T (variable)
TestField.ex1 [in Coq.Numbers.Rational.BigQ.BigQ]
TestField.ex10 [in Coq.Numbers.Rational.BigQ.BigQ]
TestField.ex8 [in Coq.Numbers.Rational.BigQ.BigQ]
TestOmega.test [in Coq.Numbers.Integer.BigZ.BigZ]
TestOmega.test [in Coq.Numbers.Natural.BigN.BigN]
TestOrder.test [in Coq.Numbers.Rational.BigQ.BigQ]
TestOrder.test [in Coq.Numbers.Integer.BigZ.BigZ]
TestOrder.test [in Coq.Numbers.Natural.BigN.BigN]
TestQify.test [in Coq.Numbers.Rational.BigQ.BigQ]
TestRing.test [in Coq.Numbers.Cyclic.Int31.Ring31]
TestRing.test [in Coq.Numbers.Integer.BigZ.BigZ]
TestRing.test [in Coq.Numbers.Natural.BigN.BigN]
TestRing.test' [in Coq.Numbers.Integer.BigZ.BigZ]
Test.test [in Coq.Arith.NatOrderedType]
Theory_of_fields.AoneT [in Coq.field.LegacyField_Theory]
Theory_of_semi_rings.mult_zero_left [in Coq.ring.LegacyRing_theory]
Theory_of_rings.mult_one_left [in Coq.ring.LegacyRing_theory]
Theory_of_rings.mult_comm [in Coq.ring.LegacyRing_theory]
Theory_of_rings.Aone [in Coq.ring.LegacyRing_theory]
Theory_of_semi_rings.plus_zero_left [in Coq.ring.LegacyRing_theory]
Theory_of_rings.Aopp [in Coq.ring.LegacyRing_theory]
Theory_of_rings.Amult [in Coq.ring.LegacyRing_theory]
Theory_of_rings.opp_def [in Coq.ring.LegacyRing_theory]
Theory_of_rings.Azero [in Coq.ring.LegacyRing_theory]
Theory_of_semi_rings.mult_assoc [in Coq.ring.LegacyRing_theory]
Theory_of_rings.plus_assoc [in Coq.ring.LegacyRing_theory]
Theory_of_semi_rings.T [in Coq.ring.LegacyRing_theory]
Theory_of_rings.Aplus [in Coq.ring.LegacyRing_theory]
Theory_of_fields.AmultT [in Coq.field.LegacyField_Theory]
Theory_of_semi_rings.plus_comm [in Coq.ring.LegacyRing_theory]
Theory_of_rings.plus_zero_left [in Coq.ring.LegacyRing_theory]
Theory_of_rings.Aeq [in Coq.ring.LegacyRing_theory]
Theory_of_fields.AoppT [in Coq.field.LegacyField_Theory]
Theory_of_semi_rings.Aone [in Coq.ring.LegacyRing_theory]
Theory_of_semi_rings.distr_left [in Coq.ring.LegacyRing_theory]
Theory_of_fields.AeqT [in Coq.field.LegacyField_Theory]
Theory_of_rings.A [in Coq.ring.LegacyRing_theory]
Theory_of_rings.distr_left [in Coq.ring.LegacyRing_theory]
Theory_of_fields.AT [in Coq.field.LegacyField_Theory]
Theory_of_semi_rings.Aeq [in Coq.ring.LegacyRing_theory]
Theory_of_semi_rings.mult_one_left [in Coq.ring.LegacyRing_theory]
Theory_of_semi_rings.A [in Coq.ring.LegacyRing_theory]
Theory_of_rings.T [in Coq.ring.LegacyRing_theory]
Theory_of_rings.plus_comm [in Coq.ring.LegacyRing_theory]
Theory_of_semi_rings.Amult [in Coq.ring.LegacyRing_theory]
Theory_of_rings.mult_assoc [in Coq.ring.LegacyRing_theory]
Theory_of_fields.Th_inv_defT [in Coq.field.LegacyField_Theory]
Theory_of_semi_rings.mult_comm [in Coq.ring.LegacyRing_theory]
Theory_of_fields.AplusT [in Coq.field.LegacyField_Theory]
Theory_of_semi_rings.Azero [in Coq.ring.LegacyRing_theory]
Theory_of_fields.RTT [in Coq.field.LegacyField_Theory]
Theory_of_semi_rings.Aplus [in Coq.ring.LegacyRing_theory]
Theory_of_fields.AinvT [in Coq.field.LegacyField_Theory]
Theory_of_fields.AzeroT [in Coq.field.LegacyField_Theory]
Theory_of_fields.T [in Coq.field.LegacyField_Theory]
Theory_of_semi_rings.plus_assoc [in Coq.ring.LegacyRing_theory]
The_power_set_partial_order.U [in Coq.Sets.Powerset]
Transitive_Closure.R [in Coq.Relations.Relation_Operators]
Transitive_Closure.A [in Coq.Relations.Relation_Operators]
Type_with_equality.Fold.Tra [in Coq.Lists.SetoidList]
Type_with_equality.ltA_strorder [in Coq.Lists.SetoidList]
Type_with_equality.eqA_equiv [in Coq.Lists.SetoidList]
Type_with_equality.Fold.Fold_With_Restriction.TraR [in Coq.Lists.SetoidList]
Type_with_equality.Fold.f [in Coq.Lists.SetoidList]
Type_with_equality.Remove.eqA_dec [in Coq.Lists.SetoidList]
Type_with_equality.A [in Coq.Lists.SetoidList]
Type_with_equality.Fold.B [in Coq.Lists.SetoidList]
Type_with_equality.ltA [in Coq.Lists.SetoidList]
Type_with_equality.Fold.Fold_With_Restriction.R [in Coq.Lists.SetoidList]
Type_with_equality.Fold.st [in Coq.Lists.SetoidList]
Type_with_equality.Fold.eqB [in Coq.Lists.SetoidList]
Type_with_equality.Fold.i [in Coq.Lists.SetoidList]
Type_with_equality.Fold.Fold_With_Restriction.R_compat [in Coq.Lists.SetoidList]
Type_with_equality.Fold.Comp [in Coq.Lists.SetoidList]
Type_with_equality.Fold.Fold_With_Restriction.R_sym [in Coq.Lists.SetoidList]
Type_with_equality.eqA [in Coq.Lists.SetoidList]
Type_with_equality.ltA_compat [in Coq.Lists.SetoidList]