This module implements some combinatorial functions, as listed below. For a more detailed description, see the relevant docstrings.
Sequences:
Set-theoretic constructions:
Warning
The following function is deprecated and will soon be removed.
- Permutations of a multiset, permutations(), permutations_iterator(), number_of_permutations(). A permutation is a list that contains exactly the same elements but possibly in different order.
Related functions:
Implemented in other modules (listed for completeness):
The sage.rings.arith module contains the following combinatorial functions:
The sage.groups.perm_gps.permgroup_elements contains the following combinatorial functions:
Todo
REFERENCES:
AUTHORS:
Bases: sage.structure.parent.Parent
This class is deprecated, and will disappear as soon as all derived classes in Sage’s library will have been fixed. Please derive directly from Parent and use the category EnumeratedSets, FiniteEnumeratedSets, or InfiniteEnumeratedSets, as appropriate.
For examples, see:
sage: FiniteEnumeratedSets().example()
An example of a finite enumerated set: {1,2,3}
sage: InfiniteEnumeratedSets().example()
An example of an infinite enumerated set: the non negative integers
alias of CombinatorialObject
Default implementation of cardinality which just goes through the iterator of the combinatorial class to count the number of objects.
EXAMPLES:
sage: class C(CombinatorialClass):
... def __iter__(self):
... return iter([1,2,3])
...
sage: C().cardinality() #indirect doctest
3
This function is a temporary helper so that a CombinatorialClass behaves as a parent for creating elements. This will disappear when combinatorial classes will be turned into actual parents (in the category EnumeratedSets).
TESTS:
sage: P5 = Partitions(5)
sage: P5.element_class
<class 'sage.combinat.partition.Partitions_n_with_category.element_class'>
Returns the combinatorial subclass of f which consists of the elements x of self such that f(x) is True.
EXAMPLES:
sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).filter(lambda x: x.avoids([1,2]))
sage: P.list()
[[3, 2, 1]]
Default implementation for first which uses iterator.
EXAMPLES:
sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.first() # indirect doctest
1
Returns whether self is finite or not.
EXAMPLES:
sage: Partitions(5).is_finite()
True
sage: Permutations().is_finite()
False
Default implementation for first which uses iterator.
EXAMPLES:
sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.last() # indirect doctest
3
The default implementation of list which builds the list from the iterator.
EXAMPLES:
sage: class C(CombinatorialClass):
... def __iter__(self):
... return iter([1,2,3])
...
sage: C().list() #indirect doctest
[1, 2, 3]
Returns the image of this combinatorial
class by
, as a combinatorial class.
is supposed to be injective.
EXAMPLES:
sage: R = Permutations(3).map(attrcall('reduced_word')); R
Image of Standard permutations of 3 by *.reduced_word()
sage: R.cardinality()
6
sage: R.list()
[[], [2], [1], [1, 2], [2, 1], [2, 1, 2]]
sage: [ r for r in R]
[[], [2], [1], [1, 2], [2, 1], [2, 1, 2]]
If the function is not injective, then there may be repeated elements:
sage: P = Partitions(4)
sage: P.list()
[[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
sage: P.map(len).list()
[1, 2, 2, 3, 4]
TESTS:
sage: R = Permutations(3).map(attrcall('reduced_word'))
sage: R == loads(dumps(R))
True
Default implementation for next which uses iterator.
EXAMPLES:
sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.next(2) # indirect doctest
3
Default implementation for next which uses iterator.
EXAMPLES:
sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.previous(2) # indirect doctest
1
Deprecated. Use self.random_element() instead.
EXAMPLES:
sage: C = CombinatorialClass()
sage: C.random()
Traceback (most recent call last):
...
NotImplementedError: Deprecated: use random_element() instead
Default implementation of random which uses unrank.
EXAMPLES:
sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.random_element() # indirect doctest
1
Default implementation of rank which uses iterator.
EXAMPLES:
sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.rank(3) # indirect doctest
2
Returns the combinatorial class representing the union of self and right_cc.
