
Alfred Arnold, Stefan Hilse, Stephan Kanthak, Oliver Sellke,
Vittorio De Tomasi

Macro Assembler AS V1.42

User’s Manual

Edition January 2010

IBM, PPC403Gx, OS/2, and PowerPC are registered trademarks of IBM
Corporation.

Intel, MCS-48, MCS-51, MCS-251, MCS-96, MCS-196 und MCS-296 are
registered trademarks of Intel Corp. .

Motorola and ColdFire are registered trademarks of Motorola Inc. .

PicoBlaze is a registered trademark of Xilinx Inc.

UNIX is a registered trademark of the The Open Group.

Linux is a registered trademark of Linus Thorvalds.

Microsoft, Windows, and MS-DOS are registered trademarks of Microsoft
Corporation.

All other trademarks not explicitly mentioned in this section and used in this
manual are properties of their respective owners.

This document has been processed with the LaTeX typesetting system, using
the Linux operating system.

Contents

1 Introduction 11
1.1 License Agreement . 11
1.2 General Capabilities of the Assembler 13
1.3 Supported Platforms . 19

2 Assembler Usage 21
2.1 Hardware Requirements . 21
2.2 Delivery . 22
2.3 Installation . 23
2.4 Start-Up Command, Parameters 28
2.5 Format of the Input Files . 37
2.6 Format of the Listing . 39
2.7 Symbol Conventions . 42
2.8 Temporary Symbols . 44
2.9 Named Temporary Symbols 45

2.9.1 Nameless Temporary Symbols 46
2.9.2 Composed Temporary Symbols 47

2.10 Formula Expressions . 48
2.10.1 Integer Constants . 48
2.10.2 Floating Point Constants 50
2.10.3 String Constants . 50
2.10.4 Evaluation . 52
2.10.5 Operators . 52
2.10.6 Functions . 54

2.11 Forward References and Other Disasters 57
2.12 Register Symbols . 61
2.13 Sharefile . 62
2.14 Processor Aliases . 62

3

4 CONTENTS

3 Pseudo Instructions 65
3.1 Definitions . 65

3.1.1 SET, EQU, and CONSTANT 65
3.1.2 SFR and SFRB . 67
3.1.3 XSFR and YSFR . 67
3.1.4 LABEL . 68
3.1.5 BIT . 68
3.1.6 DBIT . 69
3.1.7 PORT . 70
3.1.8 REG and NAMEREG 70
3.1.9 LIV and RIV . 70
3.1.10 CHARSET . 71
3.1.11 CODEPAGE . 72
3.1.12 ENUM . 73
3.1.13 PUSHV and POPV . 73

3.2 Code Modification . 74
3.2.1 ORG . 74
3.2.2 CPU . 79
3.2.3 SUPMODE, FPU, PMMU 92
3.2.4 FULLPMMU . 93
3.2.5 PADDING . 93
3.2.6 PACKING . 94
3.2.7 MAXMODE . 94
3.2.8 EXTMODE and LWORDMODE 95
3.2.9 SRCMODE . 95
3.2.10 BIGENDIAN . 95
3.2.11 WRAPMODE . 96
3.2.12 SEGMENT . 96
3.2.13 PHASE and DEPHASE 98
3.2.14 SAVE and RESTORE 99
3.2.15 ASSUME . 100
3.2.16 EMULATED . 107
3.2.17 BRANCHEXT . 108

3.3 Data Definitions . 109
3.3.1 DC[.Size] . 109
3.3.2 DS[.Size] . 110
3.3.3 DB,DW,DD,DQ, and DT 111
3.3.4 DS, DS8 . 112

CONTENTS 5

3.3.5 BYT or FCB . 113
3.3.6 BYTE . 113
3.3.7 DC8 . 113
3.3.8 ADR or FDB . 113
3.3.9 WORD . 114
3.3.10 DW16 . 114
3.3.11 LONG . 114
3.3.12 SINGLE, DOUBLE, and EXTENDED 114
3.3.13 FLOAT and DOUBLE 115
3.3.14 EFLOAT, BFLOAT, and TFLOAT 115
3.3.15 Qxx and LQxx . 115
3.3.16 DATA . 116
3.3.17 ZERO . 116
3.3.18 FB and FW . 116
3.3.19 ASCII and ASCIZ . 117
3.3.20 STRING and RSTRING 117
3.3.21 FCC . 117
3.3.22 DFS or RMB . 117
3.3.23 BLOCK . 118
3.3.24 SPACE . 118
3.3.25 RES . 118
3.3.26 BSS . 118
3.3.27 DSB and DSW . 118
3.3.28 DS16 . 119
3.3.29 ALIGN . 119
3.3.30 LTORG . 119

3.4 Macro Instructions . 120
3.4.1 MACRO . 120
3.4.2 IRP . 126
3.4.3 IRPC . 126
3.4.4 REPT . 127
3.4.5 WHILE . 127
3.4.6 EXITM . 128
3.4.7 SHIFT . 128
3.4.8 MAXNEST . 129
3.4.9 FUNCTION . 129

3.5 Structures . 131
3.5.1 Definition . 131

6 CONTENTS

3.5.2 Usage . 132

3.5.3 Nested Structures . 133

3.5.4 Unions . 133

3.5.5 Structures and Sections 133

3.6 Conditional Assembly . 134

3.6.1 IF / ELSEIF / ENDIF 134

3.6.2 SWITCH / CASE / ELSECASE / ENDCASE 136

3.7 Listing Control . 137

3.7.1 PAGE . 137

3.7.2 NEWPAGE . 138

3.7.3 MACEXP . 139

3.7.4 LISTING . 139

3.7.5 PRTINIT and PRTEXIT 140

3.7.6 TITLE . 141

3.7.7 RADIX . 141

3.7.8 OUTRADIX . 141

3.8 Local Symbols . 142

3.8.1 Basic Definition (SECTION/ENDSECTION) 143

3.8.2 Nesting and Scope Rules 144

3.8.3 PUBLIC and GLOBAL 147

3.8.4 FORWARD . 148

3.8.5 Performance Aspects 149

3.9 Miscellaneous . 150

3.9.1 SHARED . 150

3.9.2 INCLUDE . 150

3.9.3 BINCLUDE . 151

3.9.4 MESSAGE, WARNING, ERROR, and FATAL 152

3.9.5 READ . 153

3.9.6 RELAXED . 154

3.9.7 END . 154

CONTENTS 7

4 Processor-specific Hints 157
4.1 6811 . 157
4.2 PowerPC . 159
4.3 DSP56xxx . 159
4.4 H8/300 . 160
4.5 SH7000/7600/7700 . 160
4.6 MELPS-4500 . 164
4.7 6502UNDOC . 164
4.8 MELPS-740 . 168
4.9 MELPS-7700/65816 . 168
4.10 M16 . 172
4.11 4004/4040 . 173
4.12 MCS-48 . 173
4.13 MCS-51 . 173
4.14 MCS-251 . 174
4.15 8085UNDOC . 177
4.16 8086..V35 . 179
4.17 8X30x . 182
4.18 XA . 183
4.19 AVR . 184
4.20 Z80UNDOC . 184
4.21 Z380 . 185
4.22 TLCS-900(L) . 186
4.23 TLCS-90 . 191
4.24 TLCS-870 . 191
4.25 TLCS-47 . 192
4.26 TLCS-9000 . 192
4.27 29xxx . 193
4.28 80C16x . 193
4.29 PIC16C5x/16C8x . 195
4.30 PIC 17C4x . 196
4.31 ST6 . 197
4.32 ST7 . 198
4.33 ST9 . 198
4.34 6804 . 199
4.35 TMS3201x . 200
4.36 TMS320C2x . 200
4.37 TMS320C3x . 201

8 CONTENTS

4.38 TMS9900 . 201

4.39 TMS70Cxx . 202

4.40 TMS370xxx . 203

4.41 MSP430 . 204

4.42 COP8 & SC/MP . 204

4.43 SC144xxx . 204

4.44 75K0 . 205

4.45 78K0 . 207

4.46 78K2 . 207

4.47 uPD772x . 207

4.48 F2MC16L . 208

5 File Formats 209

5.1 Code Files . 209

5.2 Debug Files . 212

6 Utility Programs 217

6.1 PLIST . 218

6.2 BIND . 219

6.3 P2HEX . 220

6.4 P2BIN . 224

6.5 AS2MSG . 226

A Error Messages of AS 227

B I/O Error Messages 269

C Frequently Asked Questions 273

D Pseudo-Instructions Collected 277

E Predefined Symbols 291

F Shipped Include Files 295

F.1 BITFUNCS.INC . 295

F.2 CTYPE.INC . 296

G Acknowledgments 299

CONTENTS 9

H Changes since Version 1.3 301

I Hints for the AS Source Code 317
I.1 Language Preliminaries . 317
I.2 Capsuling System dependencies 318
I.3 System-Independent Files . 319

I.3.1 Modules Used by AS 319
I.3.2 Additional Modules for the Tools 324

I.4 Modules Needed During the Build of AS 325
I.5 Generation of Message Files 327

I.5.1 Format of the Source Files 327
I.6 Creation of Documentation . 329
I.7 Test Suite . 331
I.8 Adding a New Target Processor 331
I.9 Localization to a New Language 338

10 CONTENTS

Chapter 1

Introduction

This instruction is meant for those people who are already very familiar with
Assembler and who like to know how to work with AS. It is rather a reference
than a user’s manual and so it neither tries to explain the ”language assem-
bler” nor the processors. I have listed further literature in the bibliography
which was substantial in the implementation of the different code generators.
There is no book I know where you can learn Assembler from the start, so I
generally learned this by ”trial and error”.

1.1 License Agreement

Before we can go ”in medias res”, first of all the inevitable prologue:

As in the present version is licensed according to the Gnu General Public
License (GPL); the details of the GPL may be read in the file COPYING
bundled with this distribution. If you did not get it with AS, complain to
the one you got AS from!

Shortly said, the GPL covers the following points:

• Programs based upon AS must also be licensed according to the GPL;

• distribution is explicitly allowed;

11

12 CHAPTER 1. INTRODUCTION

• explicit disclaiming of all warranties for damages resulting from usage
of this program.

...however, I really urge you to read the file COPYING for the details!

To accelerate the error diagnose and correction, please add the following
details to the bug report:

• hardware:

– processor type (with/without coprocessor)

– amount of memory installed

– video card

– hard-disk type(s) and their interface(s)

• software:

– operating system (MS-DOS, Novell-DOS, DR-DOS, OS/2, Win-
dows) and version

– resident (TSR) programs installed

– version of AS including dates of the EXE-files

• if possible, the source file, in which the bug occurs

You can contact me as follows:

• by Surface Mail:

Alfred Arnold

Hirschgraben 29

D-52062 Aachen

Germany

• by E-Mail: alfred@ccac.rwth-aachen.de

1.2. GENERAL CAPABILITIES OF THE ASSEMBLER 13

If someone likes to meet me personally to ask questions and lives near Aachen
(= Aix-la-Chapelle), you will be able to meet me there. You can do this most
probably on thursdays from 8pm to 9pm at the computerclub inside the
RWTH Aachen (Eilfschornsteinstrasse 16, cellar of philosophers’ building,
backdoor entry).

Please don’t call me by phone. First, complex relations are extremely hard
to discuss at phone. Secondly, the telephone companies are already rich
enough...

The latest version of AS (DOS, DPMI, OS/2, C) is available from the fol-
lowing Server:

http://john.ccac.rwth-aachen.de:8000/as

or shortly

http://www.alfsembler.de

The sources of the C version may also be fetched from the following server:

sunsite.unc.edu, directory

pub/Linux/devel/lang/assemblers/asl-<version>.tar.gz

..and of course thereby from every Sunsite mirror in the world!

Whoever has no access to an FTP-Server can ask me to send the assem-
bler by mail. Only requests containing a blank CD-R and a self-addressed,
(correctly) stamped envelope will be answered. Don’t send any money!

Now, after this inevitable introduction we can turn to the actual documen-
tation:

1.2 General Capabilities of the Assembler

In contrast to ordinary assemblers, AS offers the possibility to generate code
for totally different processors. At the moment, the following processor fam-
ilies have been implemented:

• Motorola 68000..68040,683xx incl. coprocessor and MMU

14 CHAPTER 1. INTRODUCTION

• Motorola ColdFire

• Motorola DSP5600x,DSP56300

• Motorola M-Core

• Motorola/IBM MPC601/MPC505/PPC403

• Motorola 6800, 68(HC)11(K4) and Hitachi 6301

• Motorola/Freescale 6805, 68HC(S)08

• Motorola 6809 / Hitachi 6309

• Motorola/Freescale 68HC12(X) including XGATE

• Motorola 68HC16

• Freescale 68RS08

• Hitachi H8/300(H)

• Hitachi H8/500

• Hitachi SH7000/7600/7700

• Rockwell 6502 and 65(S)C02

• CMD 65816

• Mitsubishi MELPS-740

• Mitsubishi MELPS-7700

• Mitsubishi MELPS-4500

• Mitsubishi M16

• Mitsubishi M16C

• Intel 4004/4040

• Intel MCS-48/41

• Intel MCS-51/251, Dallas DS80C390

1.2. GENERAL CAPABILITIES OF THE ASSEMBLER 15

• Intel MCS-96/196(Nx)/296

• Intel 8080/8085

• Intel i960

• Signetics 8X30x

• Signetics 2650

• Philips XA

• Atmel (Mega-)AVR

• AMD 29K

• Siemens 80C166/167

• Zilog Z80, Z180, Z380

• Zilog Z8, eZ8

• Xilinx KCPSM/KCPSM3 (’PicoBlaze’)

• LatticeMico8

• Toshiba TLCS-900(L)

• Toshiba TLCS-90

• Toshiba TLCS-870

• Toshiba TLCS-47

• Toshiba TLCS-9000

• Microchip PIC16C54..16C57

• Microchip PIC16C84/PIC16C64

• Microchip PIC17C42

• SGS-Thomson ST6

• SGS-Thomson ST7

16 CHAPTER 1. INTRODUCTION

• SGS-Thomson ST9

• SGS-Thomson 6804

• Texas Instruments TMS32010/32015

• Texas Instruments TMS3202x

• Texas Instruments TMS320C3x

• Texas Instruments TMS320C20x/TMS320C5x

• Texas Instruments TMS320C54x

• Texas Instruments TMS320C6x

• Texas Instruments TMS9900

• Texas Instruments TMS7000

• Texas Instruments TMS370xxx

• Texas Instruments MSP430

• National Semiconductor SC/MP

• National Semiconductor INS807x

• National Semiconductor COP4

• National Semiconductor COP8

• National Semiconductor SC144xx

• Fairchild ACE

• NEC µPD 78(C)1x

• NEC µPD 75xxx (alias 75K0)

• NEC 78K0

• NEC 78K2

• NEC µPD7720/7725

1.2. GENERAL CAPABILITIES OF THE ASSEMBLER 17

• NEC µPD77230

• Symbios Logic SYM53C8xx (yes, they are programmable!)

• Fujitsu F2MC8L

• Fujitsu F2MC16L

• Intersil CDP1802/1805

under work / planned / in consideration :

• NEC 78K4

• Intel 8008

• Analog Devices ADSP21xx

• SGS-Thomson ST20

• Texas Instruments TMS320C4x

• Texas Instruments TMS320C8x

• Toshiba TC9331

I’m currently searching for documentation about the following families:

• the complete set of OKI controllers

unloved, but now, however, present :

• Intel 80x86, 80186, Nec V30&V35 incl. coprocessor 8087

The switch to a different code generator is allowed even within one file, and
as often as one wants!

The reason for this flexibility is that AS has a history, which may also be
recognized by looking at the version number. AS was created as an extension
of a macro assembler for the 68000 family. On special request, I extended the

18 CHAPTER 1. INTRODUCTION

original assembler so that it was able to translate 8051 mnemonics. On this
way (decline ?!) from the 68000 to 8051, some other processors were created
as by-products. All others were added over time due to user requests. So
At least for the processor-independent core of AS, one may assume that it
is well-tested and free of obvious bugs. However, I often do not have the
chance to test a new code generator in practice (due to lack of appropriate
hardware), so surprises are not impossible when working with new features.
You see, the things stated in section 1.1 have a reason...

This flexibility implies a somewhat exotic code format, therefore I added
some tools to work with it. Their description can be found in chapter 6.

AS is a macro assembler, which means that the programmer has the possibil-
ity to define new ”commands” by means of macros. Additionally it masters
conditional assembling. Labels inside macros are automatically processed as
being local.

For the assembler, symbols may have either integer, string or floating point
values. These will be stored - like interim values in formulas - with a width
of 32 bits for integer values, 80 or 64 bits for floating point values, and 255
characters for strings. For a couple of micro controllers, there is the possi-
bility to classify symbols by segmentation. So the assembler has a (limited)
possibility to recognize accesses to wrong address spaces.

The assembler does not know explicit limits in the nesting depth of include
files or macros; a limit is only given by the program stack restricting the
recursion depth. Nor is there a limit for the symbol length, which is only
restricted by the maximum line length.

From version 1.38 on, AS is a multipass-assembler. This pompous term
means no more than the fact that the number of passes through the source
code need not be exactly two. If the source code does not contain any
forward references, AS needs only one pass. In case AS recognizes in the
second pass that it must use a shorter or longer instruction coding, it needs
a third (fourth, fifth...) pass to process all symbol references correctly. There
is nothing more behind the term ”multipass”, so it will not be used further
more in this documentation.

After so much praise a bitter pill: AS cannot generate linkable code. An
extension with a linker needs considerable effort and is not planned at the
moment.

1.3. SUPPORTED PLATFORMS 19

Those who want to take a look at the sources of AS can simply get the
Unix version of AS, which comes as source for self-compiling. The sources
are definitely not in a format that is targeted at easy understanding - the
original Pascal version still raises its head at a couple of places, and I do not
share a couple of common opinions about ’good’ C coding.

1.3 Supported Platforms

Though AS started as a pure DOS program, there are a couple of versions DOS
available that are able to exploit a bit more than the Real Mode of an Intel
CPU. Their usage is kept as compatible to the DOS version as possible, but
there are of course differences concerning installation and embedding into
the operating system in question. Sections in this manual that are only valid
for a specific version of AS are marked with a corresponding sidemark (at
this paragraph for the DOS version) aheaded to the paragraph. In detail,
the following further versions exist (distributed as separate packages):

In case you run into memory problems when assembling large and complex DPMI
programs under DOS, there is a DOS version that runs in protected mode via
a DOS extender and can therefore make use of the whole extended memory
of an AT. The assembly becomes significantly slower by the extender, but at
least it works...

There is a native OS/2 version of AS for friends of IBM’s OS/2 operating OS/2
system. Since version 1.41r8, this is a full 32-bit OS/2 application, which of
course means that OS/2 2.x and at least an 80386 CPU are mandatory.

You can leave the area of PCs-only with the C version of AS that was designed UNIX
to be compilable on a large number of UNIX systems (this includes OS/2
with the emx compiler) without too much of tweaking. In contrast to the
previously mentioned versions, the C version is delivered in source code, i.e.
one has to create the binaries by oneself using a C compiler. This is by far
the simpler way (for me) than providing a dozen of precompiled binaries for
machines I sometimes only have limited access to...

People who have read this enumeration up to this point will notice that ???
world’s best-selling operating system coming from Redmont is missing in
this enumeration. People who know me personally will know that I do not

20 CHAPTER 1. INTRODUCTION

regard Windows to be a pat solution (regardless if its 3.X, 95, or NT). Frankly
said, I am a ’windows hater’. A large number of people will now regard this
to be somewhere between obsolete and ridiculous, and they will tell me that
I withhold AS from a large part of potential users, but they will have to
live with it: I primarily continue to improve AS because I have fun doing
it; AS is a non-commercial project and I therefore take the freedom not
to look at potential market shares. I select platforms for me where I have
fun programming, and I definitely do not have any fun when programming
for Windows! By the way, there was a time when I had to write Windows
programs so I do not simply jabber without having an idea what I am talking
about. If someone wants to port AS into this direction, I will not stand in
his way, but (s)he should not expect anything more from me than providing
sources (which is why (s)he will have to deal with questions like ’why does
AS not work any more after I changed the JUNK-CAD 18.53 registry entry
from upper to lower case?’).

Chapter 2

Assembler Usage

Scotty: Captain, we din’ can reference it!
Kirk: Analysis, Mr. Spock?
Spock: Captain, it doesn’t appear in the symbol table.
Kirk: Then it’s of external origin?
Spock: Affirmative.
Kirk: Mr. Sulu, go to pass two.
Sulu: Aye aye, sir, going to pass two.

2.1 Hardware Requirements

The hardware requirements of AS vary substantially from version to version:

The DOS version will principally run on any IBM-compatible PC, ranging DOS
from a PC/XT with 4-dot-little megahertz up to a Pentium. However, similar
to other programs, the fun using AS increases the better your hardware
is. An XT user without a hard drive will probably have significant trouble
placing the overlay file on a floppy because it is larger than 500 Kbytes...the
PC should therefore have at least a hard drive, allowing acceptable loading
times. AS is not very advanced in its main memory needs: the program itself
allocates less than 300 Kbytes main memory, AS should therefore work on
machines with at least 512 Kbytes of memory.

The version of AS compiled for the DOS Protected Mode Interface (DPMI) DPMI

21

22 CHAPTER 2. ASSEMBLER USAGE

requires at least 1 Mbyte of free extended memory. A total memory capacity
of at least 2 Mbytes is therefore the absolute minimum given one does not
have other tools in the XMS (like disk caches, RAM disks, or a hi-loaded
DOS); the needs will rise then appropriately. If one uses the DPMI version
in a DOS box of OS/2, one has to assure that DPMI has been enabled via the
box’s DOS settings (set to on or auto) and that a sufficient amount of XMS
memory has been assigned to the box. The virtual memory management of
OS/2 will free you from thinking about the amount of free real memory.

The hardware requirements of the OS/2 version mainly result from the needsOS/2
of the underlying operating system, i.e. at minimum an 80386SX processor,
8 Mbytes of RAM (resp. 4 Mbytes without the graphical user interface) and
100..150 Mbytes of hard disk space. AS2 is only a 16-bit application and
therefore it should also work on older OS/2 versions (thereby reducing the
processor needs to at least an 80286 processor); I had however no chance to
test this.

