next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

             2          2 2      2     2     2   2 2         2 2 2    2 
o2 = ideal (q x - j*k, p v  - g*x , b*c q - t , a i  - d*x, n o r  - h ,
     ------------------------------------------------------------------------
        2 2          2 2 2
     a*c i k - 1, d*i v x  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2 3 3 2 2    2   2 3 4   2 3 3 3 2      2 2 4 2   2 2 3 3 3 2  
o3 = ideal (c o p t u  - g k*r s x , c n o p v  - d*f h i w , c d g h m r  -
     ------------------------------------------------------------------------
      3 3 3 3   2 3 4 3 3 3        3 4
     b l q v , f h p u w x  - a*n*r t )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.