EXAMPLES:
sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(2).union(Permutations_CC(1))
sage: P.list()
[[1, 2], [2, 1], [1]]
Default implementation of unrank which goes through the iterator.
EXAMPLES:
sage: C = CombinatorialClass()
sage: C.list = lambda: [1,2,3]
sage: C.unrank(1) # indirect doctest
2
Bases: sage.structure.sage_object.SageObject
CombinatorialObject provides a thin wrapper around a list. The main differences are that __setitem__ is disabled so that CombinatorialObjects are shallowly immutable, and the intention is that they are semantically immutable.
Because of this, CombinatorialObjects provide a __hash__ function which computes the hash of the string representation of a list and the hash of its parent’s class. Thus, each CombinatorialObject should have a unique string representation.
INPUT:
list
EXAMPLES:
sage: c = CombinatorialObject([1,2,3])
sage: c == loads(dumps(c))
True
sage: c._list
[1, 2, 3]
sage: c._hash is None
True
EXAMPLES:
sage: c = CombinatorialObject([1,2,3])
sage: c.index(1)
0
sage: c.index(3)
2
Bases: sage.combinat.combinat.CombinatorialClass
A filtered combinatorial class F is a subset of another combinatorial class C specified by a function f that takes in an element c of C and returns True if and only if c is in F.
TESTS:
sage: from sage.combinat.combinat import Permutations_CC
sage: Permutations_CC(3).filter(lambda x: x.avoids([1,2]))
Filtered subclass of Standard permutations of 3
EXAMPLES:
sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).filter(lambda x: x.avoids([1,2]))
sage: P.cardinality()
1
Bases: sage.combinat.combinat.CombinatorialClass
This is an internal class that should not be used directly. A class which inherits from InfiniteAbstractCombinatorialClass inherits the standard methods list and count.
If self._infinite_cclass_slice exists then self.__iter__ returns an iterator for self, otherwise raise NotImplementedError. The method self._infinite_cclass_slice is supposed to accept any integer as an argument and return something which is iterable.
Counts the elements of the combinatorial class.
Returns an error since self is an infinite combinatorial class.
Bases: sage.combinat.combinat.CombinatorialClass
A MapCombinatorialClass models the image of a combinatorial class through a function which is assumed to be injective
See CombinatorialClass.map for examples
Returns an element of this combinatorial class
EXAMPLES:
sage: R = SymmetricGroup(10).map(attrcall('reduced_word'))
sage: R.an_element()
[9, 8, 7, 6, 5, 4, 3, 2, 1]
Returns the cardinality of this combinatorial class
EXAMPLES:
sage: R = Permutations(10).map(attrcall('reduced_word'))
sage: R.cardinality()
3628800
Bases: sage.combinat.combinat.CombinatorialClass
A testing class for CombinatorialClass since Permutations no longer inherits from CombinatorialClass in trac ticket #14772.
Bases: sage.combinat.combinat.CombinatorialClass
A UnionCombinatorialClass is a union of two other combinatorial classes.
TESTS:
sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P == loads(dumps(P))
True
EXAMPLES:
sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.cardinality()
8
EXAMPLES:
sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.first()
[1, 2, 3]
EXAMPLES:
sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.last()
[2, 1]
EXAMPLES:
sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.list()
[[1, 2, 3],
[1, 3, 2],
[2, 1, 3],
[2, 3, 1],
[3, 1, 2],
[3, 2, 1],
[1, 2],
[2, 1]]
EXAMPLES:
sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.rank(Permutation([2,1]))
7
sage: P.rank(Permutation([1,2,3]))
0
EXAMPLES:
sage: from sage.combinat.combinat import Permutations_CC
sage: P = Permutations_CC(3).union(Permutations_CC(2))
sage: P.unrank(7)
[2, 1]
sage: P.unrank(0)
[1, 2, 3]
Return the -th Bell number (the number of ways to partition a set
of
elements into pairwise disjoint nonempty subsets).