The C version of AS is delivered as source code and therefore requires aUNIX
UNIX or OS/2 system equipped with a C compiler. The compiler has to
fulfill the ANSI standard (GNU-C for example is ANSI-compliant). You
can look up in the README file whether your UNIX system has already been
tested so that the necessary definitions have been made. You should reserve
about 15 Mbytes of free hard disk space for compilation; this value (and the
amount needed after compilation to store the compiled programs) strongly
differs from system to system, so you should take this value only as a rough
approximation.

2.2 Delivery

Principally, you can obtain AS in one of two forms: as a binary or a source
distribution. In case of a binary distribution, one gets AS, the accomanying
tools and auxiliary files readily compiled, so you can immediately start to
use it after unpacking the archive to the desired destination on your hard
drive. Binary distibutions are made for widespread platforms, where either
the majority of users does not have a compiler or the compilation is tricky
(currently, this includes DOS and OS/2). A source distribution in contrast
contains the complete set of C sources to generate AS; it is ultimately a

2.3. INSTALLATION 23

snapshot of the source tree I use for development on AS. The generation of
AS from the sources and their structure is described in detail in appendix
I, which is why at this place, only the contents and installation of a binary
distribution will be described:

The contents of the archive is separated into several subdirectories, therefore
you get a directory subtree immediately after unpacking without having to
sort out things manually. The individual directories contain the following
groups of files:

• BIN: executable programs, text resources;

• INCLUDE: include files for assembler programs, e.g. register definitions
or standard macros;

• MAN: quick references for the individual programs in Unix ’man’ format.

A list of the files found in every binary distribution is given in tables 2.1 to
2.3. In case a file listed in one of these (or the following) tables is missing,
someone took a nap during copying (probably me)...

Depending on the platform, a binary distribution however may contain more
files to allow operation, like files necessary for DOS extenders. In case of
the DOS DPMI version , the extensions listed in table 2.4 result. Just to DPMI
mention it: it is perfectly O.K. to replace the tools with their counterparts
from a DOS binary distribution; on the on hand, they execute significantly
faster without the extender’s overhead, and on the other hand, they do not
need the extended memory provided by the extender.

An OS/2 binary distribution contains in addition to the base files a set of OS/2
DLLs belonging to the runtime environment of the emx compiler used to
build AS (table 2.5). In case you already have these DLLs (or newer versions
of them), you may delete these and use your ones insted.

2.3 Installation

There is no need for a special installation prior to usage of AS. It is sufficient DOS
to unpack the archive in a fitting place and to add a few minor settings. For

24 CHAPTER 2. ASSEMBLER USAGE

File function

Directory BIN
AS.EXE executable of assembler
PLIST.EXE lists contents of code files
PBIND.EXE merges code files
P2HEX.EXE converts code files to hex files
P2BIN.EXE converts code files to binary files
AS.MSG text resources for AS
PLIST.MSG text resources for PLIST
PBIND.MSG text resources for PBIND
P2HEX.MSG text resources for P2HEX
P2BIN.MSG text resources for P2BIN
TOOLS.MSG common text resources for all tools
CMDARG.MSG common text resources for all programs
IOERRS.MSG

Directory DOC
AS DE.DOC german documentation, ASCII format
AS DE.HTML german documentation, HTML format
AS DE.TEX german documentation, LaTeX format
AS EN.DOC english documentation, ASCII format
AS EN.HTML english documentation, HTML format
AS EN.TEX english documentation, LaTeX format

Directory INCLUDE
BITFUNCS.INC functions for bit manipulation
CTYPE.INC functions for classification of

characters
80C50X.INC register addresses SAB C50x
80C552.INC register addresses 80C552
H8 3048.INC register addresses H8/3048
REG166.INC addresses and instruction macros 80C166/167
REG251.INC addresses and bits 80C251
REG29K.INC peripheral addresses AMD 2924x

Table 2.1: Standard Contents of a Binary Distribution - Part 1

2.3. INSTALLATION 25

File Function

Directory INCLUDE
REG53X.INC register addresses H8/53x
REG683XX.INC register addresses 68332/68340/68360
REG7000.INC register addresses TMS70Cxx
REG78K0.INC register addresses 78K0
REG96.INC register addresses MCS-96
REGACE.INC register addresses ACE
REGAVR.INC register and bit addresses AVR family
REGCOP8.INC register addresses COP8
REGGP32.INC register addresses 68HC908GP32
REGHC12.INC register addresses 68HC12
REGM16C.INC register addresses Mitsubishi M16C
REGMSP.INC register addresses TI MSP430
REGST9.INC register and Makrodefinitionen ST9
REGZ380.INC register addresses Z380
STDDEF04.INC register addresses 6804
STDDEF16.INC instruction macros and register addresses

PIC16C5x
STDDEF17.INC register addresses PIC17C4x
STDDEF18.INC register addresses PIC16C8x
STDDEF2X.INC register addresses TMS3202x
STDDEF37.INC register and bit addresses TMS370xxx
STDDEF3X.INC peripheral addresses TMS320C3x
STDDEF47.INC instruction macros TLCS-47
STDDEF51.INC definition of SFRs and bits for

8051/8052/80515
STDDEF56K.INC register addresses DSP56000
STDDEF5X.INC peripheral addresses TMS320C5x
STDDEF60.INC instruction macros and register addresses

PowerPC
STDDEF62.INC register addresses and Makros ST6
STDDEF75.INC register addresses 75K0

Table 2.2: Standard Contents of a Binary Distribution - Part 2

26 CHAPTER 2. ASSEMBLER USAGE

File Function

Directory INCLUDE
STDDEF87.INC register and memory addresses TLCS-870
STDDEF90.INC register and memory addresses TLCS-90
STDDEF96.INC register and memory addresses TLCS-900
STDDEFXA.INC SFR and bit addresses Philips XA
STDDEFZ8.INC register addresses Z8 family

Directory LIB

Directory MAN
ASL.1 quick reference for AS
PLIST.1 quick reference for PLIST
PBIND.1 quick reference for PBIND
P2HEX.1 quick reference for P2HEX
P2BIN.1 quick reference for P2BIN

Table 2.3: Standard Contents of a Binary Distribution - Part 3

File Function

Directory BIN
DPMI16BI.OVL DPMI server for the assembler
RTM.EXE runtime module of the extender

Table 2.4: Additional Files in a DPMI Binary Distribution

File function

Directory BIN
EMX.DLL runtime libraries for AS and
EMXIO.DLL its tools
EMXLIBC.DLL
EMXWRAP.DLL

Table 2.5: Additional Files in an OS/2 binary distribution

2.3. INSTALLATION 27

example, this is an installation a user used to UNIX-like operating systems
might choose:

Create a directory c:\as an (I will assume in the following that you are going
to install AS on drive C), change to this directory and unpack the archiv,
keeping the path names stored in the archive (when using PKUNZIP, the
command line option -d is necessary for that). You now should have the
following directory tree:

c:\as

c:\as\bin

c:\as\include

c:\as\lib

c:\as\man

c:\as\doc

c:\as\demos

Now, append the directory c:\as\bin to the PATH statement in your
AUTOEXEC.BAT, which allows the system to find AS and its tools. With your
favourite text editor, create a file named AS.RC in the lib directory with the
following contents:

-i c:\as\include

This so-called key file tells AS where to search for its include files. The
following statement must be added to your AUTOEXEC.BAT to tell AS to read
this file:

set ASCMD=@c:\as\lib\as.rc

There are many more things you can preset via the key file; they are listed
in the following section.

The installation of the DPMI version should principally take the same course DPMI
as for the pure DOS version; as soon as the PATH contains the bin directory,
the DOS extender’s files will be found automatically and you should not
notice anything of this mechanism (except for the longer startup time...).
When working on an 80286-based computer, it is theoretically possible tha
you get confronted with the following message upon the first start:

machine not in database (run DPMIINST)

28 CHAPTER 2. ASSEMBLER USAGE

Since the DPMIINST tool ins not any more included in newer versions of
Borland’s DOS extender, I suppose that this is not an item any more...in
case you run into this, contact me!

The installation of the OS/2 version can generally be done just like for theOS/2
DOS version, with the addition that the DLLs have to be made visible for the
operating system. In case you do not want to extend the LIBPATH entry in
your CONFIG.SYS, it is of course also valid to move the DLLs into a directory
already listed in LIBPATH.

As already mentioned, the installation instructions in this section limit them-
selves to binary distributions. Since an installation under Unix is currentlyUNIX
alway a source-based installation, the only hint I can give here is a reference
to appendix I.

2.4 Start-Up Command, Parameters

AS is a command line driven program, i.e. all parameters and file options
are to be given in the command line.

A couple of message files belongs to AS (recognizable by their suffix MSG)
AS accesses to dynamically load the messages appropriate for the national
language. AS searches the following directories for these files:

• the current directory;

• the EXE-file’s directory;

• the directory named in the AS MSGPATH environment variable, or alter-
nitavely the directories listed in the PATH environment variable;

• the directory compiled into AS via the LIBDIR macro.

These files are indispensable for a proper operation of AS, i.e. AS will termi-
nate immediately if these files are not found.

The language selection (currently only German and English) is based on the
COUNTRY setting under DOS and OS/2 respectively on the LANG environment
variable under Unix.

2.4. START-UP COMMAND, PARAMETERS 29

In order to fulfill AS’s memory requirements under DOS, the various codeDOS
generator modules of the DOS version were moved into an overlay which
is part of the EXE file. A separate OVR file like in earlier versions of AS
therefore dose not exist any more, AS will however still attempt to reduce
the overlaying delays by using eventually available EMS or XMS memory.
In case this results in trouble, you may suppress usage of EMS or XMS by
setting the environment variable USEXMS or USEEMS to n. E.g., it is possible
to suppress the using of XMS by the command:

SET USEXMS=n

Since AS performs all in- and output via the operating system (and therefore
it should run also on not 100% compatible DOS-PC’s) and needs some basic
display control, it emits ANSI control sequences during the assembly. In
case you should see strange characters in the messages displayed by AS, your DOS/
CONFIG.SYS is obviously lacking a line like this:

device=ansi.sys

but the further functions of AS will not be influenced hereby. Alternatively DPMI
you are able to suppress the output of ANSI sequences completely by setting
the environment variable USEANSI to n.

The DOS extender of the DPMI version can be influenced in its memory DPMI
allocation strategies by a couple of environment variables; if you need to
know their settings, you may look up them in the file DPMIUSER.DOC. ASX is
additionally able to extend the available memory by a swap file. To do this,
set up an environment variable ASXSWAP in the following way:

SET ASXSWAP=<size>[,file name]

The size specification has to be done in megabytes and has to be done. The
file name in contrast is optional; if it is missing, the file is named ASX.TMP

and placed in the current directory. In any case, the swap file is deleted after
program end.

The command line parameters can roughly be divided into three categories:
switches, key file references (see below) and file specifications. Parameters
of these two categories may be arbitrarily mixed in the command line. The
assembler evaluates at first all parameters and then assembles the specified
files. From this follow two things:

30 CHAPTER 2. ASSEMBLER USAGE

• the specified switches affect all specified source files. If several source
files shall be assembled with different switches, this has to be done in
separate runs.

• it is possible to assemble more than one file in one shot and to bring it
to the top, it is allowed that the file specs contain wildcards.

Parameter switches are recognized by AS by starting with a slash (/) or
hyphen (-). There are switches that are only one character long and addi-
tionally switches composed of a whole word. Whenever AS cannot interpret
a switch as a whole word, it tries to interprete every letter as an individual
switch. For example, if you write

-queit

instead of

-quiet

AS will take the letters q, u, e, i, and t as individual switches. Multiple-
letter switches additionally have the difference to single-letter switches that
AS will accept an arbitrary mixture of upper and lower casing, whereas single-
letter switches may have a different meaning depending on whether upper or
lower case is used.

At the moment, the following switches are defined:

• l: sends assembler listing to console terminal (mostly screen). In case
several passes have to be done, the listing of all passes will be send to
the console (in opposite to the next option).

• L: writes assembler listing into a file. The list file will get the same
name as the source file, only the extension is replaced by LST. Except
one uses...

• OLIST: with a fiel name as argument allows to redirect the listing to
a different file or a different path. This option may be used multiple
times in case multiple files are assembled with one execution.

2.4. START-UP COMMAND, PARAMETERS 31

• o: Sets the new name of the code file generated by AS. If this option is
used multiple times, the names will be assigned, one after the other, to
the source files which have to be assembled. A negation (see below) of
this option in connection with a name erases this name from the list.
A negation without a name erases the whole list.

• SHAREOUT:ditto for a SHARE file eventually to be created.

• c: SHARED-variables will be written in a format which permits an
easy integration into a C-source file. The extension of the file is H.

• p: SHARED-variables will be written in a format which permits easy
integration into the CONST-block of a Pascal program. The extension
of the file is INC.

• a: SHARED-variables will be written in a format which permits easy
integration into an assembler source file. The extension of the file is
INC.

Concerning effect and function of the SHARED-symbols please see chapters
2.13 resp. 3.9.1.

• g [format]: This switch instructs AS to create an additional file that
contains debug information for the program. Allowed formats are the
AS-specific MAP format (format=MAP), a NoICE-compatible command
file (format=NOICE), and the Atmel format used by the AVR tools
(format=ATMEL). The information stored in the MAP format is com-
prised of a symbol table and a table describing the assignment of source
lines to machine addresses. A more detailed description of the MAP
format can be found in section 5.2 The file’s extension is MAP, NOI, resp.
OBJ, depending on the chosen format. If no explicit format specification
is done, the MAP format is chosen.

• noicemask [value]: By default, AS lists only symbols from the CODE
segment in NoICE debug info files. With this option and an integer
value interpreted as a bit mask, symbols fom other segments may be
added. The assignment of segments to bit positions may be taken from
table 5.3.

• w: suppress issue of warnings;

32 CHAPTER 2. ASSEMBLER USAGE

• E [file]: error messages and warnings produced by AS will be
redirected to a file. Instead of a file, the 5 standard handles
(STDIN..STDPRN) can also be specified as !0 to !4 . Default is !2,
meaning STDERR. If the file option is left out, the name of the error
file is the same as of the source file, but with the extension LOG.

• q: This switch suppresses all messages of AS, the exceptions are error
messages and outputs which are are forced from the source file. The
time needed for assembly is slightly reduced hereby and if you call AS
from a shell there is no redirection required. The disadvantage is that
you may ”stay in the dark” for several minutes ... It is valid to write
quiet instead of q.

• h: write hexadecimal numbers in lowercase instead of capital letters.
This option is primarily a question of personal taste.

• i <path list>: issues a list of directories where the assembler shall
automatically search for include files, in case it didn’t find a file in the
current directory. The different directories have to be separated by
semicolons.

• u: calculate a list of areas which are occupied in the segments. This
option is effective only in case a listing is produced. This option re-
quires considerable additional memory and computing performance. In
normal operation it should be switched off.

• C: generates a list of cross references. It lists which (global) symbols
are used in files and lines. This list will also be generated only in case
a listing is produced. This option occupies, too, additional memory
capacity during assembly.

• s: issues a list of all sections (see chapter 3.8). The nesting is indicated
by indentations (Pascal like).

• t: by means of this switch it is possible to separate single components
of the standard issued assembler-listing. The assignment of bits to
parts can be found in the next section, where the exact format of the
assembly listing is explained.

• D: defines symbols. The symbols which are specified behind this op-
tion and separated by commas are written to the global symbol table

2.4. START-UP COMMAND, PARAMETERS 33

before starting the assembly. As default these symbols are written as
integer numbers with the value TRUE, by means of an appended equal
sign, however, you can select other values. The expression following
the equals sign may include operators or internal functions, but not
any further symbols, even if these should have been defined before in
the list! Together with the commands for conditional assembly (see
there) you may produce different program versions out of one source
file by command line inputs. CAUTION! If the case-sensitive mode
is used, this has to be specified in the command line before any symbol
definitions, otherwise symbol names will be converted to upper case at
this place!

• A: stores the list of global symbols in another, more compact form. Use
this option if the assembler crashes with a stack overflow because of too
long symbol tables. Sometimes this option can increase the processing
speed of the assembler, but this depends on the sources.

• x: Sets the level of detail for error messages. The level is increased
resp. decreased by one each time this option is given. While on level 0
(default) only the error message itself is printed, an extended message
is added beginning at level 1 that should simplify the identification of
the error’s cause. Appendix A lists which error messages carry which
extended messages. At level 2 (maximum), the source line containing
the error is additionally printed.

• n: If this option is set, the error messages will be issued additionally
with their error number (see appendix A). This is primarily intended
for use with shells or IDE’s to make the identification of errors easier
by those numbers.

• U: This option switches AS to the case-sensitive mode, i.e. upper and
lower case in the names of symbols, sections, macros, character sets,
and user-defined functions will be distinguished. This is not the case
by default.

• P: Instructs AS to write the source text processed by macro proces-
sor and conditional assembly into a file. Additional blank and pure
comment lines are missing in this file. The extension of this file is I.

34 CHAPTER 2. ASSEMBLER USAGE

• M: If this switch is given, AS generates a file, that contains definitions of
macros defined in the source file that did not use the NOEXPORT option.
This new file has the same name as the source file, only the extension
is modified into MAC.

• G: this switch defines whether AS should produce code or not. If
switched off, the processing will be stopped after the macro proces-
sor. This switch is activated by default (logically, otherwise you would
not get a code file). This switch can be used in conjunction with the P

switch, if only the macro processor of AS shall be used.

• r [n]: issue warnings if situations occur that force a further pass.
This information can be used to reduce the number of passes. You
may optionally specify the number of the first pass where issuing of
such messages shall start. Without this argument, warnings will come
starting with the first pass. Be prepared for a bunch of messages!!

• cpu <name>: this switch allows to set the target processor AS shall
generate code for, in case the source file does not contain a CPU instruc-
tion and is not 68008 code.

• alias <new>=<old>: defines the processor type <new> to be an
alias for the type <old>. See section 2.14 for the sense of processor
aliases.

• gnuerrors: display messages about errors resp. warnings not in the
As standard format, but instaed in a format similar to the GNU C
compiler. This simplifies the integration of AS into environments tuned
for this format, however also suppresses the display of precise error
positions in macro bodies!

As long as switches require no arguments and their concatenation does not
result in a multi-letter switch, it is possible to specify several switches at one
time, as in the following example :

as test*.asm firstprog -cl /i c:\as\8051\include

All files TEST*.ASM as well as the file FIRSTPROG.ASM will be assembled,
whereby listings of all files are displayed on the console terminal. Additional

2.4. START-UP COMMAND, PARAMETERS 35

sharefiles will be generated in the C- format. The assembler should search
for additional include files in the directory C:\AS\8051\INCLUDE.

This example shows that the assembler assumes ASM as the default extension
for source files.

A bit of caution should be applied when using switches that have optional ar-
guments: if a file specification immediately follows such aswitch without the
optional argument, AS will try to interprete the file specification as argument
- what of course fails:

as -g test.asm

The solution in this case would either be to move the -g option the end or to
specify an explicit MAP argument.

Beside from specifying options in the command line, permanently needed
options may be placed in the environment variable ASCMD. For example, if
someone always wants to have assembly listings and has a fixed directory for
include files, he can save a lot of typing with the following command:

set ascmd=-L -i c:\as\8051\include

The environment options are processed before the command line, so options
in the command line can override contradicting ones in the environment
variable.

In the case of very long path names, space in the ASCMD variable may become
a problem. For such cases a key file may be the alternative, in which the
options can be written in the same way as in the command line or the ASCMD-
variable. But this file may contain several lines each with a maximum length
of 255 characters. In a key file it is important, that for options which require
an argument, switches and argument have to be written in the same line.
AS gets informed of the name of the key file by a @ aheaded in the ASCMD

variable, e.g.

set ASCMD=@c:\as\as.key

In order to neutralize options in the ASCMD variable (or in the key file), prefix
the option with a plus sign. For example, if you do not want to generate
an assembly listing in an individual case, the option can be retracted in this
way:

36 CHAPTER 2. ASSEMBLER USAGE

as +L <file>

Naturally it is not consequently logical to deny an option by a plus sign....
UNIX soit qui mal y pense.

References to key files may not only come from the ASCMD variable, but also
directly from the command line. Similarly to the ASCMD variable, prepend
the file’s name with a character:

as @<file>

The options read from a key file in this situation are processed as if they
had been written out in the command line in place of the reference, not like
the key file referenced by the ASCMD variable that is processed prior to the
command line options.

Referencing a key file from a key file itself is not allowed and will be answered
wit an error message by AS.

In case that you like to start AS from another program or a shell and this
shell hands over only lower-case or capital letters in the command line, the
following workaround exists: if a tilde (~) is put in front of an option letter,
the following letter is always interpreted as a lower-case letter. Similarly a
demands the interpretation as a capital letter. For example, the following
transformations result for:

/~I ---> /i

-#u ---> -U

In dependence of the assembly’s outcome, the assembler ends with the fol-
lowing return codes:

0 error free run, at maximum warnings occurred

1 The assembler displayed only its command-line parameters and terminated
immediately afterwards.

2 Errors occurred during assembly, no code file has been produced.

3 A fatal error occurred what led to immediate termination of the run.

2.5. FORMAT OF THE INPUT FILES 37

4 An error occurred already while starting the assembler. This may be a
parameter error or a faulty overlay file.

255 An internal error occurred during initialization that should not occur
in any case...reboot, try again, and contact me if the problem is repro-
ducible!

Similar to UNIX, OS/2 extends an application’s data segment on demand OS/2
when the application really needs the memory. Therefore, an output like

511 KByte available memory

does not indicate a shortly to come system crash due to memory lack, it
simply shows the distance to the limit when OS/2 will push up the data
segment’s size again...

As there is no compatible way in C under different operating systens to UNIX
find out the amount of available memory resp. stack, both lines are missing
completely from the statistics the C version prints.

2.5 Format of the Input Files

Like most assemblers, AS expects exactly one instruction per line (blank
lines are naturally allowed as well). The lines must not be longer than 255
characters, additional characters are discarded.

A single line has following format:

[label[:]] <mnemonic>[.attr] [param[,param..]] [;comment]

A line may also be split over several lines in the source file, continuation
characters chain these parts together to a single line. One must however
consider that, due to the internal buffer structure, the total line must not be
longer than 256 characters. Line references in error messages always relate
to the last line of such a composed source line.

