next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                     2     2    2    2       2   2          2 2     2 
o2 = ideal (c*d*w - v , h*u  - f v, a s - e*t , b n - d*w, l n x - r ,
     ------------------------------------------------------------------------
            2       2 2     2
     e*n*p*v  - 1, c l n - w )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

                 3 2   4    3 2 3 2   4 4 3 3 4    3 4 3 3 3   2 3 4 2 3 3 3
o3 = ideal (b*e*m o q*v  - c j l x , c n o p x  - a f g j l , a f g i o s v 
     ------------------------------------------------------------------------
        4 3 4   3 3 3 3 4 3 3    2 3 4
     - b q t , a c f i j m t  - b l n )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.