INPUT:
Warning
When using the mpmath algorithm to compute Bell numbers and you specify prec, it can return incorrect results due to low precision. See the examples section.
Let denote the
-th Bell number. Dobinski’s formula is:
To show our implementation of Dobinski’s method works, suppose that
and let
be the smallest positive integer such that
.
Note that
and
because we can prove that
by Stirling.
If , then we have
.
We show this by induction:
let
, if
then
The last inequality can easily be checked numerically for .
Using this, we can see that
for
. So summing this it gives that
, and hence
where and
. Next we have for any
where . Let
and let
. We find
. These two bounds give:
where
It follows that
Now define
This can be computed exactly using integer arithmetic.
To avoid the costly integer division by
, we collect
more terms and do only one division, for example with 3 terms:
In the implementation, we collect terms.
To actually compute from
,
we let
such that
and
we compute with
bits of precision.
This implies that
(and
) can be represented exactly.
We compute , rounding down, and we must have an
absolute error of at most
(given that
).
This means that we need a relative error of at most
(assuming ).
With a precision of
bits and rounding down, every rounding
has a relative error of at most
.
Since we do 3 roundings (
and
do not require rounding),
we get a relative error of at most
.
All this implies that the precision of
bits is sufficient.
EXAMPLES:
sage: bell_number(10)
115975
sage: bell_number(2)
2
sage: bell_number(-10)
Traceback (most recent call last):
...
ArithmeticError: Bell numbers not defined for negative indices
sage: bell_number(1)
1
sage: bell_number(1/3)
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer
When using the mpmath algorithm, we are required have mpmath’s precision
set to at least bits. If upon computing the Bell number the
first time, we deem the precision too low, we use our guess to
(temporarily) raise mpmath’s precision and the Bell number is recomputed.
sage: k = bell_number(30, 'mpmath'); k
846749014511809332450147
sage: k == bell_number(30)
True
If you knows what precision is necessary before computing the Bell number, you can use the prec option:
sage: k2 = bell_number(30, 'mpmath', prec=30); k2
846749014511809332450147
sage: k == k2
True
Warning
Running mpmath with the precision set too low can result in incorrect results:
sage: k = bell_number(30, 'mpmath', prec=15); k
846749014511809388871680
sage: k == bell_number(30)
False
TESTS:
sage: all([bell_number(n) == bell_number(n,'dobinski') for n in range(200)])
True
sage: all([bell_number(n) == bell_number(n,'gap') for n in range(200)])
True
sage: all([bell_number(n) == bell_number(n,'mpmath', prec=500) for n in range(200, 220)])
True
AUTHORS:
REFERENCES:
Return the Bell Polynomial
INPUT:
OUTPUT:
EXAMPLES:
sage: bell_polynomial(6,2)
10*x_3^2 + 15*x_2*x_4 + 6*x_1*x_5
sage: bell_polynomial(6,3)
15*x_2^3 + 60*x_1*x_2*x_3 + 15*x_1^2*x_4
REFERENCES:
AUTHORS:
Return the n-th Bernoulli polynomial evaluated at x.
The generating function for the Bernoulli polynomials is
and they are given directly by
One has , where
is the Hurwitz zeta function. Thus, in a
certain sense, the Hurwitz zeta function generalizes the
Bernoulli polynomials to non-integer values of n.
EXAMPLES:
sage: y = QQ['y'].0
sage: bernoulli_polynomial(y, 5)
y^5 - 5/2*y^4 + 5/3*y^3 - 1/6*y
sage: bernoulli_polynomial(y, 5)(12)
199870
sage: bernoulli_polynomial(12, 5)
199870
sage: bernoulli_polynomial(y^2 + 1, 5)
y^10 + 5/2*y^8 + 5/3*y^6 - 1/6*y^2
sage: P.<t> = ZZ[]
sage: p = bernoulli_polynomial(t, 6)
sage: p.parent()
Univariate Polynomial Ring in t over Rational Field
We verify an instance of the formula which is the origin of the Bernoulli polynomials (and numbers):
sage: power_sum = sum(k^4 for k in range(10))
sage: 5*power_sum == bernoulli_polynomial(10, 5) - bernoulli(5)
True
REFERENCES:
Return the -th Catalan number.