The colon for the label is optional, in case the label starts in the first column
(the consequence is that a mnemonic must not start in column 1). It is
necessary to set the colon in case the label does not start in the first column

38 CHAPTER 2. ASSEMBLER USAGE

so that AS is able to distinguish it from a mnemonic. In the latter case, there
must be at least one space between colon and mnemonic if the processor
belongs to a family that supports an attribute that denotes an instruction
format and is separated from the mnemonic by a colon. This restriction
is necessary to avoid ambiguities: a distinction between a mnemonic with
format and a label with mnemonic would otherwise be impossible.

Some signal processor families from Texas Instruments optionally use a dou-
ble line (||) in place of the label to signify the prallel execution with the
previous instruction(s). If these two assembler instructions become a single
instruction word at machine level (C3x), an additional label in front of the
second instruction of course does not make sense and is not allowed. The sit-
uation is different for the C6x with its instruction packets of variable length:
If someone wants to jump into the middle of an instruction packet (bad style,
if you ask me...), he has to place the necessary label before into a separate
line. The same is valid for conditions, which however may be combined with
the double line in a single source line.

The attribute is used by a couple of processors to specify variations or dif-
ferent codings of a certain instruction. The most prominent usage of the
attibute is is the specification of the operand size, for example in the case of
the 680x0 family (table 2.6).

attribute arithmetic-logic instruction jump instruction

B byte (8 bits) ———
W word (16 bits) ———
L long word (32 bits) 16-bit-displacement
Q quad word (64 bits) ———
S single precision (32 bits) 8-bit-displacement
D double precision (64 bits) ———
X extended precision (80/96 bits) 32-bit-displacement
P decimal floating point (80/96 bits) ———

Table 2.6: Allowed Attributes (Example 680x0)

Since this manual is not also meant as a user’s manual for the processor
families supported by AS, this is unfortunately not the place to enumerate
all possible attributes for all families. It should however be mentioned that

2.6. FORMAT OF THE LISTING 39

in general, not all instructions of a given instruction set allow all attributes
and that the omission of an attribute generally leads to the usage of the
”natural” operand size of a processor family. For more thorough studies,
consult a reasonable programmer’s manual, e.g. [1] for the 68K’s.

In the case of TLCS-9000, H8/500, and M16(C), the attribute serves both
as an operand size specifier (if it is not obvious from the operands) and as a
description of the instruction format to be used. A colon has to be used to
separate the format from the operand size, e.g. like this:

add.w:g rw10,rw8

This example does not show that there may be a format specification without
an operand size. In contrast, if an operand size is used without a format
specification, AS will automatically use the shortest possible format. The
allowed formats and operand sizes again depend on the machine instruction
and may be looked up e.g. in [106], [24], [44], resp. [45].

The number of instruction parameters depends on the mnemonic and is prin-
cipally located between 0 and 20. The separation of the parameters from each
other is to be performed only by commas (exception: DSP56xxx, its paral-
lel data transfers are separated with blanks). Commas that are included in
brackets or quotes, of course, are not taken into consideration.

Instead of a comment at the end, the whole line can consist of comment if it
starts in the first column with a semicolon.

To separate the individual components you may also use tabulators instead
of spaces.

2.6 Format of the Listing

The listing produced by AS using the command line options i or I is roughly
divisible into the following parts :

1. issue of the source code assembled;

2. symbol list;

40 CHAPTER 2. ASSEMBLER USAGE

3. usage list;

4. cross reference list.

The two last ones are only generated if they have been demanded by addi-
tional command line options.

In the first part, AS lists the complete contents of all source files including
the produced code. A line of this listing has the following form:

[<n>] <line>/<address> <code> <source>

In the field n, AS displays the include nesting level. The main file (the file
where assembly was started) has the depth 0, an included file from there has
depth 1 etc.. Depth 0 is not displayed.

In the field line, the source line number of the referenced file is issued. The
first line of a file has the number 1. The address at which the code generated
from this line is written follows after the slash in the field address.

The code produced is written behind address in the field code, in hexadec-
imal notation. Depending on the processor type and actual segment the
values are formatted either as bytes or 16/32-bit-words. If more code is gen-
erated than the field can take, additional lines will be generated, in which
case only this field is used.

Finally, in the field source, the line of the source file is issued in its original
form.

The symbol table was designed in a way that it can be displayed on an 80-
column display whenever possible. For symbols of ”normal length”, a double
column output is used. If symbols exceed (with their name and value) the
limit of 40 columns (characters), they will be issued in a separate line. The
output is done in alphabetical order. Symbols that have been defined but
were never used are marked with a star (*) as prefix.

The parts mentioned so far as well as the list of all macros/functions defined
can be selectively masked out from the listing. This can be done by the
already mentioned command line switch -t. There is an internal byte inside
AS whose bits represent which parts are to be written. The assignment of
bits to parts of the listing is listed in table 2.7.

All bits are set to 1 by default, when using the switch

2.6. FORMAT OF THE LISTING 41

bit part

0 source file(s) + produced code
1 symbol table
2 macro list
3 function list
4 line numbering
5 register symbol list
7 character set table

Table 2.7: Assignment of Bits to Listing Components

-t <mask>

Bits set in <mask> are cleared, so that the respective listing parts are sup-
pressed. Accordingly it is possible to switch on single parts again with a plus
sign, in case you had switched off too much with the ASCMD variable... If
someone wants to have, for example, only the symbol table, it is enough to
write:

-t 2

The usage list issues the occupied areas hexadecimally for every single seg-
ment. If the area has only one address, only this is written, otherwise the
first and last address.

The cross reference list issues any defined symbol in alphabetical order and
has the following form:

symbol <symbol name> (=<value>,<file>/<line>):

file <file 1>:

<n1>[(m1)] <nk>[(mk)]

.

.

file <file l>:

<n1>[(m1)] <nk>[(mk)]

The cross reference list lists for every symbol in which files and lines it has
been used. If a symbol was used several times in the same line, this would
be indicated by a number in brackets behind the line number. If a symbol

42 CHAPTER 2. ASSEMBLER USAGE

was never used, it would not appear in the list; The same is true for a file
that does not contain any references for the symbol in question.

CAUTION! AS can only print the listing correctly if it was previously
informed about the output media’s page length and width! This has to be
done with the PAGE instruction (see there). The preset default is a length of
60 lines and an unlimited line width.

2.7 Symbol Conventions

Symbols are allowed to be up to 255 characters long (as hinted already in
the introduction) and are being distinguished on the whole length, but the
symbol names have to meet some conventions:

Symbol names are allowed to consist of a random combination of letters,
digits, underlines and dots, whereby the first character must not be a digit.
The dot is only allowed to meet the MCS-51 notation of register bits and
should - as far as possible - not be used in own symbol names. To separate
symbol names in any case the underline () and not the dot (.) should be
used .

AS is by default not case-sensitive, i.e. it does not matter whether one uses
upper or lower case characters. The command line switch U however allows to
switch AS into a mode where upper and lower case makes a difference. The
predefined symbol CASESENSITIVE signifies whether AS has been switched
to this mode: TRUE means case-sensitiveness, and FALSE its absence.

Table 2.8 shows the most important symbols which are predefined by AS.
CAUTION! While it does not matter in case-sensitive mode which combi-
nation of upper and lower case to use to reference predefined symbols, one
has to use exactly the version given above (only upper case) when AS is in
case-sensitive mode!

Additionally some pseudo instructions define symbols that reflect the value
that has been set with these instructions. Their descriptions are explained
at the individual commands belonging to them.

A hidden feature (that has to be used with care) is that symbol names may
be assembled from the contents of string symbols. This can be achieved by

2.7. SYMBOL CONVENTIONS 43

name meaning

TRUE logically ”true”
FALSE logically ”false”
CONSTPI Pi (3.1415.....)
VERSION version of AS in BCD-coding,

e.g. 1331 hex for version 1.33p1
ARCHITECTURE target platform AS was compiled for, in

the style processor-manufacturer-operating
system

DATE date and
TIME time of the assembly (start)
MOMCPU current target CPU

(see the CPU instruction)
MOMFILE current source file
MOMLINE line number in source file
MOMPASS number of the currently running pass
MOMSECTION name of the current section

or an empty string
*, $ resp. PC current value of program counter

Table 2.8: Predefined Symbols

framing the string symbol’s name with braces and inserting it into the new
symbol’s name. This allows for example to define a symbol’s name based on
the value of another symbol:

cnt set cnt+1

temp equ "\{CNT}"

jnz skip{temp}

.

.

skip{temp}: nop

CAUTION: The programmer has to assure that only valid symbol names
are generated!

A complete list of all symbols predefined by AS can be found in appendix E.

Apart from its value, every symbol also owns a marker which signifies to
which segment it belongs. Such a distinction is mainly needed for processors

44 CHAPTER 2. ASSEMBLER USAGE

that have more than one address space. The additional information allows
AS to issue a warning when a wrong instruction is used to access a symbol
from a certain address space. A segment attribute is automatically added to
a symbol when is gets defined via a label or a special instruction like BIT;
a symbol defined via the ”allround instructions” SET resp. EQU is however
”typeless”, i.e. its usage will never trigger warnings. A symbol’s segment
attribute may be queried via the buit-in function SYMTYPE, e.g.:

Label:

.

.

Attr equ symtype(Label) ; results in 1

The individual segment types have the assigned numbers listed in table 2.9.
Register symbols which do not really fit into the order of normal symbols are
explained in section 2.12. The SYMTYPE function delivers -1 as result when
called with an undefined symbol as argument.

segment return value
<none> 0
CODE 1
DATA 2
IDATA 3
XDATA 4
YDATA 5
BITDATA 6
IO 7
REG 8
ROMDATA 9
<register symbol> 128

Table 2.9: return values of the SYMTYPE function

2.8 Temporary Symbols

Especially when dealing with programs that contain sequences of loops of if-
like statements, one is continuously faced with the problem of inventing new

2.9. NAMED TEMPORARY SYMBOLS 45

names for labels - labels of which you know exactly that you will never need to
reference them again afterwards and you really would like to get ’rid’ of them
somehow. A simple solution if you don’t want to swing the large hammer
of sections (see chapter 3.8) are temporary symbols which remain valid as
long as a new, non-temporary symbol gets defined. Other assemblers offer a
similar mechanism which is commonly referred as ’local symbols’; however,
for the sake of a better distinction, I want to stay with the term ’temporary
symbols’. AS knows three different types of temporary symbols, in the hope
to offer everyone ’switching’ to AS a solution that makes conversion as easy
as possible. However, practically every assembler has its own interpretation
of this feature, so there will be only few cases where a 1:1 solution for existing
code:

2.9 Named Temporary Symbols

A symbol whose name starts with two dollar signs (something that is neither
allowed for non-temporary symbols nor for constants) is a named temporary
symbol. AS keeps an internal counter which is reset to 0 before assembly
begins and which gets incremented upon every definition of a non-temporary
symbol. When a temporary symbol is defined or referenced, both leading
dollar signs are discarded and the counter’s current value is appended. This
way, one regains the used symbol names with every definition of a non-
temporary symbol - but you also cannot reach the previously symbols any
more! Temporary symbols are therefore especially suited for usage in small
instruction blocks, typically a dozen of machine instructions, definitely not
more than one screen. Otherwise, one easily gets confused...

Here is a small example:

$$loop: nop

dbra d0,$$loop

split:

$$loop: nop

dbra d0,$$loop

Without the non-temporary label between the loops, of course an error mes-
sage about a double-defined symbol would be the result.

46 CHAPTER 2. ASSEMBLER USAGE

2.9.1 Nameless Temporary Symbols

For all those who regard named temporary symbols still as too complicated,
there is an even simpler variant: If one places a single puls or minus sign as a
label, this is converted to symbol names of forwnn respectively backmm,
with nn respectively mm being counters that start counting at zero. Those
symbols are referenced via the special names - -- --- respectively + ++

+++, which refer to the three last ’minus symbols’ and the next three ’plus
symbols’. Therefore, the selection between these two variants depends on
whether one wants to forward- or backward-reference a symbol.

Apart from plus and minus, defining nameless temporary symbols also exists
in a third variant, namely a slash (/). A temporary symbol defined in this
way may be referenced both backward and forward, i.e. it is treated either
as a plus or a minus, depending on the way it is being referenced.

Nameless temporary symbols are usually used in constructs that fit on one
screen page, like skipping a few machine instructions or tight loops - things
would becone to puzzling otherwise (this only a good advice, however...). An
example for this is the following piece of code, this time as 65xx code:

cpu 6502

- ldx #00

- dex

bne - ; branch to ’dex’

lda RealSymbol

beq + ; branch to ’bne --’

jsr SomeRtn

iny

+ bne -- ; branch to ’ldx #00’

SomeRtn:

rts

RealSymbol:

dfs 1

inc ptr

2.9. NAMED TEMPORARY SYMBOLS 47

bne + ; branch to ’tax’

inc ptr+1

+ tax

bpl ++ ; branch to ’dex’

beq + ; branch forward to ’rts’

lda #0

/ rts ; slash used as wildcard.

+ dex

beq - ; branch backward to ’rts’

ptr: dfs 2

2.9.2 Composed Temporary Symbols

This is maybe the type of temporary symbols that is nearest to the concept
of local symbols and sections. Whenever a symbol’s name begins with a dot
(.), the symbol is not directly stored with this name in the symbol table.
Instead, the name of the most recently-defined symbol not beginning with a
dot is prepended to the symbols name. This way, ’non-dotted’ symbols take
the role of section separators and ’dotted’ symbol names may be reused after
a ’non-dotted’ symbol has been defined. Take a look at the following little
example:

proc1: ; non-temporary symbol ’proc1’

.loop moveq #20,d0 ; actually defines ’proc1.loop’

dbra d0,.loop

rts

proc2: ; non-temporary symbol ’proc2’

.loop moveq #10,d1 ; actually defines ’proc2.loop’

jsr proc1

dbra d1,.loop

rts

48 CHAPTER 2. ASSEMBLER USAGE

Note that it is still possible to access all temporary symbols, even without be-
ing in the same ’area’, by simply using the composed name (like ’proc2.loop’
in the previous example).

It is principally possible to combine composed temporary symbols with sec-
tions, which makes them also to local symbols. Take however into ac-
count that the most recent non-temporary symbol is not stored per-section,
but simply globally. This may change however in a future version, so one
shouldn’t rely on the current behaviour.

2.10 Formula Expressions

In most places where the assembler expects numeric inputs, it is possible
to specify not only simple symbols or constants, but also complete formula
expressions. The components of these formula expressions can be either single
symbols and constants. Constants may be either integer, floating point, or
string constants.

2.10.1 Integer Constants

Integer constants describe non-fractional numbers. They may either be writ-
ten as a sequence of digits or as a sequence of characters enclosed in single
quotation marks. In case they are written as a sequence of digits, this may
be done in different numbering systems (table 2.10).

In case the numbering system has not been explicitly stated by adding the
special control characters listed in the table, AS assumes the base given with
the RADIX statement (which has itself 10 as default). This statement allows
to set up ’unusual’ numbering systems, i.e. others than 2, 8, 10, or 16.

Valid digits are numbers from 0 to 9 and letters from A to Z (value 10 to 35)
up to the numbering system’s base minus one. The usage of letters in integer
constants however brings along some ambiguities since symbol names also
are sequences of numbers and letters: a symbol name must not start with
a character from 0 to 9. This means that an integer constant which is not
clearly marked a such with a special prefix character never mav begin with

2.10. FORMULA EXPRESSIONS 49

Intel mode Motorola mode C mode
(Intel, Zilog, (Rockwell, Motorola, (PowerPC,

Thomson Texas, Microchip, Thomson, AMD 29K,
Toshiba, NEC, Hitachi) National,

Siemens, Philips, Symbios,
Fujitsu, Fairchild, Atmel)

Intersil)

decimal direct direct direct
hexadecimal followed by H prepended $ prepended 0x
binary followed by B prepended % prepended 0b
octal followed by O prepended @ prepended 0

followed by Q

Table 2.10: Possible Numbering Systems

a letter. One has to add an additional, otherwise superfluous zero in front in
such cases. The most prominent case is the writing of hexadecimal constants
in Intel mode: If the leftmost digit is between A and F, the trailing H doesn’t
help anything, an additional 0 has to be prefixed (e.g. 0F0H instead of F0H).
The Motorola and C syntaxes whis both mark the numbering system at the
front of a constant do not have this problem (hehehe..).

Quite tricky is furthermore that the higher the default numbering system set
via RADIX becomes, the more letters used to denote numbering systems in
Intel and C syntax become ’eaten’. For example, you cannot write binary
constants anymore after a RADIX 16, and starting at RADIX 18, the Intel syn-
tax even doesn’t allow to write hexadecimal constants any more. Therefore
CAUTION!

With the help of the RELAXED instruction (see section 3.9.6), the strict assign-
ment of a syntax to a certain target processor can be removed. The result
is that an arbitrary syntax may be used (loosing compatibility to standard
assemblers). This option is however turned off by default. This option also
opens the opportunity for a fourth way of writing integer constants, a way
that is sometimes found on other assemblers: This way puts the actual value
into apostrophes and prepends the numbering system (’x’ or ’h’ for hexadec-
imal, ’o’ for octal and ’b’ for binary). So, the integer constant 305419896 can
be written in the following ways:

50 CHAPTER 2. ASSEMBLER USAGE

x’12345678’

h’12345678’

o’2215053170’

b’00010010001101000101011001111000’

This syntax is noth the default for any processor architecture and only avail-
able in RELAXED mode. Its main purpose is the easier porting of existing
sources and is not recommended for new programs.

Integer constants may also be written as ASCII values, like in the following
examples:

’A’ ==$41

’AB’ ==$4142

’ABCD’ ==$41424344

It is important to write the characters in single quotes, to distinguish them
from string constants (discussed somewhat later).

2.10.2 Floating Point Constants

Floating point constants are to be written in the usual scientific notation,
which is known in the most general form:

[-]<integer digits>[.post decimal positions][E[-]exponent]

CAUTION! The assembler first tries to interprete a constant as an integer
constant and makes a floating-point format try only in case the first one
failed. If someone wants to enforce the evaluation as a floating point number,
this can be done by dummy post decimal positions, e.g. 2.0 instead of 2.

2.10.3 String Constants

String constants have to be included in double quotation marks (to distin-
guish them from the abovementioned ASCII-integers). In order to make
it possible to write quotation marks and special characters without trouble
in string constants, an ”escape mechanism” has been implemented, which
should sound familiar for C programmers:

2.10. FORMULA EXPRESSIONS 51

The assembler understands a backslash (\) with a following decimal number
of three digits maximum in the string as a character with the according
decimal ASCII value. The numerical value may alternitavely be written in
hexadecimal or octal notation if it is prefixed with an x resp. a 0. In case
of hexadecimal notation, the maximum number of digits is limited to 2. For
example, it is possible to include an ETC character by writing \3. But be
careful with the definition of NUL characters! The C version currently uses UNIX
C strings to store strings internally. As C strings use a NUL character for
termination, the usage of NUL characters in strings is currently not portable!

Some frequently used control characters can also be reached with the follow-
ing abbreviations:

\b : Backspace \a : Bell \e : Escape

\t : Tabulator \n : Linefeed \r : Carriage Return

\\ : Backslash \’ or \H : Apostrophe

\" or \I : Quotation marks

Both upper and lower case characters may be used for the identification
letters.

By means of this escape character, you can even work formula expressions
into a string, if they are enclosed by braces: e.g.

message "root of 81 : \{sqrt(81)}"

results in

root of 81 : 9

AS chooses with the help of the formula result type the correct output format,
further string constants, however, are to be avoided in the expression. Oth-
erwise the assembler will get mixed up at the transformation of capitals into
lower case letters. Integer results will by default be written in hexadecimal
notation, which may be changed via the OUTRADIX instruction.

Except for the insertion of formula expressions, you can use this ”escape-
mechanism” as well in ASCII defined integer constants, like this:

move.b #’\n’,d0

52 CHAPTER 2. ASSEMBLER USAGE

However, everything has its limits, because the parser with higher priority,
which disassembles a line into op-code and parameters, does not know what
it is actually working with, e.g. here:

move.l #’\’abc’,d0

After the third apostrophe, it will not find the comma any more, because it
presumes that it is the start of a further character constant. An error message
about a wrong parameter number is the result. A workaround would be to
write e.g., \i instead of \’.

2.10.4 Evaluation

The calculation of intermediary results within formula expressions is always
done with the highest available resolution, i.e. 32 bits for integer numbers,
80 bit for floating point numbers and 255 characters for strings. An possible
test of value range overflows is done only on the final result.

The portable C version only supports floating point values up to 64 bitsUNIX
(resulting in a maximum value of roughly 10308), but in turn features integer
lengths of 64 bits on some platforms.

2.10.5 Operators

The assembler provides the operands listed in table 2.11 for combination.
”Rank” is the priority of an operator at the separation of expressions into
subexpressions. The operator with the highest rank will be evaluated at the
very end. The order of evaluation can be defined by new bracketing.

The compare operators deliver TRUE in case the condition fits, and FALSE
in case it doesn’t. For the logical operators an expression is TRUE in case it
is not 0, otherwise it is FALSE.

The mirroring of bits probably needs a little bit of explanation: the operator
mirrors the lowest bits in the first operand and leaves the higher priority bits
unchanged. The number of bits which is to be mirrored is given by the right
operand and may be between 1 and 32 .

A small pitfall is hidden in the binary complement: As the computation is
always done with 32 resp. 64 bits, its application on e.g. 8-bit masks usually
results in values taht do not fit into 8-bit numbers any more due to the
leading ones. A binary AND with a fitting mask is therefore unavoidable!

