Dense univariate polynomials over , implemented using FLINT.
This module gives a fast implementation of whenever
is at
most sys.maxsize. We use it by default in preference to NTL when the modulus
is small, falling back to NTL if the modulus is too large, as in the example
below.
EXAMPLES:
sage: R.<a> = PolynomialRing(Integers(100))
sage: type(a)
<type 'sage.rings.polynomial.polynomial_zmod_flint.Polynomial_zmod_flint'>
sage: R.<a> = PolynomialRing(Integers(5*2^64))
sage: type(a)
<type 'sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_ZZ'>
sage: R.<a> = PolynomialRing(Integers(5*2^64), implementation="FLINT")
Traceback (most recent call last):
...
ValueError: FLINT does not support modulus 92233720368547758080
AUTHORS:
Bases: sage.rings.polynomial.polynomial_element.Polynomial
Template for interfacing to external C / C++ libraries for implementations of polynomials.
AUTHORS:
This file implements a simple templating engine for linking univariate polynomials to their C/C++ library implementations. It requires a ‘linkage’ file which implements the celement_ functions (see sage.libs.ntl.ntl_GF2X_linkage for an example). Both parts are then plugged together by inclusion of the linkage file when inheriting from this class. See sage.rings.polynomial.polynomial_gf2x for an example.
We illustrate the generic glueing using univariate polynomials over
.
Note
Implementations using this template MUST implement coercion from base ring elements and __getitem__. See Polynomial_GF2X for an example.
EXAMPLE:
sage: P.<x> = GF(2)[]
sage: x.degree()
1
sage: P(1).degree()
0
sage: P(0).degree()
-1
Return the greatest common divisor of self and other.
EXAMPLE:
sage: P.<x> = GF(2)[]
sage: f = x*(x+1)
sage: f.gcd(x+1)
x + 1
sage: f.gcd(x^2)
x
EXAMPLE:
sage: P.<x> = GF(2)[]
sage: x.is_gen()
True
sage: (x+1).is_gen()
False
EXAMPLE:
sage: P.<x> = GF(2)[]
sage: P(1).is_one()
True
EXAMPLE:
sage: P.<x> = GF(2)[]
sage: x.is_zero()
False
EXAMPLE:
sage: P.<x> = GF(2)[]
sage: x.list()
[0, 1]
sage: list(x)
[0, 1]
EXAMPLE:
sage: P.<x> = GF(2)[]
sage: f = x^2 + x + 1
sage: f.quo_rem(x + 1)
(x, 1)
EXAMPLE:
sage: P.<x> = GF(2)[]
sage: f = x^3 + x^2 + 1
sage: f.shift(1)
x^4 + x^3 + x
sage: f.shift(-1)
x^2 + x
Returns this polynomial mod .
EXAMPLES:
sage: R.<x> =GF(2)[]
sage: f = sum(x^n for n in range(10)); f
x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
sage: f.truncate(6)
x^5 + x^4 + x^3 + x^2 + x + 1
Computes extended gcd of self and other.
EXAMPLE:
sage: P.<x> = GF(7)[]
sage: f = x*(x+1)
sage: f.xgcd(x+1)
(x + 1, 0, 1)
sage: f.xgcd(x^2)
(x, 1, 6)
Bases: sage.rings.polynomial.polynomial_zmod_flint.Polynomial_template
EXAMPLE:
sage: P.<x> = GF(32003)[]
sage: f = 24998*x^2 + 29761*x + 2252
Returns the factorization of the polynomial.
EXAMPLES:
sage: R.<x> = GF(5)[]
sage: (x^2 + 1).factor()
(x + 2) * (x + 3)
TESTS:
sage: (2*x^2 + 2).factor()
(2) * (x + 2) * (x + 3)
sage: P.<x> = Zmod(10)[]
sage: (x^2).factor()
Traceback (most recent call last):
...
NotImplementedError: factorization of polynomials over rings with composite characteristic is not implemented
Return True if this polynomial is irreducible.
EXAMPLES:
sage: R.<x> = GF(5)[]
sage: (x^2 + 1).is_irreducible()
False
sage: (x^3 + x + 1).is_irreducible()
True
TESTS:
sage: R(0).is_irreducible()
False
sage: R(1).is_irreducible()
False
sage: R(2).is_irreducible()
False
sage: S.<s> = Zmod(10)[]
sage: (s^2).is_irreducible()
Traceback (most recent call last):
...
NotImplementedError: checking irreducibility of polynomials over rings with composite characteristic is not implemented
sage: S(1).is_irreducible()
False
sage: S(2).is_irreducible()
Traceback (most recent call last):
...
