Type gp.[tab] for a list of all the functions available from your Gp install. Type gp.[tab]? for Gp’s help about a given function. Type gp(...) to create a new Gp object, and gp.eval(...) to evaluate a string using Gp (and get the result back as a string).
EXAMPLES: We illustrate objects that wrap GP objects (gp is the PARI interpreter):
sage: M = gp('[1,2;3,4]')
sage: M
[1, 2; 3, 4]
sage: M * M
[7, 10; 15, 22]
sage: M + M
[2, 4; 6, 8]
sage: M.matdet()
-2
sage: E = gp.ellinit([1,2,3,4,5])
sage: E.ellglobalred()
[10351, [1, -1, 0, -1], 1, [11, 1; 941, 1], [[1, 5, 0, 1], [1, 5, 0, 1]]]
sage: E.ellan(20)
[1, 1, 0, -1, -3, 0, -1, -3, -3, -3, -1, 0, 1, -1, 0, -1, 5, -3, 4, 3]
sage: primitive_root(7)
3
sage: x = gp("znlog( Mod(2,7), Mod(3,7))")
sage: 3^x % 7
2
sage: print gp("taylor(sin(x),x)")
x - 1/6*x^3 + 1/120*x^5 - 1/5040*x^7 + 1/362880*x^9 - 1/39916800*x^11 + 1/6227020800*x^13 - 1/1307674368000*x^15 + O(x^16)
GP has a powerful very efficient algorithm for numerical computation of integrals.
sage: gp("a = intnum(x=0,6,sin(x))")
0.03982971334963397945434770208 # 32-bit
0.039829713349633979454347702077075594548 # 64-bit
sage: gp("a")
0.03982971334963397945434770208 # 32-bit
0.039829713349633979454347702077075594548 # 64-bit
sage: gp.kill("a")
sage: gp("a")
a
Note that gp ASCII plots do work in Sage, as follows:
sage: print gp.eval("plot(x=0,6,sin(x))")
0.9988963 |''''''''''''_x...x_''''''''''''''''''''''''''''''''''''''''''|
| x" "x |
| _" "_ |
| x x |
| " " |
| " " |
| _" "_ |
| _ _ |
| _ _ |
|_ _ |
_ |
`````````````````````````````````"``````````````````````````````
| " |
| " |
| " "
| "_ _"|
| _ _ |
| _ _ |
| x x |
| "_ _" |
| x_ _x |
-0.998955 |............................................."x____x".........|
0 6
The GP interface reads in even very long input (using files) in a robust manner, as long as you are creating a new object.
sage: t = '"%s"'%10^10000 # ten thousand character string.
sage: a = gp.eval(t)
sage: a = gp(t)
In Sage, the PARI large Galois groups datafiles should be installed by default:
sage: f = gp('x^9 - x - 2')
sage: f.polgalois()
[362880, -1, 34, "S9"]
TESTS:
Test error recovery:
sage: x = gp('1/0')
Traceback (most recent call last):
...
TypeError: Error executing code in GP:
CODE:
sage[...]=1/0;
PARI/GP ERROR:
*** at top-level: sage[...]=1/0
*** ^--
*** _/_: impossible inverse in gdiv: 0.
AUTHORS:
Bases: sage.interfaces.expect.Expect
Interface to the PARI gp interpreter.
Type gp.[tab] for a list of all the functions available from your Gp install. Type gp.[tab]? for Gp’s help about a given function. Type gp(...) to create a new Gp object, and gp.eval(...) to evaluate a string using Gp (and get the result back as a string).
INPUT:
- stacksize (int, default 10000000) – the initial PARI stacksize in bytes (default 10MB)
- maxread (int, default 100000) – ??
- script_subdirectory (string, default None) – name of the subdirectory of SAGE_EXTCODE/pari from which to read scripts
- logfile (string, default None) – log file for the pexpect interface
- server – name of remote server
- server_tmpdir – name of temporary directory on remote server
- init_list_length (int, default 1024) – length of initial list of local variables.