2.10. FORMULA EXPRESSIONS 53

operand function #operands integer float string rank

<> inequality 2 yes yes yes 14
>= greater or equal 2 yes yes yes 14
<= less or equal 2 yes yes yes 14
< truly smaller 2 yes yes yes 14
> truly greater 2 yes yes yes 14
= equality 2 yes yes yes 14

== alias for =

!! log. XOR 2 yes no no 13
|| log. OR 2 yes no no 12

&& log. AND 2 yes no no 11
~~ log. NOT 1 yes no no 2

- difference 2 yes yes no 10
+ sum 2 yes yes yes 10
modulo division 2 yes no no 9
/ quotient 2 yes*) yes no 9
* product 2 yes yes no 9
^ power 2 yes yes no 8

! binary XOR 2 yes no no 7
| binary OR 2 yes no no 6
& binary AND 2 yes no no 5
>< mirror of bits 2 yes no no 4
>> log. shift right 2 yes no no 3
<< log. shift left 2 yes no no 3
~ binary NOT 1 yes no no 1

*) remainder will be discarded

Table 2.11: Operators Predefined by AS

54 CHAPTER 2. ASSEMBLER USAGE

2.10.6 Functions

In addition to the operators, the assembler defines another line of primarily
transcendental functions with floating point arguments which are listed in
tables 2.12 and 2.13. The functions FIRSTBIT, LASTBIT, and BITPOS return
-1 as result if no resp. not exactly one bit is set. BITPOS additionally issues
an error message in such a case.

The string function SUBSTR expects the source string as first parameter, the
start position as second and the number of characters to be extracted as third
parameter (a 0 means to extract all characters up to the end). Similarly,
CHARFROMSTR expects the source string as first argument and the character
position as second argument. In case the position argument is larger or
equal to the source string’s length, SUBSTR returns an empty string while
CHARFROMSTR returns -1. A position argument smaller than zero is treated
as zero by SUBSTR, while CHARFROMSTR will return -1 also in this case.

Here is an example how to use these both functions. The task is to put a
string into memory, with the string end being signified by a set MSB in the
last character:

dbstr macro arg

if strlen(arg) > 1

db substr(arg, 0, strlen(arg) - 1)

endif

if strlen(arg) > 0

db charfromstr(arg, strlen(arg) - 1) | 80h

endif

endm

STRSTR returns the first occurence of the second string within the first one
resp. -1 if the search pattern was not found. Similarly to SUBSTR and
CHARFROMSTR, the first character has the position 0.

If a function expects floating point arguments, this does not mean it is im-
possible to write e.g.

sqr2 equ sqrt(2)

2.10. FORMULA EXPRESSIONS 55

name meaning argument result

SQRT square root arg ≥ 0 floating point

SIN sine arg ∈ IR floating point
COS cosine arg ∈ IR floating point
TAN tangent arg 6= (2n+ 1) ∗ π

2
floating point

COT cotangent arg 6= n ∗ π floating point

ASIN inverse sine | arg |≤ 1 floating point
ACOS inverse cosine | arg |≤ 1 floating point
ATAN inverse tangent arg ∈ IR floating point
ACOT inverse cotangent arg ∈ IR floating point

EXP exponential function arg ∈ IR floating point
ALOG 10 power of argument arg ∈ IR floating point
ALD 2 power of argument arg ∈ IR floating point
SINH hyp. sine arg ∈ IR floating point
COSH hyp. cosine arg ∈ IR floating point
TANH hyp. tangent arg ∈ IR floating point
COTH hyp. cotangent arg 6= 0 floating point

LN nat. logarithm arg > 0 floating point
LOG dec. logarithm arg > 0 floating point
LD bin. logarithm arg > 0 floating point
ASINH inv. hyp. Sine arg ∈ IR floating point
ACOSH inv. hyp. Cosine arg ≥ 1 floating point
ATANH inv. hyp. Tangent arg < 1 floating point
ACOTH inv. hyp. Cotangent arg > 1 floating point

INT integer part arg ∈ IR floating point
BITCNT number of one’s integer integer
FIRSTBIT lowest 1-bit integer integer

Table 2.12: Functions Predefined by AS - Part 1 (Integer and Floating Point
Functions

56 CHAPTER 2. ASSEMBLER USAGE

name meaning argument result

LASTBIT highest 1-bit integer integer
BITPOS unique 1-bit integer integer

SGN sign (0/1/-1) floating point integer
or integer

ABS absolute value integer or integer or
floating point floating point

TOUPPER matching capital integer integer
TOLOWER matching lower case integer integer

UPSTRING changes all string string
characters
into capitals

LOWSTRING changes all string string
characters
into to lower case

STRLEN returns the length string integer
of a string

SUBSTR extracts parts of a string, string
string integer,

integer
CHARFROMSTR extracts a character string, integer

from a string integer
STRSTR searches a substring string, integer

in a string string
VAL evaluates contents string depends on

as expression argument
EXPRTYPE delivers type of integer, 0

argument float, 1
string 2

Table 2.13: Functions Predefined by AS - Part 2 (Integer and String Func-
tions

2.11. FORWARD REFERENCES AND OTHER DISASTERS 57

In such cases an automatic type conversion is engaged. In the reverse case
the INT-function has to be applied to convert a floating point number to
an integer. When using this function, you have to pay attention that the
result produced always is a signed integer and therefore has a value range of
approximately +/-2.0E9.

When AS is switched to case-sensitive mode, predefined functions may be
accessed with an arbitrary combination of upper and lower case (in contrast
to predefined symbols). However, in the case of user-defined functions (see
section 3.4.9), a distinction between upper and lower case is made. This has
e.g. the result that if one defines a function Sin, one can afterwards access
this function via Sin, but all other combinations of upper and lower case will
lead to the predefined function.

For a correct conversion of lower case letters into capital letters a DOS version DOS/DPMI
≥ 3.30 is required.

2.11 Forward References and Other Disas-

ters

This section is the result of a significant amount of hate on the (legal) way
some people program. This way can lead to trouble in conjunction with AS
in some cases. The section will deal with so-called ’forward references’. What
makes a forward reference different from a usual reference? To understand
the difference, take a look at the following programming example (please
excuse my bias for the 68000 family that is also present in the rest of this
manual):

move.l #10,d0

loop: move.l (a1),d1

beq skip

neg.l d1

skip: move.l d1,(a1+)

dbra d0,loop

If one overlooks the loop body with its branch statement, a program remains
that is extremely simple to assemble: the only reference is the branch back

58 CHAPTER 2. ASSEMBLER USAGE

to the body’s beginning, and as an assembler processes a program from the
beginning to the end, the symbol’s value is already known before it is needed
the first time. If one has a program that only contains such backward refer-
ences, one has the nice situation that only one pass through the source code
is needed to generate a correct and optimal machine code. Some high level
languages like Pascal with their strict rule that everything has to be defined
before it is used exploit exactly this property to speed up the compilation.

Unfortunately, things are not that simple in the case of assembler, because
one sometimes has to jump forward in the code or there are reasons why
one has to move variable definitions behind the code. For our example,
this is the case for the conditional branch that is used to skip over another
instruction. When the assembler hits the branch instruction in the first
pass, it is confronted with the situation of either leaving blank all instruction
fields related to the target address or offering a value that ”hurts noone” via
the formula parser (which has to evaluate the address argument). In case
of a ”simple” assembler that supports only one target architecture with a
relatively small number of instructions to treat, one will surely prefer the
first solution, but the effort for AS with its dozens of target architectures
would have become extremely high. Only the second way was possible: If
an unknown symbol is detected in the first pass, the formula parser delivers
the program counter’s current value as result! This is the only value suitable
to offer an address to a branch instruction with unknown distance length
that will not lead to errors. This answers also a frequently asked question
why a first-pass listing (it will not be erased e.g. when AS does not start a
second pass due to additional errors) partially shows wrong addresses in the
generated binary code - they are the result of unresolved forward references.

The example listed above however uncovers an additional difficulty of forward
references: Depending on the distance of branch instruction and target in the
source code, the branch may be either long or short. The decision however
about the code length - and therefore about the addresses of following labels
- cannot be made in the first pass due to missing knowledge about the target
address. In case the programmer did not explicitly mark whether a long
or short branch shall be used, genuine 2-pass assemblers like older versions
of MASM from Microsoft ”solve” the problem by reserving space for the
longest version in the first pass (all label addresses have to be fixed after the
first pass) and filling the remaining space with NOPs in the second pass. AS
versions up to 1.37 did the same before I switched to the multipass principle

2.11. FORWARD REFERENCES AND OTHER DISASTERS 59

that removes the strict separation into two passes and allows an arbitrary
number of passes. Said in detail, the optimal code for the assumed values is
generated in the first pass. In case AS detects that values of symbols changed
in the second pass due to changes in code lengths, simply a third pass is done,
and as the second pass’es new symbol values might again shorten or lengthen
the code, a further pass is not impossible. I have seen 8086 programs that
needed 12 passes to get everything correct and optimal. Unfortunately, this
mechanism does not allow to specify a maximum number passes; I can only
advise that the number of passes goes down when one makes more use of
explicit length specifications.

Especially for large programs, another situation might arise: the position of
a forward directed branch has moved so much in the second pass relative to
the first pass that the old label value still valid is out of the allowed branch
distance. AS knows of such situations and suppresses all error messages
about too long branches when it is clear that another pass is needed. This
works for 99% of all cases, but there are also constructs where the first
critical instruction appears so early that AS had no chance up to now to
recognize that another pass is needed. The following example constructs
such a situation with the help of a forward reference (and was the reason for
this section’s heading...):

cpu 6811

org $8000

beq skip

rept 60

ldd Var

endm

skip: nop

Var equ $10

Due to the address position, AS assumes long addresses in the first pass for
the LDD instructions, what results in a code length of 180 bytes and an out of
branch error message in the second pass (at the point of the BEQ instruction,
the old value of skip is still valid, i.e. AS does not know at this point that
the code is only 120 bytes long in reality) is the result. The error can be
avoided in three different ways:

60 CHAPTER 2. ASSEMBLER USAGE

1. Explicitly tell AS to use short addressing for the LDD instructions (ldd
<Var)

2. Remove this damned, rotten forward reference and place the EQU state-
ment at the beginning where it has to be (all right, I’m already calming
down...)

3. For real die-hards: use the -Y command line option. This option tells
AS to forget the error message when the address change has been de-
tected. Not pretty, but...

Another tip regarding the EQU instruction: AS cannot know in which context
a symbol defined with EQU will be used, so an EQU containing forward refer-
ences will not be done at all in the first pass. Thus, if the symbol defined
with EQU gets forward-referenced in the second pass:

move.l #sym2,d0

sym2 equ sym1+5

sym1 equ 0

one gets an error message due to an undefined symbol in the second pass...but
why on earth do people do such things?

Admittedly, this was quite a lengthy excursion, but I thought it was neces-
sary. Which is the essence you should learn from this section?

1. AS always tries to generate the shortest code possible. A finite number
of passes is needed for this. If you do not tweak AS extremely, AS will
know no mercy...

2. Whenever sensible and possible, explicitly specify branch and address
lengths. There is a chance of significantly reducing the number of passes
by this.

3. Limit forward references to what is absolutely needed. You make your
and AS’s live much easier this way!

2.12. REGISTER SYMBOLS 61

2.12 Register Symbols

valid for: PowerPC, M-Core, 4004/4040, 80C16x, AVR

Sometimes it is desirable not only to assign symbolic names to memory ad-
dresses or constants, but also to a register, to emphasize its function in a
certain program section. This is no problem for processors that treat regis-
ters simply as another address space, as this allows to use numeric expres-
sions and one can use simple EQUs to define such symbols. (e.g. for the
MCS-96 or TMS70000). However, for most processors, register identifiers
are fixed literals which are seperately treated by AS for speed reasons. A
special mechanism is therefore necessary to define symbolic register names.
A register symbol is usually defined via the REG instruction, which has oth-
erwise the same syntax as an EQU definition. This however has a couple of
restrictions: A register symbol is a pure character string stored ’as is’ which
may exclusively be used this way. For example, no arithmetic is allowed to
calculate a register’s successor, like in the following example:

myreg reg r17 ; definition of register symbol

addi myreg+1,3 ; does not work!

Additionally, a register symbol has to be defined prior to ist first usage; a
forward reference would have the result that AS suspects a forward reference
to a memory location in case a register symbol is not found. Since the usage
of memory operands is far more limited on most processors, a bunch of errors
would be the result...

Analogous to ordinary symbols, register symbols are local to sections and it
is possible to access a register symbol from a specific section by appending
the section’s name enclosed in brackets. Due to the missing ability to do
forward references, there is nothing like a FORWARD directive, and an export
by something comparable to PUBLIC or GLOBAL is also not possible since
register symbols generally have their meaning in a small context.

If there is both an ordinary and a register symbol of same name present in
a context, the register symbol will be preferred. This is however not the
case when the name is embedded into a complex expression (parentheses are
sufficient!), the normal symbol will be used then.

62 CHAPTER 2. ASSEMBLER USAGE

2.13 Sharefile

This function is a by-product from the old pure-68000 predecessors of AS, I
have kept them in case someone really needs it. The basic problem is to access
certain symbols produced during assembly, because possibly someone would
like to access the memory of the target system via this address information.
The assembler allows to export symbol values by means of SHARED pseudo
commands (see there). For this purpose, the assembler produces a text file
with the required symbols and its values in the second pass. This file may
be included into a higher-level language or another assembler program. The
format of the text file (C, Pascal or Assembler) can be set by the command
line switches p, c or, a.

CAUTION! If none of the switches is given, no file will be generated and
it makes no difference if SHARED-commands are in the source text or not!

When creating a Sharefile, AS does not check if a file with the same name
already exists, such a file will be simply overwritten. In my opinion a request
does not make sense, because AS would ask at each run if it should overwrite
the old version of the Sharefile, and that would be really annoying...

2.14 Processor Aliases

Common microcontroller families are like rabbits: They become more at a
higher speed than you can provide support for them. Especially the develop-
ment of processor cores as building blocks for ASICs and of microcontroller
families with user-definable peripherals has led to a steeply rising number of
controllers that only deviate from a well-known type by a slightly modified
peripheral set. But the distinction among them is still important, e.g. for the
design of include files that only define the appropriate subset of peripherals.
I have struggled up to now to integrate the most important reperesentatives
of a processor family into AS (and I will continue to do this), but sometimes
I just cannot keep pace with the development...there was an urgent need for
a mechanism to extend the list of processors by the user.

The result are processor aliases: the alias command line option allows to de-
fine a new processor type, whose instruction set is equal to another processor

2.14. PROCESSOR ALIASES 63

built into AS. After switching to this processor via the CPU instruction, AS
behaves exactly as if the original processor had been used, with a single dif-
ference: the variables MOMCPU resp. MOMCPUNAME are set to the alias name,
which allows to use the new name for differentiation, e.g. in include files.

There were two reasons to realize the definition of aliases by the command
line and not by pseudo instructions: first, it would anyway be difficult to put
the alias definitions together with register definitions into a single include
file, because a program that wants to use such a file would have to include it
before and after the CPU instruction - an imagination that lies somewhere
between inelegant and impossible. Second, the definition in the command
line allows to put the definitions in a key file that is executed automatically
at startup via the ASCMD variable, without a need for the program to take
any further care about this.

64 CHAPTER 2. ASSEMBLER USAGE

Chapter 3

Pseudo Instructions

Not all pseudo instructions are defined for all processors. A note that shows
the range of validity is therefore prepended to every individual description.

3.1 Definitions

3.1.1 SET, EQU, and CONSTANT

valid for: all processors, CONSTANT only for KCPSM(3)

SET and EQU allow the definition of typeless constants, i.e. they will not be
assigned to a segment and their usage will not generate warnings because of
segment mixing. EQU defines constants which can not be modified (by EQU)
again, but SET permits the definition of variables, which can be modified
during the assembly. This is useful e.g. for the allocation of resources like
interrupt vectors, as shown in the following example:

VecCnt set 0 ; somewhere at the beginning

.

.

.

DefVec macro Name ; allocate a new vector

Name equ VecCnt

65

66 CHAPTER 3. PSEUDO INSTRUCTIONS

VecCnt set VecCnt+4

endm

.

.

.

DefVec Vec1 ; results in Vec1=0

DefVec Vec2 ; results in Vec2=4

constants and variables are internally stored in the same way, the only dif-
ference is that they are marked as unchangeable if defined via EQU. Trying
to change a constant with SET will result in an error message.

EQU/SET allow to define constants of all possible types, e.g.

IntTwo equ 2

FloatTwo equ 2.0

Some processors unfortunately have already a SET instruction. For these
targets, EVAL must be used instead of SET.

A simple equation sign may be used instead of EQU. Similarly, one may simply
write := instead of SET resp. EVAL.

For compatibility reasons to the original assembler, the KCPSM target also
knows the CONSTANT statement, which - in contrast to EQU - takes both name
and value as argument. For example:

CONSTANT const1, 2

CONSTANT is however limited to integer constants.

Symbols defined with SET or EQU are typeless by default, but optionally a seg-
ment name (CODE, DATA, IDATA, XDATA, YDATA, BITDATA, IO, or REG) or
MOMSEGMENT for the currently active segment may be given as a second pa-
rameter, allowing to assign the symbol to a specific address space. AS does
not check at this point if the used address space exists on the currently active
target processor!

3.1. DEFINITIONS 67

3.1.2 SFR and SFRB

valid for: various, SFRB only MCS-51

These instructions act like EQU, but symbols defined with them are assigned
to the directly addressable data segment, i.e. they serve preferential for
the definition of RAM-cells and (as the name lets guess) hardware registers
mapped into the data area. The allowed range of values is equal to the
range allowed for ORG in the data segment (see section 3.2.1). The difference
between SFR and SFRB is that SFRB marks the register as bit addressable,
which is why AS generates 8 additional symbols which will be assigned to
the bit segment and carry the names xx.0 to xx.7, e.g.

PSW sfr 0d0h ; results in PSW = D0H (data segment)

PSW sfrb 0d0h ; results in extra PSW.0 = D0H (bit)

; to PSW.7 = D7H (bit)

The SFRB instruction is not any more defined for the 80C251 as it allows
direct bit access to all SFRs without special bit symbols; bits like PSW.0 to
PSW.7 are automatically present.

Whenever a bit-addressable register is defined via SFRB, AS checks if the
memory address is bit addressable (range 20h..3fh resp. 80h, 88h, 90h,
98h...0f8h). If it is not bit-addressable, a warning is issued and the gen-
erated bit symbols are undefined.

3.1.3 XSFR and YSFR

valid for: DSP56xxx

Also the DSP56000 has a few peripheral registers memory-mapped to the
RAM, but the affair becomes complicated because there are two data areas,
the X- and Y-area. This architecture allows on the one hand a higher paral-
lelism, but forces on the other hand to divide the normal SFR instruction into
the two above mentioned variations. They works identically to SFR, just that
XSFR defines a symbol in the X- addressing space and YSFR a corresponding
one in the Y-addressing space. The allowed value range is 0..$ffff.

68 CHAPTER 3. PSEUDO INSTRUCTIONS

3.1.4 LABEL

valid for: all processors

The function of the LABEL instruction is identical to EQU, but the symbol does
not become typeless, it gets the attribute ”code”. LABEL is needed exactly
for one purpose: Labels are normally local in macros, that means they are
not accessible outside of a macro. With an EQU instruction you could get out
of it nicely, but the phrasing

<name> label $

generates a symbol with correct attributes.

3.1.5 BIT

valid for: MCS/(2)51, XA, 80C166, 75K0, ST9

BIT serves to equate a single bit of a memory cell with a symbolic name.
This instruction varies from target platform to target platform due to the
different ways in which processors handle bit manipulation and addressing:

The MCS/51 family has an own address space for bit operands. The function
of BIT is therefore quite similar to SFR, i.e. a simple integer symbol with the
specified value is generated and assigned to the BDATA segment. For all other
processors, bit addressing is done in a two-dimensional fashion with address
and bit position. In these cases, AS packs both parts into an integer symbol
in a way that depends on the currently active target processor and separates
both parts again when the symbol is used. The latter is is also valid for the
80C251: While an instruction like

My_Carry bit PSW.7

would assign the value 0d7h to My Carry on an 8051, a value of 070000d0h
would be generated on an 80C251, i.e. the address is located in bits 0..7 and
the bit position in bits 24..26. This procedure is equal to the way the DBIT

instruction handles things on a TMS370 and is also used on the 80C166, with
the only difference that bit positions may range from 0..15:

MSB BIT r5.15

3.1. DEFINITIONS 69

On a Philips XA, the bit’s address is located in bits 0..9 just with the same
coding as used in machine instructions, and the 64K bank of bits in RAM
memory is placed in bits 16..23.

The BIT instruction of the 75K0 family even goes further: As bit expressions
may not only use absolute base addresses, even expressions like

bit1 BIT @h+5.2

are allowed.

The ST9 in turn allows to invert bits, what is also allowed in the BIT instruc-
tion:

invbit BIT r6.!3

More about the ST9’s BIT instruction can be found in the processor specific
hints.

3.1.6 DBIT

valid for: TMS 370xxx

Though the TMS370 series does not have an explicit bit segment, single bit
symbols may be simulated with this instruction. DBIT requires two operands,
the address of the memory cell that contains the bit and the exact position
of the bit in the byte. For example,

INT3 EQU P019

INT3_ENABLE DBIT 0,INT3

defines the bit that enables interrupts via the INT3 pin. Bits defined this
way may be used in the instructions SBIT0, SBIT1, CMPBIT, JBIT0, and
JBIT.

70 CHAPTER 3. PSEUDO INSTRUCTIONS

3.1.7 PORT

valid for: 8080/8085/8086, XA, Z80, 320C2x/5x, TLCS-47, AVR

PORT works similar to EQU, just the symbol becomes assigned to the I/O-
address range. Allowed values are 0..7 for the 3201x, 0..15 for the 320C2x,
0..65535 for the 8086 and 320C5x, 0..63 for the AVR, and 0..255 for the rest.

Example : an 8255 PIO is located at address 20H:

PIO_port_A port 20h

PIO_port_B port PIO_port_A+1

PIO_port_C port PIO_port_A+2

PIO_ctrl port PIO_port_A+3

3.1.8 REG and NAMEREG

valid for: AVR, M*Core, ST9, 80C16x, KCPSM (NAMEREG valid only for
KCPSM(3)), LatticeMico8

Though it always has the same syntax, this instruction has a slightly differ-
ent meaning from processor to processor: If the processor uses a separate
addressing space for registers, REG has the same effect as a simple EQU for
this address space (e.g. for the ST9). REG defines register symbols for all
other processors whose function is described in section 2.12.