Catalan numbers: The -th Catalan number is given
directly in terms of binomial coefficients by
Consider the set . A noncrossing
partition of
is a partition in which no two blocks
“cross” each other, i.e., if
and
belong to one block and
and
to another, they are not arranged in the order
.
is the number of noncrossing partitions of the set
. There are many other interpretations (see
REFERENCES).
When , this function raises a ZeroDivisionError; for
other
it returns
.
INPUT:
OUTPUT: integer
EXAMPLES:
sage: [catalan_number(i) for i in range(7)]
[1, 1, 2, 5, 14, 42, 132]
sage: taylor((-1/2)*sqrt(1 - 4*x^2), x, 0, 15)
132*x^14 + 42*x^12 + 14*x^10 + 5*x^8 + 2*x^6 + x^4 + x^2 - 1/2
sage: [catalan_number(i) for i in range(-7,7) if i != -1]
[0, 0, 0, 0, 0, 0, 1, 1, 2, 5, 14, 42, 132]
sage: catalan_number(-1)
Traceback (most recent call last):
...
ZeroDivisionError
sage: [catalan_number(n).mod(2) for n in range(16)]
[1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]
REFERENCES:
This function is deprecated in trac ticket #14772. Use instead CyclicPermutations.
Return a list of all cyclic permutations of mset. Treats mset as a list, not a set, i.e. entries with the same value are distinct.
Note that CyclicPermutations, unlike this function, treats repeated elements as identical.
AUTHORS:
EXAMPLES:
sage: from sage.combinat.combinat import cyclic_permutations, cyclic_permutations_iterator
sage: cyclic_permutations(range(4))
doctest:...: DeprecationWarning: Use the CyclicPermutations object instead.
See http://trac.sagemath.org/14772 for details.
doctest:...: DeprecationWarning: Use the CyclicPermutations object instead.
See http://trac.sagemath.org/14772 for details.
[[0, 1, 2, 3], [0, 1, 3, 2], [0, 2, 1, 3], [0, 2, 3, 1], [0, 3, 1, 2], [0, 3, 2, 1]]
sage: for cycle in cyclic_permutations(['a', 'b', 'c']):
....: print cycle
['a', 'b', 'c']
['a', 'c', 'b']
Since trac ticket #14138 some repetitions are handled as expected:
sage: cyclic_permutations([1,1,1])
[[1, 1, 1]]
This function is deprecated in trac ticket #14772. Use instead CyclicPermutations.
Iterates over all cyclic permutations of mset in cycle notation. Treats mset as a list, not a set, i.e. entries with the same value are distinct.
Note that CyclicPermutations, unlike this function, treats repeated elements as identical.
AUTHORS:
EXAMPLES:
sage: from sage.combinat.combinat import cyclic_permutations, cyclic_permutations_iterator
sage: cyclic_permutations(range(4))
doctest:...: DeprecationWarning: Use the CyclicPermutations object instead.
See http://trac.sagemath.org/14772 for details.
[[0, 1, 2, 3], [0, 1, 3, 2], [0, 2, 1, 3], [0, 2, 3, 1], [0, 3, 1, 2], [0, 3, 2, 1]]
sage: for cycle in cyclic_permutations(['a', 'b', 'c']):
....: print cycle
['a', 'b', 'c']
['a', 'c', 'b']
Since trac ticket #14138 some repetitions are handled as expected:
sage: cyclic_permutations([1,1,1])
[[1, 1, 1]]
Return the -th Euler number.
IMPLEMENTATION: Wraps Maxima’s euler.
