16 #ifndef polybori_groebner_ll_red_nf_h_
17 #define polybori_groebner_ll_red_nf_h_
27 template <
bool have_redsb,
bool single_call_for_noredsb,
28 bool fast_multiplication>
38 return dd_multiply<fast>(cache_mgr_type(p.
ring()),
43 template <
bool have_redsb,
bool single_call_for_noredsb,
44 bool fast_multiplication>
50 return func(p, r_nav);
53 template <
bool have_redsb,
bool single_call_for_noredsb,
54 bool fast_multiplication>
59 fast_multiplication>(p, reductors.
navigation());
64 return ll_red_nf_generic<true, false, false>(p,reductors);
69 return ll_red_nf_generic<false, false, false>(p,reductors);
75 return ll_red_nf_generic<false, true, false>(p,reductors);
navigator navigation() const
Navigate through structure.
Definition: BoolePolynomial.h:441
Polynomial ll_red_nf_noredsb(const Polynomial &p, const BooleSet &reductors)
Definition: ll_red_nf.h:68
#define END_NAMESPACE_PBORIGB
Definition: groebner_defs.h:16
const ring_type & ring() const
Access ring, where this belongs to.
Definition: BoolePolynomial.h:478
BoolePolynomial Polynomial
Definition: embed.h:51
navigator navigation() const
Navigate through ZDD by incrementThen(), incrementElse(), and terminated()
Definition: CCuddDDFacade.h:455
#define BEGIN_NAMESPACE_PBORIGB
Definition: groebner_defs.h:15
This class wraps the underlying decicion diagram type and defines the necessary operations.
Definition: BoolePolynomial.h:85
Definition: CacheManager.h:48
Polynomial ll_red_nf_generic(const Polynomial &p, MonomialSet::navigator r_nav)
Definition: ll_red_nf.h:46
Polynomial multiply(const Polynomial &p, const Polynomial &q)
Definition: ll_red_nf.h:34
Polynomial ll_red_nf(const Polynomial &p, const BooleSet &reductors)
Definition: ll_red_nf.h:63
This class defines an iterator for navigating through then and else branches of ZDDs.
Definition: CCuddNavigator.h:36
Definition: BooleSet.h:57
This class defines LLReduction.
Definition: LLReduction.h:30
Polynomial ll_red_nf_noredsb_single_recursive_call(const Polynomial &p, const BooleSet &reductors)
Definition: ll_red_nf.h:73