NAMEREG exists for compatibility reasons to the original KCPSM assembler.
It has an identical function, however both register and symbolic name are
given as arguments, for example:

NAMEREG s08, treg

3.1.9 LIV and RIV

valid for: 8X30x

LIV and RIV allow to define so-called ”IV bus objects”. These are groups
of bits located in a peripheral memory cell with a length of 1 up to 8 bits,
which can afterwards be referenced symbolically. The result is that one does

3.1. DEFINITIONS 71

not anymore have to specify address, position, and length separately for
instructions that can refer to peripheral bit groups. As the 8X30x processors
feature two peripheral address spaces (a ”left” and a ”right” one), there are
two separate pseudo instructions. The parameters of these instructions are
however equal: three parameters have to be given that specify address, start
position and length. Further hints for the usage of bus objects can be found
in section 4.17 .

3.1.10 CHARSET

valid for: all processors

Single board systems, especially when driving LCDs, frequently use character
sets different to ASCII. So it is probably purely coincidental that the umlaut
coding corresponds with the one used by the PC. To avoid error-prone manual
encoding, the assembler contains a translation table for characters which
assigns a target character to each source-code. To modify this table (which
initial translates 1:1), one has to use the CHARSET instruction. CHARSET may
be used with different numbers and types of parameters. If there is only a
single parameter, it has to be a string expression which is interpreted as a file
name by AS. AS reads the first 256 bytes from this table and copies them into
the translation table. This allows to activate complex, externally generated
tables with a single statement. For all other variants, the first parameter has
to be an integer in the range of 0 to 255 which designates the start index of
the entries to be modified in the translation table. One or two parameters
follow, giving the type of modification:

A single additional integer modies exactly one entry. For example,

CHARSET ’ä’,128

means that the target system codes the ’ä’ into the number 128 (80H). If
however two more integers are given, the first one describes the last entry to
be modified, and the second the new value of the first table entry. All entries
up to the index end are loaded sequentially. For example, in case that the
target system does not support lower-case characters, a simple

CHARSET ’a’,’z’,’A’

72 CHAPTER 3. PSEUDO INSTRUCTIONS

translates all lower-case characters automatically into the matching capital
letters.

For the last variant, a string follows the start index and contains the char-
acters to be placed in the table. The last example therefore may also be
written as

CHARSET ’a’,"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

CHARSET may also be called without any parameters, which however has a
drastical effect: the translation table is reinitialized to its initial state, i.e.
all character translations are removed.

CAUTION! CHARSET not only affects string constants stored in memory,
but also integer constants written as ”ASCII”. This means that an already
modified translation table can lead to other results in the above mentioned
examples!

3.1.11 CODEPAGE

valid for: all processors

Though the CHARSET statement gives unlimited freedom in the character as-
signment between host and target platform, switching among different char-
acter sets can become quite tedious if several character sets have to be sup-
ported on the target platform. The CODEPAGE instruction however allows to
define and keep different character sets and to switch with a single statement
among them. CODEPAGE expects one or two arguments: the name of the set
to be used hereafter and optionally the name of another table that defines
its initial contents (the second parameter therefore only has a meaning for
the first switch to the table when AS automatically creates it). If the second
parameter is missing, the initial contents of the new table are copied from
the previously active set. All subsequent CHARSET statements only modify
the new set.

At the beginning of a pass, AS automatically creates a single character set
with the name STANDARD with a one-to-one translation. If no CODEPAGE

instructions are used, all settings made via CHARSET refer to this table.

3.1. DEFINITIONS 73

3.1.12 ENUM

valid for: all processors

Similar to the same-named instruction known from C, ENUM is used to define
enumeration types, i.e. a sequence of integer constants that are assigned
sequential values starting at 0. The parameters are the names of the symbols,
like in the following example:

ENUM SymA,SymB,SymC

This instruction will assign the values 0, 1, and 2 to the symbols SymA,

SymB, and SymC.

ENUM instructions are always single-line instructions, i.e. the enumeration
will again start at zero when a new ENUM instruction is found. Multi-line
enumerations may however be achieved with a small trick that exploits the
fact that the internal counter can be set to a new value with an explicit
assignment, like in the following case:

ENUM January=1,February,March,April,May,June

The numeric values 1..6 are assigned to month names. One can continue the
enumeration in the following way:

ENUM July=June+1,August,September,October

ENUM November=October+1,December

A definition of a symbol with ENUM is equal to a definition with EQU, i.e. it
is not possible to assign a new value to a symbol that already exists.

3.1.13 PUSHV and POPV

valid for: all processors

PUSHV and POPV allow to temporarily save the value of a symbol (that is
not macro-local) and to restore it at a later point of time. The storage is
done on stacks, i.e. Last-In-First-Out memory structures. A stack has a
name that has to fulfill the general rules for symbol names and it exists as
long as it contains at least one element: a stack that did not exist before is

74 CHAPTER 3. PSEUDO INSTRUCTIONS

automatically created upon PUSHV, and a stack becoming empty upon a POPV

is deleted automatically. The name of the stack that shall be used to save or
restore symbols is the first parameter of PUSH resp. POPV, followed by a list
of symbols as further parameters. All symbols referenced in the list already
have to exist, it is therefore not possible to implicitly define symbols with a
POPV instruction.

Stacks are a global resource, i.e. their names are not local to sections.

It is important to note that symbol lists are always processed from left to
right. Someone who wants to pop several variables from a stack with a POPV

therefore has to use the exact reverse order used in the corresponding PUSHV!

The name of the stack may be left blank, like this:

pushv ,var1,var2,var3

.

.

popv ,var3,var2,var1

AS will then use a predefined internal default stack.

AS checks at the end of a pass if there are stacks that are not empty and
issues their names together with their ”filling level”. This allows to find out
if there are any unpaired PUSHVs or POPVs. However, it is in no case possible
to save values in a stack beyond the end of a pass: all stacks are cleared at
the beginning of a pass!

3.2 Code Modification

3.2.1 ORG

valid for: all processors

ORG allows to load the internal address counter (of the assembler) with a new
value. The value range depends on the currently selected segment and on
the processor type (tables 3.1 to 3.4). The lower bound is always zero, and
the upper bound is the given value minus 1:

3.2. CODE MODIFICATION 75

target CODE DATA IDATA XDATA YDATA BITDATA IO REG ROMDATA

68xxx 4G — — — — — — — —
DSP56000/ 64K/ — — 64K/ 64K/ — — — —
DSP56300 16M 16M 16M
PowerPC 4G — — — — — — — —
M*Core 4G — — — — — — — —
6800,6301, 64K — — — — — — — —
6811

6805/ 8K/ — — — — — — — —
HC08 64K — — — — — — — —
6809, 64K — — — — — — — —
6309

68HC12(X), 64K — — — — — — — —
XGATE

68HC16 1M — — — — — — — —
68RS08 16K — — — — — — — —
H8/300 64K — — — — — — — —
H8/300H 16M
H8/500 64K — — — — — — — —
(Min)

H8/500 16M — — — — — — — —
(Max)

SH7000/ 4G — — — — — — — —
7600/7700

6502, 64K — — — — — — — —
MELPS740

65816, 16M — — — — — — — —
MELPS-

7700

MELPS- 8K 416 — — — — — — —
4500

M16 4G — — — — — — — —
M16C 1M — — — — — — — —

Table 3.1: Address Ranges for ORG — Part 1

76 CHAPTER 3. PSEUDO INSTRUCTIONS

target CODE DATA IDATA XDATA YDATA BITDATA IO REG ROMDATA

4004 4K 256 — — — — — — —
8008 16K 8 — — — — — — —
MCS-48, 4K — 256 256 — — — — —
MCS-41

MCS-51 64K 256 256∗ 64K — 256 — — —
In. 80H

80C390 16M 256 256∗ 16M — 256 — — —
In. 80H

MCS-251 16M — — — — — 512 — —
MCS-96 64K — — — — — — — —
196(N)/ 16M
296

8080, 64K — — — — — 256 — —
8085

80x86, 64K 64K — 64K — — 64K — —
68xx0 4G — — — — — — — —
8X30x 8K — — — — — — — —
2650 8K — — — — — — — —
XA 16M 16M — — — — 2K — —

In. 1K

AVR 8K 64K — — — — 64 — —
29XXX 4G — — — — — — — —
80C166, 256K — — — — — — — —
80C167 16M
Z80, 64K — — — — — 256 — —
Z180, 512K+ 256
Z380 4G 4G
Z8 64K 256 — — — — — — —
eZ8 64K 256 — 64K — — — — —
KCPSM 256 256 — — — — — — —
∗ As the 8051 does not have any RAM beyond 80h, this value has to be
adapted with ORG for the 8051 as target processor!!
+ As the Z180 still can address only 64K logically, the whole
address space can only be reached via PHASE instructions!

Table 3.2: Address Ranges for ORG — Part 2

3.2. CODE MODIFICATION 77

target CODE DATA IDATA XDATA YDATA BITDATA IO REG ROMDATA

KCPSM3 256 64 — — — — 256 — —
Mico8 4096 256 — — — — 256 — —
TLCS- 16M — — — — — — — —
900(L)

TLCS-90 64K — — — — — — — —
TLCS- 64K — — — — — — — —
870

TLCS-47 64K 1K — — — — 16 — —
TLCS- 16M — — — — — — — —
9000

PIC 2K 32 — — — — — — —
16C5x

PIC 2K 32 — — — — — — —
16C5x

PIC

16C64, 8K 512 — — — — — — —
16C86

PIC 64K 256 — — — — — — —
17C42

ST6 4K 256 — — — — — — —
ST7 64K — — — — — — — —
ST9 64K 64K — — — — — 256 —
6804 4K 256 — — — — — — —
32010 4K 144 — — — — 8 — —
32015 4K 256 8
320C2x 64K 64K — — — — 16 — —
320C3x 16M — — — — — — — —
320C5x/ 64K 64K — — — — 64K — —
320C20x/

320C54x

TMS 64K — — — — — — — —
9900

Table 3.3: Address Ranges for ORG — Part 3

78 CHAPTER 3. PSEUDO INSTRUCTIONS

target CODE DATA IDATA XDATA YDATA BITDATA IO REG ROMDATA

TMS 64K — — — — — — — —
70Cxx

370xxx 64K — — — — — — — —

MSP430 64K — — — — — — — —

SC/MP 64K — — — — — — — —
807x 64K — — — — — — — —
COP4 512 — — — — — — — —
COP8 8K 256 — — — — — — —
ACE 4K — — — — — — — —

In. 800H/

0C00H

µPD 64K — — — — — — — —
78(C)10

75K0 16K 4K — — — — — — —
78K0 64K — — — — — — — —
78K0 1M — — — — — — — —
7720 512 128 — — — — — — 512

7725 2K 256 — — — — — — 1024

77230 8K — — 512 512 — — — 1K
53C8XX 4G — — — — — — — —
F2MC8L 64K — — — — — — — —
F2MC16L 16M — — — — — — — —

Table 3.4: Address Ranges for ORG — Part 4

3.2. CODE MODIFICATION 79

In case that different variations in a processor family have address spaces of
different size, the maximum range is listed for each.

ORG is mostly needed to give the code a new starting address or to put
different, non-continuous code parts into one source file. In case there is no
explicit other value listet in a table entry, the initial address for this segment
(i.e. the start address used without ORG) is 0.

3.2.2 CPU

valid for: all processors

This command rules for which processor the further code shall be generated.
Instructions of other processor families are not accessible afterwards and will
produce error messages!

The processors can roughly be distinguished in families, inside the families
different types additionally serve for a detailed distinction:

a) 68008 → 68000 → 68010 → 68012 →
MCF5200 → 68332 → 68340 → 68360 →
68020 → 68030 → 68040

The differences in this family lie in additional instructions and addressing
modes (starting from the 68020). A small exception is the step to the 68030
that misses two instructions: CALLM and RTM. The three representors of the
683xx family have the same processor core (a slightly reduced 68020 CPU),
however completely different peripherals. MCF5200 represents the ColdFire
family from Motorola, RISC processors downwardly binary compatible to the
680x0. For the 68040, additional control registers (reachable via MOVEC) and
instructions for control of the on-chip MMU and caches were added.

b) 56000 −→ 56002 −→ 56300

While the 56002 only adds instructions for incrementing and decrementing
the accumulators, the 56300 core is almost a new processor: all address spaces
are enlarged from 64K words to 16M and the number of instructions almost
has been doubled.

80 CHAPTER 3. PSEUDO INSTRUCTIONS

c) PPC403 → MPPC403 → MPC505 → MPC601 → RS6000

The PPC403 is a reduced version of the PowerPC line without a floating
point unit, which is why all floating point instructions are disabled for him;
in turn, some microcontroller-specific instructions have been added which
are unique in this family. The GC variant of the PPC403 incorporates an
additional MMU and has therefore some additional instructions for its con-
trol. The MPC505 (a microcontroller variant without a FPU) only differ in
its peripheral registers from the 601 as long as I do not know it better - [58]
is a bit reluctant in this respect... The RS6000 line knows a few instructions
more (that are emulated on many 601-based systems), IBM additionally uses
different mnemonics for their pure workstation processors, as a reminiscence
of 370 mainframes...

d) MCORE

e) XGATE

f) 6800 → 6301 → 6811

While the 6301 only offers a few additional instructions, the 6811 delivers a
second index register and much more instructions.

g) 6809/6309 and 6805/68HC(S)08

These processors are partially source-code compatible to the other 68xx pro-
cessors, but they have a different binary code format and a significantly
reduced (6805) resp. enhanced (6809) instruction set. The 6309 is a CMOS
version of the 6809 which is officially only compatible to the 6809, but inof-
ficially offers more registers and a lot of new instructions (see [37]).

h) 68HC12 −→ 68HC12X

The 12X core offers a couple of new instructions, and existing instructions
were were enriched with new addressing modes.

3.2. CODE MODIFICATION 81

i) 68HC16

j) HD6413308 → HD6413309

These both names represent the 300 and 300H variants of the H8 family;
the H version owns a larger address space (16Mbytes instead of 64Kbytes),
double-width registers (32 bits), and knows a few more instructions and
addressing modes. It is still binary upward compatible.

k) HD6475328 → HD6475348 → HD6475368 → HD6475388

These processors all share the same CPU core; the different types are only
needed to include the correct subset of registers in the file REG53X.INC.

l) SH7000 → SH7600 −→ SH7700

The processor core of the 7600 offers a few more instructions that close gaps
in the 7000’s instruction set (delayed conditional and relative and indirect
jumps, multiplications with 32-bit operands and multiply/add instructions).
The 7700 series (also known as SH3) furthermore offers a second register
bank, better shift instructions, and instructions to control the cache.

m) 6502 → 65(S)C02 / MELPS740 / 6502UNDOC

The CMOS version defines some additional instructions, as well as a number
of some instruction/addressing mode combinations were added which were
not possible on the 6502. The Mitsubishi micro controllers in opposite ex-
pand the 6502 instruction set primarily to bit operations and multiplication /
division instructions. Except for the unconditional jump and instructions to
increment/decrement the accumulator, the instruction extensions are orthog-
onal. The 65SC02 lacks the bit manipulation instructions of the 65C02. The
6502UNDOC processor type enables access to the ”undocumented” 6502 in-
structions, i.e. the operations that result from the usage of bit combinations
in the opcode that are not defined as instructions. The variants supported
by AS are listed in the appendix containing processor-specific hints.

82 CHAPTER 3. PSEUDO INSTRUCTIONS

n) MELPS7700, 65816

Apart from a ’16-bit-version’ of the 6502’s instruction set, these processors
both offer some instruction set extensions. These are however orthogonal as
they are oriented along their 8-bit predecessors (65C02 resp. MELPS-740).
Partially, different mnemonics are used for the same operations.

o) MELPS4500

p) M16

q) M16C

r) 4004 → 4040

Opposed to its predecessor, the 4040 features about a dozen additional ma-
chine instructions.

s) 8008→ 8008NEW Intel redefined the mnemonics around 1975,
the second variant reflects this new instruction set. A simulta-
neous support of both sets was not possible due to mnemonic
conflicts.

t) 8021, 8022, 8039, 80C39, 8048, 80C48, 8041, 8042

For the ROM-less versions 8039 and 80C39, the commands which are using
the BUS (port 0) are forbidden. The 8021 and 8022 are special versions
with a strongly shrinked instruction set, for which the 8022 has two A/D-
converters and the necessary control-commands. It is possible to transfer the
CMOS-versions with the IDL-command into a stop mode with lower current
consumption. The 8041 and 8042 have some additional instructions for con-
trolling the bus interface, but in turn a few other commands were omitted.
Moreover, the code address space of these processors is not externally ex-
tendable, and so AS limits the code segment of these processors to 1 resp. 2
Kbytes.

3.2. CODE MODIFICATION 83

u) 87C750 → 8051, 8052, 80C320, 80C501, 80C502,
80C504, 80515, and 80517
→ 80C390
→ 80C251

The 87C750 can only access a maximum of 2 Kbytes program memory which
is why it lacks the LCALL and LJMP instructions. AS does not make any
distinction among the processors in the middle, instead it only stores the
different names in the MOMCPU variable (see below), which allows to query the
setting with IF instructions. An exception is the 80C504 that has a mask flaw
in its current versions. This flaw shows up when an AJMP or ACALL instruction
starts at the second last address of a 2K page. AS will automatically use
long instructions or issues an error message in such situations. The 80C251
in contrast represents a drastic progress in the the direction 16/32 bits, larger
address spaces, and a more orthogonal instruction set. One might call the
80C390 the ’small solution’: Dallas Semiconductor modified instruction set
and architecture only as far as it was necessary for the 16 Mbytes large
address spaces.

v) 8096 → 80196 → 80196N → 80296

Apart from a different set of SFRs (which however strongly vary from version
to version), the 80196 knows several new instructions and supports a ’win-
dowing’ mechanism to access the larger internal RAM. The 80196N family
extends the address space to 16 Mbytes and introduces a set of instructions
to access addresses beyond 64Kbytes. The 80296 extends the CPU core by
instructions for signal processing and a second windowing register, however
removes the Peripheral Transaction Server (PTS) and therefore looses again
two machine instructions.

w) 8080 → 8085 → 8085UNDOC

The 8085 knows the additional commands RIM and SIM for controlling the
interrupt mask and the two I/O-pins. The type 8085UNDOC enables addi-
tional instructions that are not documented by Intel. These instructions are
documented in section 4.15.

84 CHAPTER 3. PSEUDO INSTRUCTIONS

x) 8086 → 80186 → V30 → V35

Only new instructions are added in this family. The corresponding 8-bit
versions are not mentioned due to their instruction compatibility, so one e.g.
has to choose 8086 for an 8088-based system.

y) 80960

z) 8X300 → 8X305

The 8X305 features a couple of additional registers that miss on the 8X300.
Additionally, it can do new operations with these registers (like direct writing
of 8 bit values to peripheral addresses).

aa) XAG1, XAG2, XAG3

These processors only differ in the size of their internal ROM which is defined
in STDDEFXA.INC.

ab) AT90S1200 → AT90S2313 → AT90S4414 → AT90S8515 →
ATMEGA8 → ATMEGA16

The first member of the AVR series represents a minimum configuration
without RAM memory and therefore lacks load/store instructions. The next
three processors only differ in their memory equipment and on-chip periph-
erals, what is differentiated in REGAVR.INC. The same is true for the MEGA
AVRs, which also offer new machine instructions compared to their prede-
cessors.

ac) AM29245 → AM29243 → AM29240 → AM29000

The further one moves to the right in this list, the fewer the instructions
become that have to be emulated in software. While e.g. the 29245 not
even owns a hardware multiplier, the two representors in the middle only
lack the floating point instructions. The 29000 serves as a ’generic’ type that
understands all instructions in hardware.

