S (projection)
setoid_decidable [in Coq.Classes.EquivDec]
setoid_decidable [in Coq.Classes.SetoidDec]
setoid_equiv [in Coq.Classes.SetoidClass]
SFdiv_def [in Coq.setoid_ring.Field_theory]
SFinv_l [in Coq.setoid_ring.Field_theory]
SF_SR [in Coq.setoid_ring.Field_theory]
SF_1_neq_0 [in Coq.setoid_ring.Field_theory]
sign_spec [in Coq.setoid_ring.Ring_theory]
Smorph_eq [in Coq.setoid_ring.Ring_theory]
Smorph_mul [in Coq.setoid_ring.Ring_theory]
Smorph_add [in Coq.setoid_ring.Ring_theory]
Smorph0 [in Coq.setoid_ring.Ring_theory]
Smorph1 [in Coq.setoid_ring.Ring_theory]
SORcleb_morph [in Coq.micromega.RingMicromega]
SORcneqb_morph [in Coq.micromega.RingMicromega]
SORle_trans [in Coq.micromega.OrderedRing]
SORle_wd [in Coq.micromega.OrderedRing]
SORle_refl [in Coq.micromega.OrderedRing]
SORle_antisymm [in Coq.micromega.OrderedRing]
SORlt_trichotomy [in Coq.micromega.OrderedRing]
SORlt_le_neq [in Coq.micromega.OrderedRing]
SORlt_wd [in Coq.micromega.OrderedRing]
SORneq_0_1 [in Coq.micromega.OrderedRing]
SORopp_wd [in Coq.micromega.OrderedRing]
SORplus_wd [in Coq.micromega.OrderedRing]
SORplus_le_mono_l [in Coq.micromega.OrderedRing]
SORpower [in Coq.micromega.RingMicromega]
SORrm [in Coq.micromega.RingMicromega]
SORrt [in Coq.micromega.OrderedRing]
SORsetoid [in Coq.micromega.OrderedRing]
SORtimes_wd [in Coq.micromega.OrderedRing]
SORtimes_pos_pos [in Coq.micromega.OrderedRing]
spec_add_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_mul [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_sqrt [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_is_even [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_1 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_0 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_succ_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_sub_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_add [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_add_mul_div [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_tail00 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_div21 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_sub [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_pred_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_head00 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_mod_gt [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_gcd_gt [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_square_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_eq0 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_sqrt2 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_mul_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_mod [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_add_carry_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_succ [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_tail0 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_add_carry [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_to_Z [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_head0 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_pos_mod [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_sub_carry_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_div [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_pred [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_opp_carry [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_div_gt [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_zdigits [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_more_than_1_digit [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_gcd [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_sub_carry [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_compare [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_of_pos [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_opp_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_opp [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
spec_Bm1 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
SRadd_ext [in Coq.setoid_ring.Ring_theory]
SRadd_0_l [in Coq.setoid_ring.Ring_theory]
SRadd_comm [in Coq.setoid_ring.Ring_theory]
SRadd_assoc [in Coq.setoid_ring.Ring_theory]
SRdistr_l [in Coq.setoid_ring.Ring_theory]
SRmul_ext [in Coq.setoid_ring.Ring_theory]
SRmul_1_l [in Coq.setoid_ring.Ring_theory]
SRmul_assoc [in Coq.setoid_ring.Ring_theory]
SRmul_comm [in Coq.setoid_ring.Ring_theory]
SRmul_0_l [in Coq.setoid_ring.Ring_theory]
SR_mult_one_left [in Coq.ring.LegacyRing_theory]
SR_distr_left [in Coq.ring.LegacyRing_theory]
SR_mult_assoc [in Coq.ring.LegacyRing_theory]
SR_eq_prop [in Coq.ring.LegacyRing_theory]
SR_mult_comm [in Coq.ring.LegacyRing_theory]
SR_plus_assoc [in Coq.ring.LegacyRing_theory]
SR_plus_zero_left [in Coq.ring.LegacyRing_theory]
SR_plus_comm [in Coq.ring.LegacyRing_theory]
SR_mult_zero_left [in Coq.ring.LegacyRing_theory]
SSR_mult_assoc [in Coq.ring.Setoid_ring_theory]
SSR_distr_left [in Coq.ring.Setoid_ring_theory]
SSR_plus_assoc [in Coq.ring.Setoid_ring_theory]
SSR_plus_zero_left [in Coq.ring.Setoid_ring_theory]
SSR_plus_reg_left [in Coq.ring.Setoid_ring_theory]
SSR_mult_comm [in Coq.ring.Setoid_ring_theory]
SSR_eq_prop [in Coq.ring.Setoid_ring_theory]
SSR_plus_comm [in Coq.ring.Setoid_ring_theory]
SSR_mult_one_left [in Coq.ring.Setoid_ring_theory]
SSR_mult_zero_left [in Coq.ring.Setoid_ring_theory]
STh_mult_one_left [in Coq.ring.Setoid_ring_theory]
STh_distr_left [in Coq.ring.Setoid_ring_theory]
STh_opp_def [in Coq.ring.Setoid_ring_theory]
STh_eq_prop [in Coq.ring.Setoid_ring_theory]
STh_mult_assoc [in Coq.ring.Setoid_ring_theory]
STh_plus_assoc [in Coq.ring.Setoid_ring_theory]
STh_plus_zero_left [in Coq.ring.Setoid_ring_theory]
STh_mult_comm [in Coq.ring.Setoid_ring_theory]
STh_plus_comm [in Coq.ring.Setoid_ring_theory]
StrictOrder_Irreflexive [in Coq.Classes.RelationClasses]
StrictOrder_Transitive [in Coq.Classes.RelationClasses]
subtraction [in Coq.nsatz.Nsatz]
symmetry [in Coq.Classes.RelationClasses]