EXAMPLES:
sage: [euler_number(i) for i in range(10)]
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0]
sage: maxima.eval("taylor (2/(exp(x)+exp(-x)), x, 0, 10)")
'1-x^2/2+5*x^4/24-61*x^6/720+277*x^8/8064-50521*x^10/3628800'
sage: [euler_number(i)/factorial(i) for i in range(11)]
[1, 0, -1/2, 0, 5/24, 0, -61/720, 0, 277/8064, 0, -50521/3628800]
sage: euler_number(-1)
Traceback (most recent call last):
...
ValueError: n (=-1) must be a nonnegative integer
REFERENCES:
Return the -th Fibonacci number.
The Fibonacci sequence is defined by the initial
conditions
and the recurrence relation
. For negative
we
define
, which is consistent with
the recurrence relation.
INPUT:
Note
PARI is tens to hundreds of times faster than GAP here; moreover, PARI works for every large input whereas GAP doesn’t.
EXAMPLES:
sage: fibonacci(10)
55
sage: fibonacci(10, algorithm='gap')
55
sage: fibonacci(-100)
-354224848179261915075
sage: fibonacci(100)
354224848179261915075
sage: fibonacci(0)
0
sage: fibonacci(1/2)
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer
Return an iterator over the Fibonacci sequence, for all fibonacci
numbers from n = start up to (but
not including) n = stop
INPUT:
EXAMPLES:
sage: fibs = [i for i in fibonacci_sequence(10, 20)]
sage: fibs
[55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181]
sage: sum([i for i in fibonacci_sequence(100, 110)])
69919376923075308730013
See also
AUTHORS:
Return an iterator over all of the Fibonacci numbers in the given range, including f_n = start up to, but not including, f_n = stop.
EXAMPLES:
sage: fibs_in_some_range = [i for i in fibonacci_xrange(10^7, 10^8)]
sage: len(fibs_in_some_range)
4
sage: fibs_in_some_range
[14930352, 24157817, 39088169, 63245986]
sage: fibs = [i for i in fibonacci_xrange(10, 100)]
sage: fibs
[13, 21, 34, 55, 89]
sage: list(fibonacci_xrange(13, 34))
[13, 21]
A solution to the second Project Euler problem:
sage: sum([i for i in fibonacci_xrange(10^6) if is_even(i)])
1089154
See also
AUTHORS:
Return the -th Lucas number “of the first kind” (this is not
standard terminology). The Lucas sequence
is
defined by the initial conditions
,
and the recurrence relation
.
Wraps GAP’s Lucas(...)[1].
,
gives the Fibonacci sequence.
INPUT:
OUTPUT: integer or rational number
EXAMPLES:
sage: lucas_number1(5,1,-1)
5
sage: lucas_number1(6,1,-1)
8
sage: lucas_number1(7,1,-1)
13
sage: lucas_number1(7,1,-2)
43
sage: lucas_number1(5,2,3/5)
229/25
sage: lucas_number1(5,2,1.5)
1/4
There was a conjecture that the sequence defined by
,
,
, has the property that
prime implies
that
is prime.
sage: lucas = lambda n : Integer((5/2)*lucas_number1(n,1,-1)+(1/2)*lucas_number2(n,1,-1))
sage: [[lucas(n),is_prime(lucas(n)),n+1,is_prime(n+1)] for n in range(15)]
[[1, False, 1, False],
[3, True, 2, True],
[4, False, 3, True],
[7, True, 4, False],
[11, True, 5, True],
[18, False, 6, False],
[29, True, 7, True],
[47, True, 8, False],
[76, False, 9, False],
[123, False, 10, False],
[199, True, 11, True],
[322, False, 12, False],
[521, True, 13, True],
[843, False, 14, False],
[1364, False, 15, False]]
Can you use Sage to find a counterexample to the conjecture?
Return the -th Lucas number “of the second kind” (this is not
standard terminology). The Lucas sequence
is
defined by the initial conditions
,
and the recurrence relation
.
Wraps GAP’s Lucas(...)[2].
