a cluster algebra or quiver.
For the compendium on the cluster algebra and quiver package see
AUTHORS:
Use a non-deterministic method by random mutations in various directions. Can result in a wrong answer.
INPUT:
ALGORITHM:
A quiver is mutation infinite if and only if every edge label (a,-b) satisfy a*b > 4. Thus, we apply random mutations in random directions
EXAMPLES:
sage: from sage.combinat.cluster_algebra_quiver.mutation_type import is_mutation_finite
sage: Q = ClusterQuiver(['A',10])
sage: M = Q.b_matrix()
sage: is_mutation_finite(M)
(True, None)
sage: Q = ClusterQuiver([(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(2,9)])
sage: M = Q.b_matrix()
sage: is_mutation_finite(M) # random
(False, [9, 6, 9, 8, 9, 4, 0, 4, 5, 2, 1, 0, 1, 0, 7, 1, 9, 2, 5, 7, 8, 6, 3, 0, 2, 5, 4, 2, 6, 9, 2, 7, 3, 5, 3, 7, 9, 5, 9, 0, 2, 7, 9, 2, 4, 2, 1, 6, 9, 4, 3, 5, 0, 8, 2, 9, 5, 3, 7, 0, 1, 8, 3, 7, 2, 7, 3, 4, 8, 0, 4, 9, 5, 2, 8, 4, 8, 1, 7, 8, 9, 1, 5, 0, 8, 7, 4, 8, 9, 8, 0, 7, 4, 7, 1, 2, 8, 6, 1, 3, 9, 3, 9, 1, 3, 2, 4, 9, 5, 1, 2, 9, 4, 8, 5, 3, 4, 6, 8, 9, 2, 5, 9, 4, 6, 2, 1, 4, 9, 6, 0, 9, 8, 0, 4, 7, 9, 2, 1, 6])
Load a dict with keys being tuples representing exceptional QuiverMutationTypes, and with values being lists or sets containing all mutation equivalent quivers as dig6 data.
EXAMPLES:
sage: from sage.combinat.cluster_algebra_quiver.mutation_type import load_data
sage: load_data(2) # random
{('G', 2): [('AO', (((0, 1), (1, -3)),)), ('AO', (((0, 1), (3, -1)),))]}