Part of the (internal) classes which run the bijection between rigged
configurations and tensor products of Kirillov-Reshetikhin tableaux of
type .
AUTHORS:
TESTS:
sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 4, 1], [[2,1]])
sage: from sage.combinat.rigged_configurations.bij_type_A import KRTToRCBijectionTypeA
sage: bijection = KRTToRCBijectionTypeA(KRT(pathlist=[[5,2]]))
sage: TestSuite(bijection).run()
sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 1]])
sage: from sage.combinat.rigged_configurations.bij_type_A import RCToKRTBijectionTypeA
sage: bijection = RCToKRTBijectionTypeA(RC(partition_list=[[],[],[],[]]))
sage: TestSuite(bijection).run()
Bases: sage.combinat.rigged_configurations.bij_abstract_class.KRTToRCBijectionAbstract
Specific implementation of the bijection from KR tableaux to rigged
configurations for type .
Build the next state for type .
EXAMPLES:
sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 4, 1], [[2,1]])
sage: from sage.combinat.rigged_configurations.bij_type_A import KRTToRCBijectionTypeA
sage: bijection = KRTToRCBijectionTypeA(KRT(pathlist=[[4,3]]))
sage: bijection.cur_path.insert(0, [])
sage: bijection.cur_dims.insert(0, [0, 1])
sage: bijection.cur_path[0].insert(0, [3])
sage: bijection.next_state(3)
Bases: sage.combinat.rigged_configurations.bij_abstract_class.RCToKRTBijectionAbstract
Specific implementation of the bijection from rigged configurations to
tensor products of KR tableaux for type .
Build the next state for type .
EXAMPLES:
sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 1]])
sage: from sage.combinat.rigged_configurations.bij_type_A import RCToKRTBijectionTypeA
sage: bijection = RCToKRTBijectionTypeA(RC(partition_list=[[1],[1],[1],[1]]))
sage: bijection.next_state(0)
5