NotImplementedError: checking irreducibility of polynomials over rings with composite characteristic is not implemented
Return this polynomial divided by its leading coefficient.
Raises ValueError if the leading cofficient is not invertible in the base ring.
EXAMPLES:
sage: R.<x> = GF(5)[]
sage: (2*x^2+1).monic()
x^2 + 3
TESTS:
sage: R.<x> = Zmod(10)[]
sage: (5*x).monic()
Traceback (most recent call last):
...
ValueError: leading coefficient must be invertible
Construct a rational function n/d such that is equivalent to
modulo
where
is this polynomial.
EXAMPLES:
sage: P.<x> = GF(5)[]
sage: p = 4*x^5 + 3*x^4 + 2*x^3 + 2*x^2 + 4*x + 2
sage: n, d = p.rational_reconstruct(x^9, 4, 4); n, d
(3*x^4 + 2*x^3 + x^2 + 2*x, x^4 + 3*x^3 + x^2 + x)
sage: (p*d % x^9) == n
True
Returns the resultant of self and other, which must lie in the same polynomial ring.
INPUT:
OUTPUT: an element of the base ring of the polynomial ring
EXAMPLES:
sage: R.<x> = GF(19)['x']
sage: f = x^3 + x + 1; g = x^3 - x - 1
sage: r = f.resultant(g); r
11
sage: r.parent() is GF(19)
True
The following example shows that #11782 has been fixed:
sage: R.<x> = ZZ.quo(9)['x']
sage: f = 2*x^3 + x^2 + x; g = 6*x^2 + 2*x + 1
sage: f.resultant(g)
5
Return a polynomial with the coefficients of this polynomial reversed.
If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary and the reverse polynomial will have the specified degree.
EXAMPLES:
sage: R.<x> = GF(5)[]
sage: p = R([1,2,3,4]); p
4*x^3 + 3*x^2 + 2*x + 1
sage: p.reverse()
x^3 + 2*x^2 + 3*x + 4
sage: p.reverse(degree=6)
x^6 + 2*x^5 + 3*x^4 + 4*x^3
sage: p.reverse(degree=2)
x^2 + 2*x + 3
sage: R.<x> = GF(101)[]
sage: f = x^3 - x + 2; f
x^3 + 100*x + 2
sage: f.reverse()
2*x^3 + 100*x^2 + 1
sage: f.reverse() == f(1/x) * x^f.degree()
True
Note that if has zero constant coefficient, its reverse will
have lower degree.
sage: f = x^3 + 2*x
sage: f.reverse()
2*x^2 + 1
In this case, reverse is not an involution unless we explicitly specify a degree.
sage: f
x^3 + 2*x
sage: f.reverse().reverse()
x^2 + 2
sage: f.reverse(5).reverse(5)
x^3 + 2*x
TESTS:
sage: p.reverse(degree=1.5r)
Traceback (most recent call last):
...
ValueError: degree argument must be a non-negative integer, got 1.5
Return a polynomial such that
.
EXAMPLES:
sage: R.<t> = GF(5)[]
sage: f = t + 2*t^2 - t^3 - 3*t^4
sage: f.revert_series(5)
3*t^4 + 4*t^3 + 3*t^2 + t
sage: f.revert_series(-1)
Traceback (most recent call last):
...
ValueError: argument n must be a non-negative integer, got -1
sage: g = - t^3 + t^5
sage: g.revert_series(6)
Traceback (most recent call last):
...
ValueError: self must have constant coefficient 0 and a unit for coefficient t^1
sage: g = t + 2*t^2 - t^3 -3*t^4 + t^5
sage: g.revert_series(6)
Traceback (most recent call last):
...
ValueError: the integers 1 up to n=5 are required to be invertible over the base field
See sage.rings.polynomial.polynomial_modn_dense_ntl.small_roots() for the documentation of this function.
EXAMPLE:
sage: N = 10001
sage: K = Zmod(10001)
sage: P.<x> = PolynomialRing(K)
sage: f = x^3 + 10*x^2 + 5000*x - 222
sage: f.small_roots()
[4]
Returns the squarefree decomposition of this polynomial.
EXAMPLES:
sage: R.<x> = GF(5)[]
sage: ((x+1)*(x^2+1)^2*x^3).squarefree_decomposition()
(x + 1) * (x^2 + 1)^2 * x^3
TESTS:
sage: (2*x*(x+1)^2).squarefree_decomposition()
(2) * x * (x + 1)^2
sage: P.<x> = Zmod(10)[]
sage: (x^2).squarefree_decomposition()
Traceback (most recent call last):
...
NotImplementedError: square free factorization of polynomials over rings with composite characteristic is not implemented