INPUT:
OUTPUT: integer or rational number
EXAMPLES:
sage: [lucas_number2(i,1,-1) for i in range(10)]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76]
sage: [fibonacci(i-1)+fibonacci(i+1) for i in range(10)]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76]
sage: n = lucas_number2(5,2,3); n
2
sage: type(n)
<type 'sage.rings.integer.Integer'>
sage: n = lucas_number2(5,2,-3/9); n
418/9
sage: type(n)
<type 'sage.rings.rational.Rational'>
The case ,
is the Lucas sequence in Brualdi’s Introductory
Combinatorics, 4th ed., Prentice-Hall, 2004:
sage: [lucas_number2(n,1,-1) for n in range(10)]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76]
Return the size of tuples(S,k). Wraps GAP’s NrTuples.
EXAMPLES:
sage: S = [1,2,3,4,5]
sage: number_of_tuples(S,2)
25
sage: S = [1,1,2,3,4,5]
sage: number_of_tuples(S,2)
25
Return the size of unordered_tuples(S,k). Wraps GAP’s NrUnorderedTuples.
EXAMPLES:
sage: S = [1,2,3,4,5]
sage: number_of_unordered_tuples(S,2)
15
This is deprecated in trac ticket #14772. Use Permutations instead.
To get the same output as , use
Permutations(mset).list().
A permutation is represented by a list that contains exactly the
same elements as mset, but possibly in different order. If mset is
a proper set there are such permutations.
Otherwise if the first elements appears
times, the
second element appears
times and so on, the number
of permutations is
, which
is sometimes called a multinomial coefficient.
permutations returns the list of all permutations of a multiset.
EXAMPLES:
sage: mset = [1,1,2,2,2]
sage: permutations(mset)
doctest:...: DeprecationWarning: Use the Permutations object instead.
See http://trac.sagemath.org/14772 for details.
[[1, 1, 2, 2, 2],
[1, 2, 1, 2, 2],
[1, 2, 2, 1, 2],
[1, 2, 2, 2, 1],
[2, 1, 1, 2, 2],
[2, 1, 2, 1, 2],
[2, 1, 2, 2, 1],
[2, 2, 1, 1, 2],
[2, 2, 1, 2, 1],
[2, 2, 2, 1, 1]]
sage: MS = MatrixSpace(GF(2),2,2)
sage: A = MS([1,0,1,1])
sage: rows = A.rows()
sage: rows[0].set_immutable()
sage: rows[1].set_immutable()
sage: permutations(rows)
[[(1, 0), (1, 1)], [(1, 1), (1, 0)]]
Return the -th Stirling number
of the first kind.
This is the number of permutations of points with
cycles.
This wraps GAP’s Stirling1.
EXAMPLES:
sage: stirling_number1(3,2)
3
sage: stirling_number1(5,2)
50
sage: 9*stirling_number1(9,5)+stirling_number1(9,4)
269325
sage: stirling_number1(10,5)
269325
Indeed, .
Return the -th Stirling number
of the second
kind (the number of ways to partition a set of
elements into
pairwise disjoint nonempty subsets). (The
-th Bell number is the
sum of the
‘s,
.)
INPUT:
- n - nonnegative machine-size integer
- k - nonnegative machine-size integer
- algorithm:
- None (default) - use native implementation
- "maxima" - use Maxima’s stirling2 function
- "gap" - use GAP’s Stirling2 function
EXAMPLES:
Print a table of the first several Stirling numbers of the second kind:
sage: for n in range(10):
... for k in range(10):
... print str(stirling_number2(n,k)).rjust(k and 6),
... print
...