EXAMPLES:
sage: Gp() PARI/GP interpreter
Spawn a new GP command-line session.
EXAMPLES:
sage: gp.console() # not tested
GP/PARI CALCULATOR Version 2.4.3 (development svn-12577)
amd64 running linux (x86-64/GMP-4.2.1 kernel) 64-bit version
compiled: Jul 21 2010, gcc-4.6.0 20100705 (experimental) (GCC)
(readline v6.0 enabled, extended help enabled)
cputime for pari - cputime since the pari process was started.
INPUT:
Warning
If you call gettime explicitly, e.g., gp.eval(‘gettime’), you will throw off this clock.
EXAMPLES:
sage: gp.cputime() # random output
0.0080000000000000002
sage: gp.factor('2^157-1')
[852133201, 1; 60726444167, 1; 1654058017289, 1; 2134387368610417, 1]
sage: gp.cputime() # random output
0.26900000000000002
Get the value of the GP variable var.
INPUT:
EXAMPLES:
sage: gp.set('x', '2')
sage: gp.get('x')
'2'
Return the current value of a PARI gp configuration variable.
INPUT:
OUTPUT:
(string) the value of the variable.
EXAMPLES:
sage: gp.get_default('log')
0
sage: gp.get_default('datadir')
'.../local/share/pari'
sage: gp.get_default('seriesprecision')
16
sage: gp.get_default('realprecision')
28 # 32-bit
38 # 64-bit
Return the current PARI precision for real number computations.
EXAMPLES:
sage: gp.get_precision()
28 # 32-bit
38 # 64-bit
Return the current PARI precision for real number computations.
EXAMPLES:
sage: gp.get_precision()
28 # 32-bit
38 # 64-bit
Return the current PARI power series precision.
EXAMPLES:
sage: gp.get_series_precision()
16
Returns GP’s help for command.
EXAMPLES:
sage: gp.help('gcd')
'gcd(x,{y}): greatest common divisor of x and y.'
Kill the value of the GP variable var.
INPUT:
EXAMPLES:
sage: gp.set('xx', '22')
sage: gp.get('xx')
'22'
sage: gp.kill('xx')
sage: gp.get('xx')
'xx'
Creates a GP object from s with precision bits of precision. GP actually automatically increases this precision to the nearest word (i.e. the next multiple of 32 on a 32-bit machine, or the next multiple of 64 on a 64-bit machine).
EXAMPLES:
sage: pi_def = gp(pi); pi_def
3.141592653589793238462643383 # 32-bit
3.1415926535897932384626433832795028842 # 64-bit
sage: pi_def.precision()
28 # 32-bit
38 # 64-bit
sage: pi_150 = gp.new_with_bits_prec(pi, 150)
sage: new_prec = pi_150.precision(); new_prec
48 # 32-bit
57 # 64-bit
sage: old_prec = gp.set_precision(new_prec); old_prec
28 # 32-bit
38 # 64-bit
sage: pi_150
3.14159265358979323846264338327950288419716939938 # 32-bit
3.14159265358979323846264338327950288419716939937510582098 # 64-bit
sage: gp.set_precision(old_prec)
48 # 32-bit
57 # 64-bit
sage: gp.get_precision()
28 # 32-bit
38 # 64-bit
Terminate the GP process.
EXAMPLES:
sage: a = gp('10'); a
10
sage: gp.quit()
sage: a
<repr(<sage.interfaces.gp.GpElement at 0x...>) failed: ValueError: The pari session in which this object was defined is no longer running.>
sage: gp(pi)
3.1415926535897932384626433832795028842 # 64-bit
3.141592653589793238462643383 # 32-bit
Set the GP variable var to the given value.
INPUT:
EXAMPLES:
sage: gp.set('x', '2')
sage: gp.get('x')
'2'
Set a PARI gp configuration variable, and return the old value.