3.2. CODE MODIFICATION 85

ad) 80C166 → 80C167,80C165,80C163

80C167 and 80C165/163 have an address space of 16 Mbytes instead of 256
Kbytes, and furthermore they know some additional instructions for extended
addressing modes and atomic instruction sequences. They are ’second gen-
eration’ processors and differ from each other only in the amount of on-chip
peripherals.

ae) Z80 → Z80UNDOC → Z180 → Z380

While there are only a few additional instructions for the Z180, the Z380
owns 32-bit registers, a linear address space of 4 Gbytes, a couple of instruc-
tion set extensions that make the overall instruction set considerably more
orthogonal, and new addressing modes (referring to index register halves,
stack relative). These extensions partially already exist on the Z80 as un-
documented extensions and may be switched on via the Z80UNDOC variant.
A list with the additional instructions can be found in the chapter with pro-
cessor specific hints.

af) Z8601, Z8604, Z8608, Z8630, Z8631 → eZ8

The variants with Z8 core only differ in internal memory size and on-chip pe-
ripherals, i.e. the choice does not have an effect on the supported instruction
set. This is substantially different with the eZ8, which brings along a strongly
extended instruction set that is in wide parts only source-level compatible.

ag) KCPSM

Both processor cores are not available as standalone components, they are
provided as logic cores for gate arrays made by Xilinx The -3 variant offers
a larger address space and some additional instructions. Note that it is not
binary upward-compatible!

ah) MICO8

ai) 96C141, 93C141

86 CHAPTER 3. PSEUDO INSTRUCTIONS

These two processors represent the two variations of the processor family:
TLCS-900 and TLCS-900L. The differences of these two variations will be
discussed in detail in section 4.22.

aj) 90C141

ak) 87C00, 87C20, 87C40, 87C70

The processors of the TLCS-870 series have an identical CPU core, but dif-
ferent peripherals depending on the type. In part registers with the same
name are located at different addresses. The file STDDEF87.INC uses, similar
to the MCS-51-family, the distinction possible by different types to provide
the correct symbol set automatically.

al) 47C00 → 470C00 → 470AC00

These three variations of the TLCS-47-family have on-chip RAM and ROM
of different size, which leads to several bank switching instructions being
added or suppressed.

am) 97C241

an) 16C54 → 16C55 → 16C56 → 16C57

These processors differ by the available code area, i.e. by the address limit
after which AS reports overruns.

ao) 16C84, 16C64

Analog to the MCS-51 family, no distinction is made in the code gen-
erator, the different numbers only serve to include the correct SFRs in
STDDEF18.INC.

ap) 17C42

3.2. CODE MODIFICATION 87

aq) ST6210/ST6215→ST6220/ST6225

The only distinction AS makes between the two pairs is the smaller addressing
space (2K instead 4K) of the first ones. The detailed distinction serves to
provide an automatic distinction in the source file which hardware is available
(analog to the 8051/52/515).

ar) ST7

as) ST9020, ST9030, ST9040, ST9050

These 4 names represent the four ”sub-families” of the ST9 family, which
only differ in their on-chip peripherals. Their processor cores are identical,
which is why this distinction is again only used in the include file containing
the peripheral addresses.

at) 6804

au) 32010→32015

The TMS32010 owns just 144 bytes of internal RAM, and so AS limits ad-
dresses in the data segment just up to this amount. This restriction does not
apply for the 32015, the full range from 0..255 can be used.

av) 320C25 → 320C26 → 320C28

These processors only differ slightly in their on-chip peripherals and in their
configuration instructions.

aw) 320C30, 320C31

The 320C31 is a reduced version with the same instruction set, however fewer
peripherals. The distinction is exploited in STDDEF3X.INC.

ax) 320C203 → 320C50, 320C51, 320C53

88 CHAPTER 3. PSEUDO INSTRUCTIONS

The first one represents the C20x family of signal processors which implement
a subset of the C5x instruction set. The distinction among the C5x processors
is currently not used by AS.

ay) 320C541

This one at the moment represents the TMS320C54x family...

az) TMS9900

ba) TMS70C00, TMS70C20, TMS70C40,
TMS70CT20, TMS70CT40,
TMS70C02, TMS70C42, TMS70C82,
TMS70C08, TMS70C48

All members of this family share the same CPU core, they therefore do
not differ in their instruction set. The differences manifest only in the file
REG7000.INC where address ranges and peripheral addresses are defined.
Types listed in the same row have the same amount of internal RAM and
the same on-chip peripherals, they differ only in the amount of integrated
ROM.

bb) 370C010, 370C020, 370C030, 370C040 and 370C050

Similar to the MCS-51 family, the different types are only used to differentiate
the peripheral equipment in STDDEF37.INC; the instruction set is always the
same.

bc) MSP430

bd) SC/MP

be) 8070

3.2. CODE MODIFICATION 89

This processor represents the whole 807x family (which consists at least of
the 8070, 8072, and 8073), which however shares identical CPU cores.

bf) COP87L84

This is the only member of National Semiconductor’s COP8 family that is
currently supported. I know that the family is substantially larger and that
there are representors with differently large instruction sets which will be
added when a need occurs. It is a beginning, and National’s documentation
is quite extensive...

bg) COP410 → COP420 The COP42x derivates offer some ad-
ditional instructions, plus other instructions have an extended
operand range.

bh) SC14400, SC14401, SC14402, SC14404, SC14405,
SC14420, SC14421, SC14422, SC14424

This series of DECT controllers differentiates itself by the amount of in-
structions, since each of them supports different B field formats and their
architecture has been optimized over time.

bi) 7810→78C10

The NMOS version has no stop-mode; the respective command and the ZCM
register are omitted. CAUTION! NMOS and CMOS version partially differ
in the reset values of some registers!

bj) 75402,
75004, 75006, 75008,
75268,
75304, 75306, 75308, 75312, 75316,
75328,
75104, 75106, 75108, 75112, 75116,
75206, 75208, 75212, 75216,
75512, 75516

90 CHAPTER 3. PSEUDO INSTRUCTIONS

This ’cornucopia’ of processors differs only by the RAM size in one group;
the groups themselves again differ by their on-chip peripherals on the one
hand and by their instruction set’s power on the other hand.

bk) 78070

This is currently the only member of NEC’s 78K0 family I am familiar with.
Similar remarks like for the COP8 family apply!

bl) 78214

This is currently the the representor of NEC’s 78K2 family.

bm) 7720 → 7725

The µPD7725 offers larger address spaces and som more instructions com-
pared to his predecessor. CAUTION! The processors are not binary com-
patible to each other!

bn) 77230

bo) SYM53C810, SYM53C860, SYM53C815, SYM53C825,
SYM53C875, SYM53C895

The simpler members of this family of SCSI processors lack some instruction
variants, furthermore they are different in their set of internal registers.

bp) MB89190

This processor type represents Fujitsu’s F2MC8L series...

bq) MB9500

...just like this one does it currently for the 16-bit variants from Fujitsu!

The CPU instruction needs the processor type as a simple constant, a calcu-
lation like:

3.2. CODE MODIFICATION 91

CPU 68010+10

is not allowed. Valid calls are e.g.

CPU 8051

or

CPU 6800

Regardless of the processor type currently set, the integer variable MOMCPU

contains the current status as a hexadecimal number. For example,
MOMCPU=$68010 for the 68010 or MOMCPU=80C48H for the 80C48. As one
cannot express all letters as hexadecimal digits (only A..F are possible),
all other letters must must be omitted in the hex notation; for example,
MOMCPU=80H for the Z80.

You can take advantage of this feature to generate different code depending
on the processor type. For example, the 68000 does not have a machine
instruction for a subroutine return with stack correction. With the variable
MOMCPU you can define a macro that uses the machine instruction or emulates
it depending on the processor type:

myrtd macro disp

if MOMCPU<$68010 ; emulate for 68008 & 68000

move.l (sp),disp(sp)

lea disp(sp),sp

rts

elseif

rtd #disp ; direct use on >=68010

endif

endm

cpu 68010

myrtd 12 ; results in RTD #12

cpu 68000

myrtd 12 ; results in MOVE../LEA../RTS

92 CHAPTER 3. PSEUDO INSTRUCTIONS

As not all processor names are built only out of numbers and letters from
A..F, the full name is additionally stored in the string variable named
MOMCPUNAME.

The assembler implicitly switches back to the CODE segment when a CPU

instruction is executed. This is done because CODE is the only segment all
processors support.

The default processor type is 68008, unless it has been changed via the
command line option with same name.

3.2.3 SUPMODE, FPU, PMMU

valid for: 680x0, FPU also for 80x86, i960, SUPMODE also for
TLCS-900, SH7000, i960, 29K, XA, PowerPC, M*Core,
and TMS9900

These three switches allow to define which parts of the instruction set shall be
disabled because the necessary preconditions are not valid for the following
piece of code. The parameter for these instructions may be either ON or OFF,
the current status can be read out of a variable which is either TRUE or
FALSE.

The commands have the following meanings in detail:

• SUPMODE: allows or prohibits commands, for whose execution the pro-
cessor has to be within the supervisor mode. The status variable is
called INSUPMODE.

• FPU: allows or prohibits the commands of the numerical coprocessors
8087 resp. 68881 or 68882. The status variable is called FPUAVAIL.

• PMMU: allows or prohibits the commands of the memory management
unit 68851 resp. of the built-in MMU of the 68030. CAUTION!
The 68030-MMU supports only a relatively small subset of the 68851
instructions. The assembler cannot test this! The status variable is
called PMMUAVAIL.

The usage of of instructions prohibited in this manner will generate a warning
at SUPMODE, at PMMU and FPU a real error message.

3.2. CODE MODIFICATION 93

3.2.4 FULLPMMU

valid for: 680x0

Motorola integrated the MMU into the processor starting with the 68030, but
the built-in FPU is equipped only with a relatively small subset of the 68851
instruction set. AS will therefore disable all extended MMU instructions
when the target processor is 68030 or higher. It is however possible that the
internal MMU has been disabled in a 68030-based system and the processor
operates with an external 68851. One can the use a FULLPMMU ON to tell AS
that the complete MMU instruction set is allowed. Vice versa, one may use a
FULLPMMU OFF to disable all additional instruction in spite of a 68020 target
platform to assure that portable code is written. The switch between full
and reduced instruction set may be done as often as needed, and the current
setting may be read from a symbol with the same name. CAUTION!
The CPU instruction implicitly sets or resets this switch when its argument
is a 68xxx processor! FULLPMMU therefore has to be written after the CPU

instruction!

3.2.5 PADDING

valid for: 680x0, M*Core, XA, H8, SH7000, MSP430, TMS9900, ST7

Processors of the 680x0 family are quite critical regarding odd addresses:
instructions must not start on an odd address, and data accesses to odd
addresses are only allowed bytewise up to the 68010. The H8/300 family
simply resets the lowest address bit to zero when accessing odd addresses, the
500 in contrast ’thanks’ with an exception... AS therefore tries to round up
data structures built with DC or DS to an even number of bytes. This however
means for DC.B and DS.B that a padding byte may have to be added. This
behaviour can be turned on and off via the PADDING instruction. Similar to
the previous instructions, the argument may be either ON or OFF, and the
current setting may be read from a symbol with the same name. PADDING is
by default only enabled for the 680x0 family, it has to be turned on explicitly
for all other families!

94 CHAPTER 3. PSEUDO INSTRUCTIONS

3.2.6 PACKING

valid for: AVR

In some way, PACKING is similar to PADDING, it just has a somewhat opposite
effect: While PADDING extends the disposed data to get full words and keep
a possible alignment, PACKING squeezes several values into a single word.
This makes sense for the AVR’s code segment since the CPU has a special
instruction (LPM) to access single bytes within a 16-bit word. In case this
option is turned on (argument ON), two byte values are packed into a single
word by DATA, similar to the single characters of string arguments. The value
range of course reduces to -128...+255. If this option is turned off (argument
OFF), each integer argument obtains its own word and may take values from
-32768...+65535.

This distinctin is only made for integer arguments of DATA, strings will always
be packed.. Keep further in mind that packing of values only works within
the arguments of a DATA statement; if one has subsequent DATA statements,
there will still be half-filled words when the argument count is odd!

3.2.7 MAXMODE

valid for: TLCS-900, H8

The processors of the TLCS-900-family are able to work in 2 modes, the
minimum and maximum mode. Depending on the actual mode, the execution
environment and the assembler are a little bit different. Along with this
instruction and the parameter ON or OFF, AS is informed that the following
code will run in maximum resp. minimum mode. The actual setting can be
read from the variable INMAXMODE. Presetting is OFF, i.e. minimum mode.

Similarly, one uses this instruction to tell AS in H8 mode whether the address
space is 64K or 16 Mbytes. This setting is always OFF for the ’small’ 300
version and cannot be changed.

3.2. CODE MODIFICATION 95

3.2.8 EXTMODE and LWORDMODE

valid for: Z380

The Z380 may operate in altogether 4 modes, which are the result of setting
two flags: The XM flag rules whether the processor shall operate wit an
address space of 64 Kbytes or 4 Gbytes and it may only be set to 1 (after a
reset, it is set to 0 for compatibility with the Z80). The LW flag in turn rules
whether word operations shall work with a word size of 16 or 32 bits. The
setting of these two flags influences range checks of constants and addresses,
which is why one has to tell AS the setting of these two flags via these
instructions. The default assumption is that both flags are 0, the current
setting (ON or OFF) may be read from the predefined symbols INEXTMODE

resp. INLWORDMODE.

3.2.9 SRCMODE

valid for: MCS-251

Intel substantially extended the 8051 instruction set with the 80C251, but
unfortunately there was only a single free opcode for all these new instruc-
tions. To avoid a processor that will be eternally crippled by a prefix, Intel
provided two operating modes: the binary and the source mode. The new
processor is fully binary compatible to the 8051 in binary mode, all new
instructions require the free opcode as prefix. In source mode, the new in-
structions exchange their places in the code tables with the corresponding
8051 instructions, which in turn then need a prefix. One has to inform AS
whether the processor operates in source mode (ON) or binary mode (OFF) to
enable AS to add prefixes when required. The current setting may be read
from the variable INSRCMODE. The default is OFF.

3.2.10 BIGENDIAN

valid for: MCS-51/251, PowerPC

Intel broke with its own principles when the 8051 series was designed: in con-
trast to all traditions, the processor uses big-endian ordering for all multi-byte

96 CHAPTER 3. PSEUDO INSTRUCTIONS

values! While this was not a big deal for MCS-51 processors (the processor
could access memory only in 8-bit portions, so everyone was free to use
whichever endianess one wanted), it may be a problem for the 251 as it can
fetch whole (long-)words from memory and expects the MSB to be first. As
this is not the way of constant disposal earlier versions of AS used, one can
use this instruction to toggle between big and little endian mode for the in-
structions DB, DW, DD, DQ, and DT. BIGENDIAN OFF (the default) puts the
LSB first into memory as it used to be on earlier versions of AS, BIGENDIAN
ON engages the big-endian mode compatible to the MCS-251. One may of
course change this setting as often as one wants; the current setting can be
read from the symbol with the same name.

3.2.11 WRAPMODE

valid for: Atmel AVR

After this switch has been set to ON, AS will assume that the processor’s
program counter does not have the full length of 16 bits given by the archi-
tecture, but instead a length that is exactly sufficient to address the internal
ROM. For example, in case of the AT90S8515, this means 12 bits, corre-
sponding to 4 Kwords or 8 Kbytes. This assumption allows relative branches
from the ROM’s beginning to the end and vice versa which would result in an
out-of-branch error when using strict arithmetics. Here, they work because
the carry bits resulting from the target address computation are discarded.
Assure that the target processor you are using works in the outlined way
before you enable this option! In case of the abovementioned AT90S8515,
this option is even necessary because it is the only way to perform a direct
jump through the complete address space...

This switch is set to OFF by default, and its current setting may be read from
a symbol with same name.

3.2.12 SEGMENT

valid for: all processors

Some microcontrollers and signal processors know various address ranges,
which do not overlap with each other and require also different instructions

3.2. CODE MODIFICATION 97

and addressing modes for access. To manage these ones also, the assem-
bler provides various program counters, you can switch among them to and
from by the use of the SEGMENT instruction. For subroutines included with
INCLUDE, this e.g. allows to define data used by the main program or sub-
routines near to the place they are used. In detail, the following segments
with the following names are supported:

• CODE: program code;

• DATA: directly addressable data (including SFRs);

• XDATA: data in externally connected RAM or X-addressing space of the
DSP56xxx or ROM data for the µPD772x;

• YDATA: Y-addressing space of the DSP56xxx;

• IDATA: indirectly addressable (internal) data;

• BITDATA: the part of the 8051-internal RAM that is bitwise addressable;

• IO: I/O-address range;

• REG: register bank of the ST9;

• ROMDATA: constant ROM of the NEC signal processors.

See also section 3.2.1 (ORG) for detailed information about address ranges
and initial values of the segments. Depending on the processor family, not
all segment types will be permitted.

The bit segment is managed as if it would be a byte segment, i.e. the ad-
dresses will be incremented by 1 per bit.

Labels get the same type as attribute as the segment that was active when
the label was defined. So the assembler has a limited ability to check whether
you access symbols of a certain segment with wrong instructions. In such
cases the assembler issues a warning.

Example:

98 CHAPTER 3. PSEUDO INSTRUCTIONS

CPU 8051 ; MCS-51-code

segment code ; test code

setb flag ; no warning

setb var ; warning : wrong segment

segment data

var db ?

segment bitdata

flag db ?

3.2.13 PHASE and DEPHASE

valid for: all processors

For some applications (especially on Z80 systems), the code must be moved to
another address range before execution. If the assembler didn’t know about
this, it would align all labels to the load address (not the start address). The
programmer is then forced to write jumps within this area either independent
of location or has to add the offset at each symbol manually. The first one is
not possible for some processors, the last one is extremely error-prone. With
the commands PHASE and DEPHASE, it is possible to inform the assembler at
which address the code will really be executed on the target system:

phase <address>

informs the assembler that the following code shall be executed at the spec-
ified address. The assembler calculates thereupon the difference to the real
program counter and adds this difference for the following operations:

• address values in the listing

• filing of label values

3.2. CODE MODIFICATION 99

• program counter references in relative jumps and address expressions

• readout of the program counter via the symbols * or $

this ”shifting” is switched off by the instruction

dephase

The assembler manages phase values for all defined segments, although this
instruction pair only makes real sense in the code segment.

3.2.14 SAVE and RESTORE

valid for: all processors

The command SAVE forces the assembler to push the contents of following
variables onto an internal stack:

• currently selected processor type (set by CPU);

• currently active memory area (set by SEGMENT);

• the flag whether listing is switched on or off (set by LISTING);

• the flag whether expansions of following macros shall be issued in the
assembly listing (set by MACEXP).

• currently active character translation table (set by CODEPAGE).

The counterpart RESTORE pops the values saved last from this stack. These
two commands were primarily designed for include files, to change the above
mentioned variables in any way inside of these files, without loosing their
original content. This may be helpful e.g. in include files with own, fully
debugged subroutines, to switch the listing generation off:

100 CHAPTER 3. PSEUDO INSTRUCTIONS

SAVE ; save old status

LISTING OFF ; save paper

. ; the actual code

.

RESTORE ; restore

In opposite to a simple LISTING OFF .. ON-pair, the correct status will be
restored, in case the listing generation was switched off already before.

The assembler checks if the number of SAVE-and RESTORE-commands corre-
sponds and issues error messages in the following cases:

• RESTORE, but the internal stack is empty;

• the stack not empty at the end of a pass.

3.2.15 ASSUME

valid for: various

This instruction allows to tell AS the current setting of certain registers whose
contents cannot be described with a simple ON or OFF. These are typically
registers that influence addressing modes and whose contents are important
to know for AS in order to generate correct addressing. It is important to
note that ASSUME only informs AS about these, no machine code is generated
that actually loads these values into the appropriate registers!

6809

In contrast to its ’predecessors’ like the 6800 and 6502, the position of the
direct page, i.e. the page of memory that can be reached with single-byte
addresses, can be set freely. This is done via the ’direct page register’ that
sets the page number. One has to assign a corresponding value to this register
via ASSUME is the contents are different from the default of 0, otherwise wrong
addresses will be generated!

3.2. CODE MODIFICATION 101

68HC11K4

Also for the HC11, the designers finally weren’t able to avoid the major
sin: using a banking scheme to address more than 64 Kbytes with only 16
address lines. The registers MMSIZ, MMWBR, MM1CR, and MM2CR control whether
and how the additional 512K address ranges are mapped into the physical
address space. AS intially assumes the reset state of these registers, i.e. all
are set to $00 and windowing is disabled.

68HC12X

Similar to its cousin without the appended ’X’, the HC12X supports a short
direct addressing mode. In this case however, it can be used to address
more than just the first 256 bytes of the address space. The DIRECT register
specifices which 256 byte page of the address space is addressed by this
addressing mode. ASSUME is used to tell AS the current value of this register,
so it is able to automatically select the most efficient address ing mode when
absolute addresses are used. The default is 0, which corresponds to the reset
state.

68HC16

The 68HC16 employs a set of bank registers to address a space of 1 Mbyte
with its registers that are only 16 bits wide. These registers supply the upper
4 bits. Of these, the EK register is responsible for absolute data accesses (not
jumps!). AS checks for each absolute address whether the upper 4 bits of
the address are equal to the value of EK specified via ASSUME. AS issues a
warning if they differ. The default for EK is 0.

H8/500

In maximum mode, the extended address space of these processors is ad-
dressed via a couple of bank registers. They carry the names DP (registers
from 0..3, absolute addresses), EP (register 4 and 5), and TP (stack). AS
needs the current value of DP to check if absolute addresses are within the

102 CHAPTER 3. PSEUDO INSTRUCTIONS

currently addressable bank; the other two registers are only used for indirect
addressing and can therefore not be monitored; it is a question of personal
taste whether one specifies their values or not. The BR register is in con-
trast important because it rules which 256-byte page may be accessed with
short addresses. It is common for all registers that AS does not assume any
default value for them as they are undefined after a CPU reset. Everyone
who wants to use absolute addresses must therefore assign values to at least
DR and DP!

MELPS740

Microcontrollers of this series know a ”special page” addressing mode for the
JSR instruction that allows a shorter coding for jumps into the last page of on-
chip ROM. The size of this ROM depends of course on the exact processor
type, and there are more derivatives than it would be meaningful to offer
via the CPU instruction...we therefore have to rely on ASSUME to define the
address of this page, e.g.

ASSUME SP:$1f

in case the internal ROM is 8K.

MELPS7700/65816

These processors contain a lot of registers whose contents AS has to know in
order to generate correct machine code. These are the registers in question:

name function value range default

DT data bank 0-$ff 0
PG code Bank 0-$ff 0
DPR directly addr. page 0-$ffff 0
X index register width 0 or 1 0
M accumulator width 0 or 1 0

To avoid endless repetitions, see section 4.9 for instructions how to use these
registers. The handling is otherwise similar to the 8086, i.e. multiple values
may be set with one instruction and no code is generated that actually loads
the registers with the given values. This is again up to the programmer!

3.2. CODE MODIFICATION 103

MCS-196/296

Starting with the 80196, all processors of the MCS-96 family have a register
’WSR’ that allows to map memory areas from the extended internal RAM
or the SFR range into areas of the register file which may then be accessed
with short addresses. If one informs AS about the value of the WSR register,
it can automatically find out whether an absolute address can be addressed
with a single-byte address via windowing; consequently, long addresses will
be automatically generated for registers covered by windowing. The 80296
contains an additional register WSR1 to allow simultaneous mapping of two
memory areas into the register file. In case it is possible to address a memory
cell via both areas, AS will always choose the way via WSR!

8086

The 8086 is able to address data from all segments in all instructions, but it
however needs so-called ”segment prefixes” if another segment register than
DS shall be used. In addition it is possible that the DS register is adjusted
to another segment, e.g. to address data in the code segment for longer
parts of the program. As AS cannot analyze the code’s meaning, it has to
informed via this instruction to what segments the segment registers point
at the moment, e.g.:

ASSUME CS:CODE, DS:DATA .

It is possible to assign assumptions to all four segment registers in this way.
This instruction produces no code, so the program itself has to do the actual
load of the registers with the values.

The usage of this instruction has on the one hand the result that AS is able to
automatically put ahead prefixes at sporadic accesses into the code segment,
or on the other hand, one can inform AS that the DS-register was modified
and you can save explicit CS:-instructions.

Valid arguments behind the colon are CODE, DATA and NOTHING. The latter
value informs AS that a segment register contains no usable value (for AS).
The following values are preinitialized:

CS:CODE, DS:DATA, ES:NOTHING, SS:NOTHING

104 CHAPTER 3. PSEUDO INSTRUCTIONS

XA

The XA family has a data address space of 16 Mbytes, a process however can
always address within a 64K segment only that is given by the DS register.
One has to inform AS about the current value of this register in order to
enable it to check accesses to absolute addresses.

29K

The processors of the 29K family feature a register RBP that allows to protect
banks of 16 registers against access from user mode. The corresponding bit
has to be set to achieve the protection. ASSUME allows to tell AS which
value RBP currently contains. AS can warn this way in case a try to access
protected registers from user mode is made.