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 1 3 1 0 0 0 0 0 0
0 1 7 6 1 0 0 0 0 0
0 1 15 25 10 1 0 0 0 0
0 1 31 90 65 15 1 0 0 0
0 1 63 301 350 140 21 1 0 0
0 1 127 966 1701 1050 266 28 1 0
0 1 255 3025 7770 6951 2646 462 36 1
Stirling numbers satisfy :
sage: 5*stirling_number2(9,5) + stirling_number2(9,4)
42525
sage: stirling_number2(10,5)
42525
TESTS:
sage: stirling_number2(500,501)
0
sage: stirling_number2(500,500)
1
sage: stirling_number2(500,499)
124750
sage: stirling_number2(500,498)
7739801875
sage: stirling_number2(500,497)
318420320812125
sage: stirling_number2(500,0)
0
sage: stirling_number2(500,1)
1
sage: stirling_number2(500,2)
1636695303948070935006594848413799576108321023021532394741645684048066898202337277441635046162952078575443342063780035504608628272942696526664263794687
sage: stirling_number2(500,3)
6060048632644989473730877846590553186337230837666937173391005972096766698597315914033083073801260849147094943827552228825899880265145822824770663507076289563105426204030498939974727520682393424986701281896187487826395121635163301632473646
sage: stirling_number2(500,30)
13707767141249454929449108424328432845001327479099713037876832759323918134840537229737624018908470350134593241314462032607787062188356702932169472820344473069479621239187226765307960899083230982112046605340713218483809366970996051181537181362810003701997334445181840924364501502386001705718466534614548056445414149016614254231944272872440803657763210998284198037504154374028831561296154209804833852506425742041757849726214683321363035774104866182331315066421119788248419742922490386531970053376982090046434022248364782970506521655684518998083846899028416459701847828711541840099891244700173707021989771147674432503879702222276268661726508226951587152781439224383339847027542755222936463527771486827849728880
sage: stirling_number2(500,31)
5832088795102666690960147007601603328246123996896731854823915012140005028360632199516298102446004084519955789799364757997824296415814582277055514048635928623579397278336292312275467402957402880590492241647229295113001728653772550743446401631832152281610081188041624848850056657889275564834450136561842528589000245319433225808712628826136700651842562516991245851618481622296716433577650218003181535097954294609857923077238362717189185577756446945178490324413383417876364657995818830270448350765700419876347023578011403646501685001538551891100379932684279287699677429566813471166558163301352211170677774072447414719380996777162087158124939742564291760392354506347716119002497998082844612434332155632097581510486912
sage: n = stirling_number2(20,11)
sage: n
1900842429486
sage: type(n)
<type 'sage.rings.integer.Integer'>
sage: n = stirling_number2(20,11,algorithm='gap')
sage: n
1900842429486
sage: type(n)
<type 'sage.rings.integer.Integer'>
sage: n = stirling_number2(20,11,algorithm='maxima')
sage: n
1900842429486
sage: type(n)
<type 'sage.rings.integer.Integer'>
Sage's implementation splitting the computation of the Stirling
numbers of the second kind in two cases according to `n`, let us
check the result it gives agree with both maxima and gap.
For `n<200`::
sage: for n in Subsets(range(100,200), 5).random_element():
... for k in Subsets(range(n), 5).random_element():
... s_sage = stirling_number2(n,k)
... s_maxima = stirling_number2(n,k, algorithm = "maxima")
... s_gap = stirling_number2(n,k, algorithm = "gap")
... if not (s_sage == s_maxima and s_sage == s_gap):
... print "Error with n<200"
For `n\geq 200`::
sage: for n in Subsets(range(200,300), 5).random_element():
... for k in Subsets(range(n), 5).random_element():
... s_sage = stirling_number2(n,k)
... s_maxima = stirling_number2(n,k, algorithm = "maxima")
... s_gap = stirling_number2(n,k, algorithm = "gap")
... if not (s_sage == s_maxima and s_sage == s_gap):
... print "Error with n<200"
TESTS:
Checking an exception is raised whenever a wrong value is given
for ``algorithm``::
sage: s_sage = stirling_number2(50,3, algorithm = "CloudReading")
Traceback (most recent call last):
...
ValueError: unknown algorithm: CloudReading
Return a list of all -tuples of elements of a given set S.
This function accepts the set S in the form of any iterable
(list, tuple or iterator), and returns a list of -tuples
(themselves encoded as lists). If S contains duplicate entries,
then you should expect the method to return tuples multiple times!
