next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                          2    2        2       2 2         2 2         2 2  
o2 = ideal (q*t*w - k, f*s  - e u, b*k*w  - c, a t  - g*i, b s  - g*h, h r  -
     ------------------------------------------------------------------------
      2 2     2   2
     j v , s*t u*x  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 2 2 3 2 2        4 3   4 4 2 2 3          3    4 4 2 3 4  
o3 = ideal (l m n p q u  - b*c*g t , a f m v x  - g*l*p*q s, k l r v x  -
     ------------------------------------------------------------------------
      2 3 4 3    2 2 3 3 3 4      4 3 2
     a b c i p, d f h o v x  - a*k n q )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.