80C166/167

Though none of the 80C166/167’s registers is longer than sixteen bits,
this processor has 18/24 address lines and can therefore address up to
256Kbytes/16Mbytes. To resolve this contradiction, it neither uses the well-
known (and ill-famed) Intel method of segmentation nor does it have in-
flexible bank registers...no, it uses paging! To accomplish this, the logical
address space of 64 Kbytes is split into 4 pages of 16 Kbytes, and for each
page there is a page register (named DPP0..DPP3) that rules which of the
16/1024 physical pages shall be mapped to this logical page. AS always tries
to present the address space with a size of 256Kbytes/16MBytes in the sight
of the programmer, i.e. the physical page is taken for absolute accesses and
the setting of bits 14/15 of the logical address is deduced. If no page regis-
ter fits, a warning is issued. AS assumes by default that the four registers
linearly map the first 64 Kbytes of memory, in the following style:

ASSUME DPP0:0,DPP1:1,DPP2:2,DPP3:3

The 80C167 knows some additional instructions that can override the page
registers’ function. The chapter with processor-specific hints describes how
these instructions influence the address generation.

3.2. CODE MODIFICATION 105

TLCS-47

The direct data address space of these processors (it makes no difference
whether you address directly or via the HL register) has a size of only 256
nibbles. Because the ”better” family members have up to 1024 nibbles of
RAM on chip, Toshiba was forced to introduce a banking mechanism via
the DMB register. AS manages the data segment as a continuous addressing
space and checks at any direct addressing if the address is in the currently
active bank. The bank AS currently expects can be set by means of

ASSUME DMB:<0..3>

The default value is 0.

ST6

The microcontrollers of the ST62 family are able to map a part (64 bytes) of
the code area into the data area, e.g. to load constants from the ROM. This
means also that at one moment only one part of the ROM can be addressed.
A special register rules which part it is. AS cannot check the contents of this
register directly, but it can be informed by this instruction that a new value
has been assigned to the register. AS then can test and warn if necessary,
in case addresses of the code segment are accessed, which are not located in
the ”announced” window. If, for example, the variable VARI has the value
456h, so

ASSUME ROMBASE:VARI>>6

sets the AS-internal variable to 11h, and an access to VARI generates an
access to address 56h in the data segment.

It is possible to assign a simple NOTHING instead of a value, e.g. if the bank
register is used temporarily as a memory cell. This value is also the default.

ST9

The ST9 family uses exactly the same instructions to address code and data
area. It depends on the setting of the flag register’s DP flag which address
space is referenced. To enable AS to check if one works with symbols from
the correct address space (this of course only works with absolute accesses!),
one has to inform AS whether the DP flag is currently 0 (code) or 1 (data).
The initial value of this assumption is 0.

106 CHAPTER 3. PSEUDO INSTRUCTIONS

78K2

78K2 is an 8/16 bit architecture, which has later been extended to a one-
megabyte addres space via banking. Banking is realized with the registers
PM6 (normal case) resp. P6 (alternate case with & as prefix) that supply the
missing upper four address bits. At least for absolute addresses, AS can check
whether the current, linear 20-bit address is within the given 64K window.

320C3x

As all instruction words of this processor family are only 32 bits long (of
which only 16 bits were reserved for absolute addresses), the missing upper
8 bits have to be added from the DP register. It is however still possible
to specify a full 24-bit address when addressing, AS will check then whether
the upper 8 bits are equal to the DP register’s assumed values. ASSUME

is different to the LDP instruction in the sense that one cannot specify an
arbitrary address out of the bank in question, one has to extract the upper
bits by hand:

ldp @addr

assume dp:addr>>16

.

.

ldi @addr,r2

µPD78(C)10

These processors have a register (V) that allows to move the ”zero page”, i.e.
page of memory that is addressable by just one byte, freely in the address
space, within page limits. By reasons of comforts you don’t want to work
with expressions such as

inrw Lo(counter)

so AS takes over this job, but only under the premise that it is informed via
the ASSUME-command about the contents of the V register. If an instruction
with short addressing is used, it will be checked if the upper half of the
address expression corresponds to the expected content. A warning will be
issued if both do not match.

3.2. CODE MODIFICATION 107

75K0

As the whole address space of 12 bits could not be addressed even by the
help of register pairs (8 bits), NEC had to introduce banking (like many
others too...): the upper 4 address bits are fetched from the MBS register
(which can be assigned values from 0 to 15 by the ASSUME instruction), which
however will only be regarded if the MBE flag has been set to 1. If it is 0
(default), the lowest and highest 128 nibbles of the address space can be
reached without banking. The ASSUME instruction is undefined for the 75402
as it contains neither a MBE flag nor an MBS register; the initial values
cannot be changed therefore.

F2MC16L

Similar to many other families of microcontrollers, this family suffers some-
what from its designers miserliness: registers of only 16 bits width are faced
with an address space of 24 bits. Once again, bank registers had to fill the
gap. In detail, these are PCB for the progam code, DTB for all data accesses,
ADB for indirect accesses via RW2/RW6, and SSB/USB for the stacks. They
may all take values from 0 to 255 and are by default assumed to be 0, with
the exception of 0ffh for PCB.

Furthermore, a DPR register exists that specifies which memory page within
the 64K bank given by DTB may be reached with 8 bit addresses. The
default for DPR is 1, resulting in a default page of 0001xxh when ine takes
DTB’s default into account.

3.2.16 EMULATED

valid for: 29K

AMD defined the 29000’s series exception handling for undefined instructions
in a way that there is a separate exception vector for each instruction. This
allows to extend the instruction set of a smaller member of this family by
a software emulation. To avoid that AS quarrels about these instructions
as being undefined, the EMULATED instruction allows to tell AS that certain
instructions are allowed in this case. The check if the currently set processors

108 CHAPTER 3. PSEUDO INSTRUCTIONS

knows the instruction is then skipped. For example, if one has written a
module that supports 32-bit IEEE numbers and the processor does not have
a FPU, one writes

EMULATED FADD,FSUB,FMUL,FDIV

EMULATED FEQ,FGE,FGT,SQRT,CLASS

3.2.17 BRANCHEXT

valid for: XA

BRANCHEXT with either ON or OFF as argument tells AS whether short branches
that are only available with an 8-bit displacement shall automatically be
’extended’, for example by replacing a single instruction like

bne target

with a longer sequence of same functionality, in case the branc target is out
of reach for the instruction’s displacement. For example, the replacement
sequence for bne would be

beq skip

jmp target

skip:

In case there is no fitting ’opposite’ for an instruction, the sequence may
become even longer, e.g. for jbc:

jbc dobr

bra skip

dobr: jmp target

skip:

This feature however has the side effect that there is no unambigious assign-
ment between machine and assembly code any more. Furthermore, additional
passes may be the result if there are forward branches. One should therefore
use this feature with caution!

3.3. DATA DEFINITIONS 109

3.3 Data Definitions

The instructions described in this section partially overlap in their function-
ality, but each processor family defines other names for the same function.
To stay compatible with the standard assemblers, this way of implementation
was chosen.

If not explicitly mentioned otherwise, all instructions for data deposition (not
those for reservation of memory!) allow an arbitrary number of parameters
which are being processed from left to right.

3.3.1 DC[.Size]

valid for: 680x0, M*Core, 68xx, H8, SH7x00, DSP56xxx, XA, ST7

This instruction places one or several constants of the type specified by the
attribute into memory. The attributes are the same ones as defined in section
2.5, and there is additionally the possibility for byte constants to place string
constants in memory, like

String dc.B "Hello world!\0"

The parameter count may be between 1 and 20. A repeat count enclosed in
brackets may additionally be prefixed to each parameter; for example, one
can for example fill the area up to the next page boundary with zeroes with
a statement like

dc.b [(*+255)&$ffffff00-*]0

CAUTION! This function easily allows to reach the limit of 1 Kbyte of
generated code per line!

The assembler can automatically add another byte of data in case the byte
sum should become odd, to keep the word alignment. This behaviour may
be turned on and off via the PADDING instruction.

Decimal floating point numbers stored with this instruction (DC.P...) can
cover the whole range of extended precision, one however has to pay atten-
tion to the detail that the coprocessors currently available from Motorola

110 CHAPTER 3. PSEUDO INSTRUCTIONS

(68881/68882) ignore the thousands digit of the exponent at the read of such
constants!

The default attribute is W, that means 16-bit-integer numbers.

For the DSP56xxx, the data type is fixed to integer numbers (an attribute is
therefore neither necessary nor allowed), which may be in the range of -8M
up to 16M-1. String constants are also allowed, whereby three characters are
packed into each word.

Opposed to the standar Motorola ssembler, it is also valid to reserve memory
space with this statement, by using a question mark as operand. This is an
extension added by some third-party suppliers for 68K assemblers, similar to
what Intel assemblers provide. However, it should be clear that usage of this
feature may lead to portability problems. Furthermore, question marks as
operands must not be mixed with ’normal’ constants in a single statement.

3.3.2 DS[.Size]

valid for: 680x0, M*Core, 68xx, H8, SH7x00, DSP56xxx, XA,, ST7

On the one hand, this instruction enables to reserve memory space for the
specified count of numbers of the type given by the attribute. Therefore,

DS.B 20

for example reserves 20 bytes of memory, but

DS.X 20

reserves 240 bytes!

The other purpose is the alignment of the program counter which is achieved
by a count specification of 0. In this way, with a

DS.W 0 ,

the program counter will be rounded up to the next even address, with a

DS.D 0

in contrast to the next double word boundary. Memory cells possibly staying
unused thereby are neither zeroed nor filled with NOPs, they simply stay
undefined.

The default for the operand length is - as usual - W, i.e. 16 bits.

For the 56xxx, the operand length is fixed to words (of 24 bit), attributes
therefore do not exist just as in the case of DC.

3.3. DATA DEFINITIONS 111

3.3.3 DB,DW,DD,DQ, and DT

valid for: Intel, Zilog, Toshiba, NEC, TMS370, Siemens, AMD,
MELPS7700/65816, M16(C), National, ST9, TMS70Cxx,
µPD77230, Fairchild, Intersil

These commands are - one could say - the Intel counterpart to DS and DC,
and as expected, their logic is a little bit different: First, the specification of
the operand length is moved into the mnemonic:

• DB: byte or ASCII string similar to DC.B

• DW: 16-bit integer

• DD: 32-bit integer or single precision

• DQ: double precision (64 bits)

• DT: extended precision (80 bits)

Second, the distinction between constant definition and memory reservation
is done by the operand. A reservation of memory is marked by a ? :

db ? ; reserves a byte

dw ?,? ; reserves memory for 2 words (=4 byte)

dd -1 ; places the constant -1 (FFFFFFFFH) !

Reserved memory and constant definition must not be mixed within one
instruction:

db "hello",? ; --> error message

Additionally, the DUP Operator permits the repeated placing of constant se-
quences or the reservation of whole memory blocks:

db 3 dup (1,2) ; --> 1 2 1 2 1 2

dw 20 dup (?) ; reserves 40 bytes of memory

112 CHAPTER 3. PSEUDO INSTRUCTIONS

As you can see, the DUP-argument must be enclosed in parentheses, which
is also why it may consist of several components, that may themselves be
DUPs...the stuff therefore works recursively. DUP is however also a place where
one can get in touch with another limit of the assembler: a maximum of 1024
bytes of code or data may be generated in one line. This is not valid for the
reservation of memory, only for the definition of constant arrays!

In order to be compatible to the M80, DEFB/DEFW may be used instead of
DB/DW in Z80-mode.

Similarly, BYTE/ADDR resp. WORD/ADDRW in COP4/8 mode are an alias for
DB resp. DW, with the pairs differing in byte order: instructions defined by
National for address storage use big endian, BYTE resp. WORD in contrast use
little endian.

The NEC 77230 is special with its DW instruction: It more works like the
DATA statement of its smaller brothers, but apart from string and integer
arguments, it also accepts floating point values (and stores them in the pro-
cessor’s proprietary 32-bit format). There is no DUP operator!

3.3.4 DS, DS8

valid for: Intel, Zilog, Toshiba, NEC, TMS370, Siemens, AMD,
M16(C), National, ST9, TMS7000, Intersil

With this instruction, you can reserve a memory area:

DS <count>

It is an abbreviation of

DB <count> DUP (?)

Although this could easily be made by a macro, some people grown up with
Motorola CPUs (Hi Michael!) suggest DS to be a built-in instruction...I hope
they are satisfied now ;-)

DS8 is defined as an alias for DS on the National SC14xxx. Beware that
the code memory of these processors is organized in words of 16 bits, it is
therefore impossible to reserve individual bytes. In case the argument of DS
is odd, it will be rounded up to the next even number.

3.3. DATA DEFINITIONS 113

3.3.5 BYT or FCB

valid for: 6502, 68xx

By this instruction, byte constants or ASCII strings are placed in 65xx/68xx-
mode, it therefore corresponds to DC.B on the 68000 or DB on Intel. Similarly
to DC, a repetition factor enclosed in brackets ([..]) may be prepended to every
single parameter.

3.3.6 BYTE

valid for: ST6, 320C2(0)x, 320C5x, MSP, TMS9900

Ditto. Note that when in 320C2(0)x/5x mode, the assembler assumes that
a label on the left side of this instruction has no type, i.e. it belongs to no
address space. This behaviour is explained in the processor-specific hints.

The PADDING instruction allows to set whether odd counts of bytes shall be
padded with a zero byte in MSP/TMS9900 mode.

3.3.7 DC8

valid for: SC144xx

This statement is an alias for DB, i.e. it may be used to dump byte constants
or strings to memory.

3.3.8 ADR or FDB

valid for: 6502, 68xx

ADR resp. FDB stores word constants when in 65xx/68xx mode. It is therefore
the equivalent to DC.W on the 68000 or DW on Intel platforms. Similarly to
DC, a repetition factor enclosed in brackets ([..]) may be prepended to every
single parameter.

114 CHAPTER 3. PSEUDO INSTRUCTIONS

3.3.9 WORD

valid for: ST6, i960, 320C2(0)x, 320C3x, 320C5x, MSP

If assembling for the 320C3x or i960, this command stores 32-bit words, 16-
bit words for the other families. Note that when in 320C2(0)x/5x mode,
the assembler assumes that a label on the left side of this instruction has no
type, i.e. it belongs to no address space. This behaviour is explained at the
discussion on processor-specific hints.

3.3.10 DW16

valid for: SC144xx

This instruction is for SC144xx targets a way to dump word (16 bit) constants
to memory. CAUTION!! It is therefore an alias for DW.

3.3.11 LONG

valid for: 320C2(0)x, 320C5x

LONG stores a 32-bit integer to memory with the order LoWord-HiWord.
Note that when in 320C2(0)x/5x mode, the assembler assumes that a label
on the left side of this instruction has no type, i.e. it belongs to no address
space. This behaviour is explained in the processor-specific hints.

3.3.12 SINGLE, DOUBLE, and EXTENDED

valid for: 320C3x (not DOUBLE), 320C6x (not EXTENDED)

Both commands store floating-point constants to memory. In case of the
320C3x, they are not stored in IEEE-format. Instead the processor-specific
formats with 32 and 40 bit are used. In case of EXTENDED the resulting con-
stant occupies two memory words. The most significant 8 bits (the exponent)
are written to the first word while the other ones (the mantissa) are copied
into the second word.

3.3. DATA DEFINITIONS 115

3.3.13 FLOAT and DOUBLE

valid for: 320C2(0)x, 320C5x

These two commands store floating-point constants in memory using the
standard IEEE 32-bit and 64-bit IEEE formats. The least significant
byte is copied to the first allocated memory location. Note that when in
320C2(0)x/5x mode the assembler assumes that all labels on the left side
of an instruction have no type, i.e. they belong to no address space. This
behaviour is explained in the processor-specific hints.

3.3.14 EFLOAT, BFLOAT, and TFLOAT

valid for: 320C2(0)x, 320C5x

Another three floating point commands. All of them support non-IEEE
formats, which should be easily applicable on signal processors:

• EFLOAT: mantissa with 16 bits, exponent with 16 bits

• BFLOAT: mantissa with 32 bits, exponent with 16 bits

• DFLOAT: mantissa with 64 bits, exponent with 32 bits

The three commands share a common storage strategy. In all cases the man-
tissa precedes the exponent in memory, both are stored as 2’s complement
with the least significant byte first. Note that when in 320C2(0)x/5x mode
the assembler assumes that all labels on the left side of an instruction have
no type, i.e. they belong to no address space. This behaviour is explained in
the processor-specific hints.

3.3.15 Qxx and LQxx

valid for: 320C2(0)x, 320C5x

Qxx and LQxx can be used to generate constants in a fixed point format.
xx denotes a 2-digit number. The operand is first multiplied by 2xx before
converting it to binary notation. Thus xx can be viewed as the number of
bits which should be reserved for the fractional part of the constant in fixed
point format. Qxx stores only one word (16 bit) while LQxx stores two words
(low word first):

116 CHAPTER 3. PSEUDO INSTRUCTIONS

q05 2.5 ; --> 0050h

lq20 ConstPI ; --> 43F7h 0032h

Please do not flame me in case I calculated something wrong on my HP28...

3.3.16 DATA

valid for: PIC, 320xx, AVR, MELPS-4500, 4004/4040, µPD772x

This command stores data in the current segment. Both integer values as
well as character strings are supported. On 16C5x/16C8x, 17C4x in data
segment and on the 4500, characters occupy one word. On AVR, 17C4x
in code segment, µPD772x in the data segments, and on 3201x/3202x, in
general two characters fit into one word (LSB first). The µPD77C25 can
hold three bytees per word in the code segment. When in 320C3x, mode the
assembler puts four characters into one word (MSB first). In contrast to this
characters occupy two memory locations in the data segment of the 4500,
similar in the 4004. The range of integer values corresponds to the word
width of each processor in a specific segment. This means that DATA has the
same result than WORD on a 320C3x (and that of SINGLE if AS recognizes the
operand as a floating-point constant).

3.3.17 ZERO

valid for: PIC

Generates a continuous string of zero words in memory. The length is given
by the argument and must not exceed 512.

3.3.18 FB and FW

valid for: COP4/8

These instruction allow to fill memory blocks with a byte or word constant.
The first operand specifies the size of the memory block while the second one
sets the filling constant itself. The maximum supported block size is 1024
elements for FB and 512 elements for FW.

3.3. DATA DEFINITIONS 117

3.3.19 ASCII and ASCIZ

valid for: ST6

Both commands store string constants to memory. While ASCII writes the
character information only, ASCIZ additionally appends a zero to the end of
the string.

3.3.20 STRING and RSTRING

valid for: 320C2(0)x, 320C5x

These commands are functionally equivalent to DATA, but integer values are
limited to the range of byte values. This enables two characters or numbers
to be packed together into one word. Both commands only differ in the
order they use to write bytes: STRING stores the upper one first then the
lower one, RSTRING does this vice versa. Note that when in 320C2(0)x/5x
mode the assembler assumes that a label on the left side of this instruction
has no type, i.e. it belongs to no address space. This behaviour is explained
in the processor-specific hints.

3.3.21 FCC

valid for: 6502, 68xx

When in 65xx/68xx mode, string constants are generated using this instruc-
tion. In contrast to the original assembler AS11 from Motorola (this is the
main reason why AS understands this command, the functionality is con-
tained within the BYT instruction) you must enclose the string argument by
double quotation marks instead of single quotation marks or slashes. Simi-
larly to DC, a repetition factor enclosed in brackets ([..]) may be prepended
to every single parameter.

3.3.22 DFS or RMB

valid for: 6502, 68xx

Reserves a memory block when in 6502/68xx mode. It is therefore the equiv-
alent to DS.B on the 68000 or DB ? on Intel platforms.

118 CHAPTER 3. PSEUDO INSTRUCTIONS

3.3.23 BLOCK

valid for: ST6

Ditto.

3.3.24 SPACE

valid for: i960

Ditto.

3.3.25 RES

valid for: PIC, MELPS-4500, 3201x, 320C2(0)x, 320C5x, AVR, µPD772x

This command allocates memory. When used in code segments the argument
counts words (10/12/14/16 bit). In data segments it counts bytes for PICs,
nibbles for 4500’s and words for the TI devices.

3.3.26 BSS

valid for: 320C2(0)x, 320C3x, 320C5x, 320C6x, MSP

BSS works like RES, but when in 320C2(0)x/5x mode, the assembler assumes
that a label on the left side of this instruction has no type, i.e it belongs to
no address space. This behaviour is explained in the processor-specific hints.

3.3.27 DSB and DSW

valid for: COP4/8

Both instructions allocate memory and ensure compatibility to ASMCOP
from National. While DSB takes the argument as byte count, DSW uses it as
word count (thus it allocates twice as much memory than DSB).

3.3. DATA DEFINITIONS 119

3.3.28 DS16

valid for: SC144xx

This instruction reserves memory in steps of full words, i.e. 16 bits. It is an
alias for DW.

3.3.29 ALIGN

valid for: all processors

Takes the argument to align the program counter to a certain address bound-
ary. AS increments the program counter to the next multiple of the argument.
So, ALIGN corresponds to DS.x on 68000, but is much more flexible at the
same time.

Example:

align 2

aligns to an even address (PC mod 2 = 0). The contents of the skipped
addresses is left undefined.

3.3.30 LTORG

valid for: SH7x00

Although the SH7000 processor can do an immediate register load with 8
bit only, AS shows up with no such restriction. This behaviour is instead
simulated through constants in memory. Storing them in the code segment
(not far away from the register load instruction) would require an additional
jump. AS Therefore gathers the constants an stores them at an address
specified by LTORG. Details are explained in the processor-specific section
somewhat later.

120 CHAPTER 3. PSEUDO INSTRUCTIONS

3.4 Macro Instructions

valid for: all processors

Now we finally reach the things that make a macro assembler different from
an ordinary assembler: the ability to define macros (guessed it !?).

