i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); |
i2 : time R' = integralClosure(R, Verbosity => 2) [jacobian time .00169563 sec #minors 3] integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2 [step 0: radical (use decompose) .0135473 seconds idlizer1: .0252191 seconds idlizer2: .0514326 seconds minpres: .0359358 seconds time .174862 sec #fractions 4] [step 1: radical (use decompose) .0143184 seconds idlizer1: .0298621 seconds idlizer2: .0965102 seconds minpres: .0581124 seconds time .255691 sec #fractions 4] [step 2: radical (use decompose) .014412 seconds idlizer1: .0418851 seconds idlizer2: .305396 seconds minpres: .0436738 seconds time .460924 sec #fractions 5] [step 3: radical (use decompose) .0143973 seconds idlizer1: .0335037 seconds idlizer2: .158899 seconds minpres: .120867 seconds time .414984 sec #fractions 5] [step 4: radical (use decompose) .0149316 seconds idlizer1: .0677325 seconds idlizer2: .33457 seconds minpres: .0562462 seconds time .558068 sec #fractions 5] [step 5: radical (use decompose) .0144534 seconds idlizer1: .0416591 seconds time .0816307 sec #fractions 5] -- used 1.95923 seconds o2 = R' o2 : QuotientRing |
i3 : trim ideal R' 3 2 2 2 4 4 o3 = ideal (w z - x , w x - w , w x - y z - z - z, w x - w z, 4,0 4,0 1,1 1,1 4,0 1,1 ------------------------------------------------------------------------ 2 2 2 3 2 3 2 3 2 4 2 2 4 2 w w - x y z - x z - x , w + w x y - x*y z - x*y z - 2x*y z 4,0 1,1 4,0 4,0 ------------------------------------------------------------------------ 3 3 2 6 2 6 2 - x*z - x, w x - w + x y + x z ) 4,0 1,1 o3 : Ideal of QQ[w , w , x, y, z] 4,0 1,1 |
i4 : icFractions R 3 2 2 4 x y z + z + z o4 = {--, -------------, x, y, z} z x o4 : List |