next | previous | forward | backward | up | top | index | toc | Macaulay2 web site

norm

Synopsis

Description

i1 : printingPrecision = 2

o1 = 2
i2 : R = RR_100

o2 = RR
       100

o2 : RealField
i3 : M = 10*random(R^3,R^10)

o3 = | 1.9 8.1 2.8 5.5 .029 7.6 6.8 6.1 7.6 9.7 |
     | .73 .24 4.8 6.5 4.4  7.2 9.6 9.2 6.1 7.8 |
     | 2.9 4.9 2.3 9.7 4.1  6.5 1.6 2.9 8.4 7.9 |

             3       10
o3 : Matrix R  <--- R
i4 : norm M

o4 = 9.69555325078975982818739995277

o4 : RR (of precision 100)
i5 : norm_(numeric_20 infinity) M

o5 = 9.69556

o5 : RR (of precision 20)
i6 : norm {3/2,4,-5}

o6 = 5
The norm of a polynomial is the norm of the vector of its coefficients.
i7 : RR[x]

o7 = RR  [x]
       53

o7 : PolynomialRing
i8 : (1+x)^5

      5     4      3      2
o8 = x  + 5x  + 10x  + 10x  + 5x + 1

o8 : RR  [x]
       53
i9 : norm oo

o9 = 10

o9 : RR (of precision 53)

Ways to use norm :