadratic fields there are no more than over :
sage: cm_j_invariants(QuadraticField(-1, 'i'))
[-262537412640768000, -147197952000, -884736000, -12288000, -884736, -32768, -3375, 0, 1728, 8000, 54000, 287496, 16581375]
Over real quadratic fields there may be more, for example:
sage: len(cm_j_invariants(QuadraticField(5, 'a')))
31
Over number fields K of many higher degrees this also works:
sage: K.<a> = NumberField(x^3 - 2)
sage: cm_j_invariants(K)
[-12288000, 54000, 0, 287496, 1728, 16581375, -3375, 8000, -32768, -884736, -884736000, -147197952000, -262537412640768000, 31710790944000*a^2 + 39953093016000*a + 50337742902000]
sage: K.<a> = NumberField(x^4 - 2)
sage: len(cm_j_invariants(K))
23
Return a list of all CM -invariants in the field
, together with the associated orders.
INPUT:
OUTPUT:
(list) A list of 3-tuples where
is a CM
-invariant in
with quadratic fundamental discriminant
and conductor
.
EXAMPLE:
sage: cm_j_invariants_and_orders(QQ)
[(-3, 3, -12288000), (-3, 2, 54000), (-3, 1, 0), (-4, 2, 287496), (-4, 1, 1728), (-7, 2, 16581375), (-7, 1, -3375), (-8, 1, 8000), (-11, 1, -32768), (-19, 1, -884736), (-43, 1, -884736000), (-67, 1, -147197952000), (-163, 1, -262537412640768000)]
Over an imaginary quadratic field there are no more than over :
sage: cm_j_invariants_and_orders(QuadraticField(-1, 'i'))
[(-3, 3, -12288000), (-3, 2, 54000), (-3, 1, 0), (-4, 2, 287496), (-4, 1, 1728), (-7, 2, 16581375), (-7, 1, -3375), (-8, 1, 8000), (-11, 1, -32768), (-19, 1, -884736), (-43, 1, -884736000), (-67, 1, -147197952000), (-163, 1, -262537412640768000)]
Over real quadratic fields there may be more:
sage: v = cm_j_invariants_and_orders(QuadraticField(5,'a')); len(v)
31
sage: [(D,f) for D,f,j in v if j not in QQ]
[(-3, 5), (-3, 5), (-4, 5), (-4, 5), (-15, 2), (-15, 2), (-15, 1), (-15, 1), (-20, 1), (-20, 1), (-35, 1), (-35, 1), (-40, 1), (-40, 1), (-115, 1), (-115, 1), (-235, 1), (-235, 1)]
Over number fields K of many higher degrees this also works:
sage: K.<a> = NumberField(x^3 - 2)
sage: cm_j_invariants_and_orders(K)
[(-3, 3, -12288000), (-3, 2, 54000), (-3, 1, 0), (-4, 2, 287496), (-4, 1, 1728), (-7, 2, 16581375), (-7, 1, -3375), (-8, 1, 8000), (-11, 1, -32768), (-19, 1, -884736), (-43, 1, -884736000), (-67, 1, -147197952000), (-163, 1, -262537412640768000), (-3, 6, 31710790944000*a^2 + 39953093016000*a + 50337742902000)]
Return a list of all pairs where there is a CM order of
discriminant
with class number h, with
a fundamental
discriminant.
INPUT:
OUTPUT:
EXAMPLES:
sage: cm_orders(0)
[]
sage: v = cm_orders(1); v
[(-3, 3), (-3, 2), (-3, 1), (-4, 2), (-4, 1), (-7, 2), (-7, 1), (-8, 1), (-11, 1), (-19, 1), (-43, 1), (-67, 1), (-163, 1)]
sage: type(v[0][0]), type(v[0][1])
(<type 'sage.rings.integer.Integer'>, <type 'sage.rings.integer.Integer'>)
sage: v = cm_orders(2); v
[(-3, 7), (-3, 5), (-3, 4), (-4, 5), (-4, 4), (-4, 3), (-7, 4), (-8, 3), (-8, 2), (-11, 3), (-15, 2), (-15, 1), (-20, 1), (-24, 1), (-35, 1), (-40, 1), (-51, 1), (-52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1), (-187, 1), (-232, 1), (-235, 1), (-267, 1), (-403, 1), (-427, 1)]
sage: len(v)
29
sage: set([hilbert_class_polynomial(D*f^2).degree() for D,f in v])
{2}
Any degree up to 100 is implemented, but may be prohibitively slow:
sage: cm_orders(3)
[(-3, 9), (-3, 6), (-11, 2), (-19, 2), (-23, 2), (-23, 1), (-31, 2), (-31, 1), (-43, 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2), (-211, 1), (-283, 1), (-307, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1), (-643, 1), (-883, 1), (-907, 1)]
sage: len(cm_orders(4))
84
Return dictionary with keys class numbers and values the
list of all pairs
, with
a fundamental discriminant such
that
has class number
. If the optional bound
is given,
return only those pairs with fundamental
, though
can
still be arbitrarily large.
INPUT:
OUTPUT:
In case is not given, we use Mark Watkins’s: “Class numbers of
imaginary quadratic fields” to compute a
that captures all
up to
(only available for
).
