Triplets : Table of Contents
- Triplets -- Betti diagrams and hypercohomology tables associated to triplets of degree sequences
- Betti1(Triplet) -- Betti numbers of first pure complex
- Betti3(Triplet) -- Betti numbers of the three pure complexes
- BettiDiagram1(Triplet) -- Betti diagram of first pure complex
- BettiDiagram3(Triplet) -- Betti diagrams of the three pure complexes
- binPol(RingElement,ZZ,ZZ) -- product of two binomial polynomials
- chiPol(RingElement,ZZ,List,List) -- Hilbert polynomial of cohomology sheaves
- cohMatrix(ZZ,ZZ,Triplet) -- cohomology table in matrix form
- cohTable(ZZ,ZZ,Triplet) -- cohomology table
- conj(List,ZZ) -- conjugate of degree sequence
- dualHomTriplet(Triplet) -- the dual homology triplet
- hilbCoeff(Triplet) -- coefficients of Hilbert polynomial
- hilbPol(RingElement,ZZ,List,List) -- Hilbert polynomial
- isDegreeTriplet(Triplet) -- checks if it is a degree triplet
- isHomologyTriplet(Triplet) -- checks if it is a homology triplet
- rotBack(Triplet) -- backward cyclic permutation
- rotForw(Triplet) -- forward cyclic permutation
- strands(List) -- strand span of degree sequence
- strandsL(ZZ,List) -- strand span as a subset of [0,n]
- toDegree(Triplet) -- from homology triplet to degree triplet
- toHomology(Triplet) -- from degree triplet to homology triplet
- Triplet -- triplet
- triplet(List,List,List) -- make a triplet
- type(Triplet) -- number of variables