Recall that -tuples are ordered (in the sense that two
-tuples
differing in the order of their entries count as different) and
can have repeated entries (even if S is a list with no
repetition).
EXAMPLES:
sage: S = [1,2]
sage: tuples(S,3)
[[1, 1, 1], [2, 1, 1], [1, 2, 1], [2, 2, 1], [1, 1, 2], [2, 1, 2], [1, 2, 2], [2, 2, 2]]
sage: mset = ["s","t","e","i","n"]
sage: tuples(mset,2)
[['s', 's'], ['t', 's'], ['e', 's'], ['i', 's'], ['n', 's'], ['s', 't'], ['t', 't'],
['e', 't'], ['i', 't'], ['n', 't'], ['s', 'e'], ['t', 'e'], ['e', 'e'], ['i', 'e'],
['n', 'e'], ['s', 'i'], ['t', 'i'], ['e', 'i'], ['i', 'i'], ['n', 'i'], ['s', 'n'],
['t', 'n'], ['e', 'n'], ['i', 'n'], ['n', 'n']]
The Set(...) comparisons are necessary because finite fields are not enumerated in a standard order.
sage: K.<a> = GF(4, 'a')
sage: mset = [x for x in K if x!=0]
sage: tuples(mset,2)
[[a, a], [a + 1, a], [1, a], [a, a + 1], [a + 1, a + 1], [1, a + 1], [a, 1], [a + 1, 1], [1, 1]]
AUTHORS:
Return the set of all unordered tuples of length k of the set S. Wraps GAP’s UnorderedTuples.
An unordered tuple of length of a set
is a unordered selection
with repetitions of elements of
, and is represented by a sorted
list of length
containing elements from
.
Warning
Wraps GAP – hence S must be a list of objects that have string representations that can be interpreted by the GAP interpreter. If S contains any complicated Sage objects, this function does not do what you expect. A proper function should be written! (TODO!)
Note
Repeated entries in S are being ignored – i.e., unordered_tuples([1,2,3,3],2) doesn’t return anything different from unordered_tuples([1,2,3],2).
EXAMPLES:
sage: S = [1,2]
sage: unordered_tuples(S,3)
[[1, 1, 1], [1, 1, 2], [1, 2, 2], [2, 2, 2]]
sage: unordered_tuples(["a","b","c"],2)
['aa', 'ab', 'ac', 'bb', 'bc', 'cc']
Iterate over the unshuffles of a list (or tuple) a, also yielding the signs of the respective permutations.
If and
are integers satisfying
, then
a
-unshuffle means a permutation
such
that
and
. This method provides,
for a list
of length
, an iterator
yielding all pairs:
for all and all
-unshuffles
. The optional variable one can be set to a different
value which results in the
component being multiplied
by said value.
The iterator does not yield these in order of increasing .
EXAMPLES:
sage: from sage.combinat.combinat import unshuffle_iterator
sage: list(unshuffle_iterator([1, 3, 4]))
[(((), (1, 3, 4)), 1), (((1,), (3, 4)), 1), (((3,), (1, 4)), -1),
(((1, 3), (4,)), 1), (((4,), (1, 3)), 1), (((1, 4), (3,)), -1),
(((3, 4), (1,)), 1), (((1, 3, 4), ()), 1)]
sage: list(unshuffle_iterator([3, 1]))
[(((), (3, 1)), 1), (((3,), (1,)), 1), (((1,), (3,)), -1),
(((3, 1), ()), 1)]
sage: list(unshuffle_iterator([8]))
[(((), (8,)), 1), (((8,), ()), 1)]
sage: list(unshuffle_iterator([]))
[(((), ()), 1)]
sage: list(unshuffle_iterator([3, 1], 3/2))
[(((), (3, 1)), 3/2), (((3,), (1,)), 3/2), (((1,), (3,)), -3/2),
(((3, 1), ()), 3/2)]