INPUT:
EXAMPLES:
sage: old_prec = gp.set_default('realprecision', 110)
sage: gp.get_default('realprecision')
115
sage: gp.set_default('realprecision', old_prec)
115
sage: gp.get_default('realprecision')
28 # 32-bit
38 # 64-bit
Sets the PARI precision (in decimal digits) for real computations, and returns the old value.
Note
PARI/GP rounds up precisions to the nearest machine word, so the result of get_precision() is not always the same as the last value inputted to set_precision().
EXAMPLES:
sage: old_prec = gp.set_precision(53); old_prec
28 # 32-bit
38 # 64-bit
sage: gp.get_precision()
57
sage: gp.set_precision(old_prec)
57
sage: gp.get_precision()
28 # 32-bit
38 # 64-bit
Sets the PARI precision (in decimal digits) for real computations, and returns the old value.
Note
PARI/GP rounds up precisions to the nearest machine word, so the result of get_precision() is not always the same as the last value inputted to set_precision().
EXAMPLES:
sage: old_prec = gp.set_precision(53); old_prec
28 # 32-bit
38 # 64-bit
sage: gp.get_precision()
57
sage: gp.set_precision(old_prec)
57
sage: gp.get_precision()
28 # 32-bit
38 # 64-bit
Sets the PARI power series precision, and returns the old precision.
EXAMPLES:
sage: old_prec = gp.set_series_precision(50); old_prec
16
sage: gp.get_series_precision()
50
sage: gp.set_series_precision(old_prec)
50
sage: gp.get_series_precision()
16
EXAMPLES:
sage: c = gp.trait_names()
sage: len(c) > 100
True
sage: 'gcd' in c
True
Returns the version of GP being used.
EXAMPLES:
sage: gp.version() # not tested
((2, 4, 3), 'GP/PARI CALCULATOR Version 2.4.3 (development svn-12577)')
Bases: sage.interfaces.expect.ExpectElement
EXAMPLES: This example illustrates dumping and loading GP elements to compressed strings.
sage: a = gp(39393)
sage: loads(a.dumps()) == a
True
Since dumping and loading uses the string representation of the object, it need not result in an identical object from the point of view of PARI:
sage: E = gp('ellinit([1,2,3,4,5])')
sage: loads(dumps(E)) == E
True
sage: x = gp.Pi()/3
sage: loads(dumps(x)) == x
False
sage: x
1.047197551196597746154214461 # 32-bit
1.0471975511965977461542144610931676281 # 64-bit
sage: loads(dumps(x))
1.047197551196597746154214461 # 32-bit
1.0471975511965977461542144610931676281 # 64-bit
The two elliptic curves look the same, but internally the floating point numbers are slightly different.
EXAMPLES:
sage: gp(2).bool()
True
sage: bool(gp(2))
True
sage: bool(gp(0))
False
EXAMPLES:
sage: 'gcd' in gp(2).trait_names()
True
Spawn a new GP command-line session.
EXAMPLES:
sage: gp.console() # not tested
GP/PARI CALCULATOR Version 2.4.3 (development svn-12577)
amd64 running linux (x86-64/GMP-4.2.1 kernel) 64-bit version
compiled: Jul 21 2010, gcc-4.6.0 20100705 (experimental) (GCC)
(readline v6.0 enabled, extended help enabled)
EXAMPLES:
sage: gp.version() # not tested
((2, 4, 3), 'GP/PARI CALCULATOR Version 2.4.3 (development svn-12577)')
Returns True of x is a GpElement.
EXAMPLES:
sage: from sage.interfaces.gp import is_GpElement
sage: is_GpElement(gp(2))
True
sage: is_GpElement(2)
False
Returns the GP interface object defined in sage.interfaces.gp.
EXAMPLES:
sage: from sage.interfaces.gp import reduce_load_GP
sage: reduce_load_GP()
PARI/GP interpreter