EXAMPLES:
sage: v = sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(3)
sage: v.keys()
[1, 2, 3]
sage: v[1]
[(-3, 3), (-3, 2), (-3, 1), (-4, 2), (-4, 1), (-7, 2), (-7, 1), (-8, 1), (-11, 1), (-19, 1), (-43, 1), (-67, 1), (-163, 1)]
sage: v[2]
[(-3, 7), (-3, 5), (-3, 4), (-4, 5), (-4, 4), (-4, 3), (-7, 4), (-8, 3), (-8, 2), (-11, 3), (-15, 2), (-15, 1), (-20, 1), (-24, 1), (-35, 1), (-40, 1), (-51, 1), (-52, 1), (-88, 1), (-91, 1), (-115, 1), (-123, 1), (-148, 1), (-187, 1), (-232, 1), (-235, 1), (-267, 1), (-403, 1), (-427, 1)]
sage: v[3]
[(-3, 9), (-3, 6), (-11, 2), (-19, 2), (-23, 2), (-23, 1), (-31, 2), (-31, 1), (-43, 2), (-59, 1), (-67, 2), (-83, 1), (-107, 1), (-139, 1), (-163, 2), (-211, 1), (-283, 1), (-307, 1), (-331, 1), (-379, 1), (-499, 1), (-547, 1), (-643, 1), (-883, 1), (-907, 1)]
sage: v = sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(8, proof=False)
sage: [len(v[h]) for h in v.keys()]
[13, 29, 25, 84, 29, 101, 38, 208]
Find all class numbers for discriminant up to 50:
sage: sage.schemes.elliptic_curves.cm.discriminants_with_bounded_class_number(hmax=5, B=50)
{1: [(-3, 3), (-3, 2), (-3, 1), (-4, 2), (-4, 1), (-7, 2), (-7, 1), (-8, 1), (-11, 1), (-19, 1), (-43, 1)], 2: [(-3, 7), (-3, 5), (-3, 4), (-4, 5), (-4, 4), (-4, 3), (-7, 4), (-8, 3), (-8, 2), (-11, 3), (-15, 2), (-15, 1), (-20, 1), (-24, 1), (-35, 1), (-40, 1)], 3: [(-3, 9), (-3, 6), (-11, 2), (-19, 2), (-23, 2), (-23, 1), (-31, 2), (-31, 1), (-43, 2)], 4: [(-3, 13), (-3, 11), (-3, 8), (-4, 10), (-4, 8), (-4, 7), (-4, 6), (-7, 8), (-7, 6), (-7, 3), (-8, 6), (-8, 4), (-11, 5), (-15, 4), (-19, 5), (-19, 3), (-20, 3), (-20, 2), (-24, 2), (-35, 3), (-39, 2), (-39, 1), (-40, 2), (-43, 3)], 5: [(-47, 2), (-47, 1)]}
Returns the Hilbert class polynomial for discriminant .
INPUT:
OUTPUT:
(integer polynomial) The Hilbert class polynomial for the
discriminant .
ALGORITHM:
AUTHORS:
EXAMPLES:
sage: hilbert_class_polynomial(-4)
x - 1728
sage: hilbert_class_polynomial(-7)
x + 3375
sage: hilbert_class_polynomial(-23)
x^3 + 3491750*x^2 - 5151296875*x + 12771880859375
sage: hilbert_class_polynomial(-37*4)
x^2 - 39660183801072000*x - 7898242515936467904000000
sage: hilbert_class_polynomial(-37*4, algorithm="magma") # optional - magma
x^2 - 39660183801072000*x - 7898242515936467904000000
sage: hilbert_class_polynomial(-163)
x + 262537412640768000
sage: hilbert_class_polynomial(-163, algorithm="magma") # optional - magma
x + 262537412640768000
Returns whether or not this is a CM -invariant.
INPUT:
OUTPUT:
A pair (bool, (d,f)) which is either (False, None) if is not a
CM j-invariant or (True, (d,f)) if
is the
-invariant of the
immaginary quadratic order of discriminant
where
is
the associated fundamental discriminant and
the index.
Note
The current implementation makes use of the classification of
all orders of class number up to 100, and hence will raise an
error if is an algebraic integer of degree greater than
this. It would be possible to implement a more general
version, using the fact that
must be supported on the
primes dividing the discriminant of the minimal polynomial of
.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
sage: is_cm_j_invariant(0)
(True, (-3, 1))
sage: is_cm_j_invariant(8000)
(True, (-8, 1))
sage: K.<a> = QuadraticField(5)
sage: is_cm_j_invariant(282880*a + 632000)
(True, (-20, 1))
sage: K.<a> = NumberField(x^3 - 2)
sage: is_cm_j_invariant(31710790944000*a^2 + 39953093016000*a + 50337742902000)
(True, (-3, 6))
TESTS:
sage: from sage.schemes.elliptic_curves.cm import is_cm_j_invariant
sage: all([is_cm_j_invariant(j) == (True, (d,f)) for d,f,j in cm_j_invariants_and_orders(QQ)])
True
Return largest absolute value of any fundamental discriminant with
class number , and the number of fundamental discriminants with
that class number. This is known for
up to 100, by work of Mark
Watkins.
INPUT:
EXAMPLES:
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(0)
(0, 0)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(1)
(163, 9)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(2)
(427, 18)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(10)
(13843, 87)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(100)
(1856563, 1736)
sage: sage.schemes.elliptic_curves.cm.largest_fundamental_disc_with_class_number(101)
Traceback (most recent call last):
...
NotImplementedError: largest discriminant not known for class number 101