substitute matrices of two differentials of F into S = ring ff, compose them, and divide by entries of ff, in order. If the second Matrix argument t0 is present, use it as the first CI operator.
i1 : S = ZZ/101[x,y,z]; |
i2 : ff = matrix"x3,y3,z3"; 1 3 o2 : Matrix S <--- S |
i3 : R = S/ideal ff; |
i4 : M = coker matrix"x,y,z;y,z,x"; |
i5 : betti (F = res M) 0 1 2 3 4 o5 = total: 2 3 5 6 8 0: 2 3 . . . 1: . . 5 6 . 2: . . . . 8 o5 : BettiTally |
i6 : T = makeT(ff,F,3); |
i7 : netList T +------------------------+ o7 = |{4} | 0 0 0 0 1 0 | | |{4} | 0 0 0 -1 0 0 | | |{4} | 0 0 0 0 0 1 | | +------------------------+ |{4} | 0 1 0 0 0 0 | | |{4} | 1 0 0 0 0 0 | | |{4} | 0 0 1 0 0 0 | | +------------------------+ |{4} | 0 -1 0 0 -1 0 || |{4} | -1 0 0 1 0 0 || |{4} | 0 0 -1 0 0 -1 || +------------------------+ |
i8 : isHomogeneous T_2 o8 = true |