When speaking about ’macros’, I generally mean a sequence of (machine or
pseudo) instructions which are united to a block by special statements and
can then be treated in certain ways. The assembler knows the following
statements to work with such blocks:

3.4.1 MACRO

is probably the most important instruction for macro programming. The
instruction sequence

<name> MACRO [parameter list]

<instructions>

ENDM

defines the macro <name> to be the enclosed instruction sequence. This
definition by itself does not generate any code! In turn, from now on the
instruction sequence can simply be called by the name, the whole construct
therefore shortens and simplifies programs. A parameter list may be added
to the macro definition to make things even more useful. The parameters’
names have to be separated by commas (as usual) and have to conform to
the conventions for symbol names (see section 2.7) - like the macro name
itself.

A switch to case-sensitive mode influences both macro names and parameters.

Similar to symbols, macros are local, i.e. they are only known in a section
and its subsections when the definition is done from within a section. This
behaviour however can be controlled in wide limits via the options PUBLIC

and GLOBAL described below.

Apart from the macro parameters themselves, the parameter list may con-
tain control parameters which influence the processing of the macro. These
parameters are distinguished from normal parameters by being enclosed in
braces. The following control parameters are defined:

3.4. MACRO INSTRUCTIONS 121

• EXPAND/NOEXPAND: rule whether the enclosed code shall be written to
the listing when the macro is expanded. The default is the value set
by the pseudo instruction MACEXP.

• PUBLIC[:section name]: assigns the macro to a parent section instead
of the current section. A section can make macros accessible for the
outer code this way. If the section specification is missing, the macro
becomes completely global, i.e. it may be referenced from everywhere.

• GLOBAL[:section name]: rules that in addition to the macro itself,
another macro shall be generated that has the same contents but is
assigned to the specified section. Its name is constructed by concate-
nating the current section’s name to the macro name. The section
specified must be a parent section of the current section; if the speci-
fication is missing, the additional macro becomes globally visible. For
example, if a macro A is defined in a section B that is a child section of
section C, an additional global macro named C B A would be generated.
In contrast, if C had been specified as target section, the macro would
be named B A and be assigned to section C. This option is turned off by
default and it only has an effect when it is used from within a section.
The macro defined locally is not influenced by this option.

• EXPORT/NOEXPORT: rules whether the definition of this macro shall be
written to a separate file in case the -M command line option was given.
This way, definitions of ’private’ macros may be mapped out selectively.
The default is FALSE, i.e. the definition will not be written to the file.
The macro will be written with the concatenated name if the GLOBAL

option was additionally present.

• INTLABEL/NOINTLABEL : rules whether a label defined in a line that
calls this macro may be used as an additional parameter inside the
label or not, instead of simply ’labeling’ the line.

The control parameters described above are removed from the parameter list
by AS, i.e. they do not have a further influence on processing and usage.

When a macro is called, the parameters given for the call are textually in-
serted into the instruction block and the resulting assembler code is assembled
as usual. Zero length parameters are inserted in case too few parameters are

122 CHAPTER 3. PSEUDO INSTRUCTIONS

specified. It is important to note that string constants are not protected from
macro expansions. The old IBM rule:

It’s not a bug, it’s a feature!

applies for this detail. The gap was left to allow checking of parameters via
string comparisons. For example, one can analyze a macro parameter in the
following way:

mul MACRO para,parb

IF UpString("PARA")<>"A"

MOV a,para

ENDIF

IF UpString("PARB")<>"B"

MOV b,parb

ENDIF

mul ab

ENDM

It is important for the example above that the assembler converts all pa-
rameter names to upper case when operating in case-insensitive mode, but
this conversion never takes place inside of string constants. Macro parameter
names therefore have to be written in upper case when they appear in string
constants.

The same naming rules as for usual symbols also apply for macro parameters,
with the exception that only letters and numbers are allowed, i.e. dots and
underscores are forbidden. This constraint has its reason in a hidden feature:
the underscore allows to concatenate macro parameter names to a symbol,
like in the following example:

concat macro part1,part2

call part1_part2

endm

The call

concat module,function

will therefore result in

3.4. MACRO INSTRUCTIONS 123

call module_function

Apart from the parameters explicitly declared for a macro, four more ’implic-
itly’ declared parameters exist. Since they are always present, they cannot
not be redeclared as explicit parameters:

• ATTRIBUTE refers to the attribute appended to the macro call, in case
the currently active architecture supports attributes for machine in-
structions. See below for an example!

• ALLARGS refers to a comma-separated list of all arguments passed to a
macro, usable e.g. to pass them on to a IRP statement.

• ARGCOUNT refers to the actual count of parameters passed to a macro.
Note however that this number is never lower than the formal param-
eter count of the macro, since AS will fill up missing arguments with
empty strings!

• LABEL refers to a label present in a line that calls the macro. This
replacement only takes place if the INTLABEL option was set for this
macro!

The purpose of being able to ’internally’ use a label in a macro is surely not
immediately obvious. There might be cases where moving the macro’s entry
point into its body may be useful. The most important application however
are TI signal processors that use a double pipe symbol in the label’s column
to mark parallelism, like this:

instr1

|| instr2

(since both instructions merge into a single word of machine code, you cannot
branch to the second instruction - so occupying the label’s position doesn’t
hurt). The problem is however that some ’convenience instructions’ are re-
alized as macros. A prallelization symbol written in front of a macro call
normally would be assigned to the macro itself, not to the macro body’s first
instruction. However, things work with this trick:

124 CHAPTER 3. PSEUDO INSTRUCTIONS

myinstr macro {INTLABEL}

__LABEL__ instr2

endm

instr1

|| myinstr

The result after expanding myinstr is identical to the previous example
without macro.

Recursion of macros, i.e. the repeated call of a macro from within its own
body is completely legal. However, like for any other sort of recursion, one has
to assure that there is an end at someplace. For cases where one forgot this,
AS keeps an internal counter for every macro that is incremented when an
expansion of this macro is begun and decremented again when the expansion
is completed. In case of recursive calls, this counter reaches higher and higher
values, and at a limit settable via NESTMAX, AS will refuse to expand. Be
careful when you turn off this emergency brake: the memory consumption
on the heap may go beyond all limits and even shut down a Unix system...

A small example to remove all clarities ;-)

A programmer braindamaged by years of programming Intel processors wants
to have the instructions PUSH/POP also for the 68000. He solves the ’problem’
in the following way:

push macro op

move.ATTRIBUTE op,-(sp)

endm

pop macro op

move.ATTRIBUTE (sp)+,op

endm

If one writes

push d0

pop.l a2 ,

this results in

3.4. MACRO INSTRUCTIONS 125

move. d0,-(sp)

move.l (sp)+,a2

A macro definition must not cross include file boundaries.

Labels defined in macros always are regarded as being local, an explicit LOCAL
instruction is therefore not necessary (it even does not exist). In case there is
a reason to make a label global, one may define it with LABEL which always
creates global symbols (similar to BIT, SFR...):

<Name> label $

When parsing a line, the assembler first checks the macro list afterwards
looks for processor instructions, which is why macros allow to redefine pro-
cessor instructions. However, the definition should appear previously to the
first invocation of the instruction to avoid phase errors like in the following
example:

bsr target

bsr macro targ

jsr targ

endm

bsr target

In the first pass, the macro is not known when the first BSR instruction is
assembled; an instruction with 4 bytes of length is generated. In the second
pass however, the macro definition is immediately available (from the first
pass), a JSR of 6 bytes length is therefore generated. As a result, all labels
following are too low by 2 and phase errors occur for them. An additional
pass is necessary to resolve this.

Because a machine or pseudo instruction becomes hidden when a macro of
same name is defined, there is a backdoor to reach the original meaning: the
search for macros is suppressed if the name is prefixed with an exclamation
mark (!). This may come in handy if one wants to extend existing instructions
in their functionality, e.g. the TLCS-90’s shift instructions:

126 CHAPTER 3. PSEUDO INSTRUCTIONS

srl macro op,n ; shift by n places

rept n ; n simple instructions

!srl op

endm

endm

From now on, the SRL instruction has an additional parameter...

3.4.2 IRP

is a simplified macro definition for the case that an instruction sequence shall
be applied to a couple of operands and the the code is not needed any more
afterwards. IRP needs a symbol for the operand as its first parameter, and
an (almost) arbitrary number of parameters that are sequentially inserted
into the block of code. For example, one can write

irp op, acc,b,dpl,dph

push op

endm

to push a couple of registers to the stack, what results in

push acc

push b

push dpl

push dph

Again, labels used are automatically local for every pass.

3.4.3 IRPC

IRPC is a variant of IRP where the first argument’s occurences in the lines
up to ENDM are successively replaced by the characters of a string instead of
further parameters. For example, an especially complicated way of placing a
string into memory would be:

3.4. MACRO INSTRUCTIONS 127

irpc char,"Hello World"

db ’CHAR’

endm

CAUTION! As the example already shows, IRPC only inserts the pure
character; it is the programmer’s task to assure that valid code results (in
this example by inserting quotes, including the detail that no automatic
conversion to uppercase characters is done).

3.4.4 REPT

is the simplest way to employ macro constructs. The code between REPT and
ENDM is assembled as often as the integer argument of REPT specifies. This
statement is commonly used in small loops to replace a programmed loop to
save the loop overhead.

An example for the sake of completeness:

rept 3

rr a

endm

rotates the accumulator to the right by three digits.

In case REPT’s argument is equal to or smaller than 0, no expansion at all is
done. This is different to older versions of AS which used to be a bit ’sloppy’
in this respect and always made a single expansion.

3.4.5 WHILE

WHILE operates similarly to REPT, but the fixed number of repetitions given
as an argument is replaced by a boolean expression. The code framed by
WHILE and ENDM is assembled until the expression becomes logically false.
This may mean in the extreme case that the enclosed code is not assembled
at all in case the expression was already false when the construct was found.
On the other hand, it may happen that the expression stays true forever and
AS will run infinitely...one should apply therefore a bit of accuracy when one
uses this construct, i.e. the code must contain a statement that influences
the condition, e.g. like this:

128 CHAPTER 3. PSEUDO INSTRUCTIONS

cnt set 1

sq set cnt*cnt

while sq<=1000

dc.l sq

cnt set cnt+1

sq set cnt*cnt

endm

This example stores all square numbers up to 1000 to memory.

Currently there exists a little ugly detail for WHILE: an additional empty line
that was not present in the code itself is added after the last expansion.
This is a ’side effect’ based on a weakness of the macro processor and it is
unfortunately not that easy to fix. I hope noone minds...

3.4.6 EXITM

EXITM offers a way to terminate a macro expansion or one of the instructions
REPT, IRP, or WHILE prematurely. Such an option helps for example to
replace encapsulations with IF-ENDIF-ladders in macros by something more
readable. Of course, an EXITM itself always has to be conditional, what
leads us to an important detail: When an EXITM is executed, the stack of
open IF and SWITCH constructs is reset to the state it had just before the
macro expansion started. This is imperative for conditional EXITM’s as the
ENDIF resp. ENDCASE that frames the EXITM statement will not be reached
any more; AS would print an error message without this trick. Please keep
also in mind that EXITM always only terminates the innermost construct if
macro constructs are nested! If one want to completely break out of a nested
construct, one has to use additional EXITM’s on the higher levels!

3.4.7 SHIFT

SHIFT is a tool to construct macros with variable argument lists: it discards
the first parameter, with the result that the second parameter takes its place
and so on. This way one could process a variable argument list...if you do it
the right way. For example, the following does not work...

3.4. MACRO INSTRUCTIONS 129

pushlist macro reg

rept ARGCOUNT

push reg

shift

endm

endm

...because the macro gets expanded once, its output is captured by REPT and
then executed n times. Therefore, the first argument is saved n times...the
following approach works better:

pushlist macro reg

if "ARG"<>""

push arg

shift

pushlist ALLARGS

endif

endm

Effectively, this is a recursion that shortens the argument list once per step.
The important trick is that a new macro expansion is started in each step...

3.4.8 MAXNEST

MAXNEST allows to adjust how often a mcro may be called recursively before
AS terminates with an error message. The argument may be an arbitrary
positive integer value, with the special value 0 turning the this security brake
completely off (be careful with that...). The default value for the maximum
nesting level is 256; its current value may be read from the integer symbol of
same name.

3.4.9 FUNCTION

Though FUNCTION is not a macro statement in the inner sense, I will describe
this instruction at this place because it uses similar principles like macro
replacements.

This instruction is used to define new functions that may then be used in
formula expressions like predefined functions. The definition must have the
following form:

130 CHAPTER 3. PSEUDO INSTRUCTIONS

<name> FUNCTION <arg>,..,<arg>,<expression>

The arguments are the values that are ’fed into’ the function. The definition
uses symbolic names for the arguments. The assembler knows by this that
where to insert the actual values when the function is called. This can be
seen from the following example:

isdigit FUNCTION ch,(ch>=’0’)&&(ch<=’9’)

This function checks whether the argument (interpreted as a character) is a
number in the currently valid character set (the character set can be modified
via CHARSET, therefore the careful wording).

The arguments’ names (CH in this case) must conform to the stricter rules for
macro parameter names, i.e. the special characters . and are not allowed.

User-defined functions can be used in the same way as builtin functions, i.e.
with a list of parameters, separated by commas, enclosed in parentheses:

IF isdigit(char)

message "\{char} is a number"

ELSEIF

message "\{char} is not a number"

ENDIF

When the function is called, all parameters are calculated once and are then
inserted into the function’s formula. This is done to reduce calculation over-
head and to avoid side effects. The individual arguments have to be separated
by commas when a function has more than one parameter.

CAUTION! Similar to macros, one can use user-defined functions to over-
ride builtin functions. This is a possible source for phase errors. Such defi-
nitions therefore should be done before the first call!

The result’s type may depend on the type of the input arguments as the
arguments are textually inserted into the function’s formula. For example,
the function

double function x,x+x

may have an integer, a float, or even a string as result, depending on the
argument’s type!

When AS operates in case-sensitive mode, the case matters when defining or
referencing user-defined functions, in contrast to builtin functions!

3.5. STRUCTURES 131

3.5 Structures

valid for: all processors

Even in assembly language programs, there is sometimes the necessity to
define composed data structures, similar to high-level languages. AS supports
both the definition and usage of structures with a couple of statements. These
statements shall be explained in the following section.

3.5.1 Definition

The definiton of a structure is begun with the statement STRUCT and ends
with ENDSTRUCT (lazy people may also write STRUC resp. ENDS instead). A
label preceding these instructions is taken as the name of the structure to
be defined; it is optional at the end of the definition and may be used to
redefine the length symbol’s name (see below). The remaining procedure is
simple: Together with STRUCT, the cuurent program counter is saved and
reset to zero. All labels defined between STRUCT and ENDSTRUCT therefore
are the offsets of the structure’s data fields. Reserving space is done via
the same instructions that are also otherwise used for reserving space, like
e.g. DS.x for Motorola CPUs or DB & co. for Intel-style processors. The
rules for rounding up lengths to assure certain alignments also apply here
- if one wants to define ’packed’ structures, a preceding PADDING OFF may
be necessary. Vice versa, alignments may be forced with ALIGN or similar
instructions.

Since such a definition only represents a sort of ’prototype’, only instructions
that reserve memory may be used, no instructions that dispose constants or
generate code.

Labels defined inside structures (i.e. the elements’ names) are not stored
as-is. Instead, the structure’s name is prepended to them, separated with a
special character. By default, this is the underbar (). This behaviour how-
ever may be modified with two arguments passed to the STRUCT statement:

• NOEXTNAMES suppressed the prepending of the structure’s name. In this
case, it is the programmer’s responsibility to assure that field names
are not used more than once.

132 CHAPTER 3. PSEUDO INSTRUCTIONS

• DOTS instructs AS to use the dot as connecting character instead of
the underbar. It should however be pointed out that on certain target
architectures, the dot has a special meaning for bit addressing, which
may lead to problems!

It is futhermore possible to turn the usage of a dot on resp. off for all following
structures:

dottedstructs <on|off>

Aside from the element names, AS also defines a further symbol with the
structure’s overall length when the definition has been finished. This symbol
has the name LEN, which is being extended with the structure’s name via the
same rules - or alternitavely with the label name given with the ENDSTRUCT

statement.

In practice, this may things may look like in this example:

Rec STRUCT

Ident db ?

Pad db ?

Pointer dd ?

Rec ENDSTRUCT

In this example, the symbol REC LEN would be assigned the value 6.

3.5.2 Usage

Once a structure has been assigned, usage is as simple as possible and similar
to a macro: a simple

thisrec Rec

reserves as much memory as needed to hold an instance of the structure, and
additionally defines a symbol for every element of the structure with its ad-
dress, in this case THISREC IDENT, THISREC PAD, and THISREC POINTER. A
label naturally must not be omitted when calling a structure; if it is missing,
an error will be emitted.

ATTENTION! Though AS does not expect any arguments when calling a
structure, any arguments given will simply be ignored and not be reported as
error. This is a precaution to allow the definition of pre-initialized structures
in the future.

3.5. STRUCTURES 133

3.5.3 Nested Structures

Is is perfectly valid to call an already defined structure within the definition
of another structure. The procedure that is taking place then is a combi-
nation of the definition and calling described in the previous two sections:
elements of the substructure are being defined, the name of the instance is
being prepended, and the name of the super-structure is once again geing
prepended to this concatenated name. This may look like the following:

TreeRec struct

left dd ?

right dd ?

data Rec

TreeRec endstruct

3.5.4 Unions

A union is a special form of a structure whose elements are not laid out
sequentially in memory. Instead all elements occupy the same memory and
are located at offset 0 in the structure. Naturally, suich a defnition basically
does nothing more than to assign the value of zero to a couple of symbols. It
may however be useful to clarify the overlap in a program and therefore to
make it more ’readable’. The size of a union is the maximum of all elements’
lengths.

3.5.5 Structures and Sections

Symbols that are created in the course of defining or usage of structures
are treated just like normal symbols, i.e. when used within a section, these
symbols are local to the section. The same is however also true for the
structures themselves, i.e. a structure defined within a section cannot be
used outside of the section.

134 CHAPTER 3. PSEUDO INSTRUCTIONS

3.6 Conditional Assembly

valid for: all processors

The assembler supports conditional assembly with the help of statements like
IF... resp. SWITCH... . These statements work at assembly time allow-
ing or disallowing the assembly of program parts based on conditions. They
are therefore not to be compared with IF statements of high-level languages
(though it would be tempting to extend assembly language with structuriza-
tion statements of higher level languages...).

The following constructs may be nested arbitrarily (until a memory overflow
occurs).

3.6.1 IF / ELSEIF / ENDIF

IF is the most common and most versatile construct. The general style of
an IF statement is as follows:

IF <expression 1>

.

.

<block 1>

.

.

ELSEIF <expression 2>

.

.

<block 2>

.

.

(possibly more ELSEIFs)

.

.

ELSEIF

.

.

3.6. CONDITIONAL ASSEMBLY 135

<block n>

.

.

ENDIF

IF serves as an entry, evaluates the first expression, and assembles block 1
if the expression is true (i.e. not 0). All further ELSEIF-blocks will then
be skipped. However, if the expression is false, block 1 will be skipped and
expression 2 is evaluated. If this expression turns out to be true, block 2
is assembled. The number of ELSEIF parts is variable and results in an
IF-THEN-ELSE ladder of an arbitrary length. The block assigned to the last
ELSEIF (without argument) only gets assembled if all previous expressions
evaluated to false; it therefore forms a ’default’ branch. It is important to
note that only one of the blocks will be assembled: the first one whose
IF/ELSEIF had a true expression as argument.

The ELSEIF parts are optional, i.e. IF may directly be followed by an ENDIF.
An ELSEIF without parameters must be the last branch.

ELSEIF always refers to the innermost, unfinished IF construct in case IF’s
are nested.

In addition to IF, the following further conditional statements are defined:

• IFDEF <symbol>: true if the given symbol has been defined. The
definition has to appear before IFDEF.

• IFNDEF <symbol>: counterpart to IFDEF.

• IFUSED <symbol>: true if if the given symbol has been referenced at
least once up to now.

• IFNUSED <symbol>: counterpart to IFUSED.

• IFEXIST <name>: true if the given file exists. The same rules for
search paths and syntax apply as for the INCLUDE instruction (see sec-
tion 3.9.2).

• IFNEXIST <name>: counterpart to IFEXIST.

• IFB <arg-list>: true if all arguments of the parameter list are empty
strings.

136 CHAPTER 3. PSEUDO INSTRUCTIONS

• IFNB <arg-list>: counterpart to IFB.

It is valid to write ELSE instead of ELSEIF since everybody seems to be used
to it...

For every IF... statement, there has to be a corresponding ENDIF. ’Open’
constructs will lead to an error message at the end of an assembly path. The
way AS has ’paired’ ENDIF statements with IFs may be deduced from the
assembly listing: for ENDIF, the line number of the corresponding IF... will
be shown.

3.6.2 SWITCH / CASE / ELSECASE / ENDCASE

CASE is a special case of IF and is designed for situations when an expression
has to be compared with a couple of values. This could of course also be
done with a series of ELSEIFs, but the following form

SWITCH <expression>

.

.

CASE <value 1>

.

<block 1>

.

CASE <value 2>

.

<block 2>

.

(further CASE blocks)

.

CASE <value n-1>

.

<block n-1>

.

ELSECASE

.

<block n>

.

ENDCASE

3.7. LISTING CONTROL 137

has the advantage that the expression is only written once and also only gets
evaluated once. It is therefore less error-prone and slightly faster than an IF

chain, but obviously not as flexible.

It is possible to specify multiple values separated by commas to a CASE

statement in order to assemble the following block in multiple cases. The
ELSECASE branch again serves as a ’trap’ for the case that none of the CASE

conditions was met. AS will issue a warning in case it is missing and all
comparisons fail.

Even when value lists of CASE branches overlap, only one branch is executed,
which is the first one in case of ambiguities.

SWITCH only serves to open the whole construct; an arbitrary number of
statements may be between SWITCH and the first CASE (but don’t leave other
IFs open!), for the sake of better readability this should however not be done.

Similarly to IF constructs, there must be exactly one ENDCASE for every
SWITCH. Analogous to ENDIF, for ENDCASE the line number of the correspond-
ing SWITCH is shown in the listing.

3.7 Listing Control

valid for: all processors

3.7.1 PAGE

PAGE is used to tell AS the dimensions of the paper that is used to print
the assembly listing. The first parameter is thereby the number of lines
after which AS shall automatically output a form feed. One should however
take into account that this value does not include heading lines including an
eventual line specified with TITLE. The minimum number of lines is 5, and
the maximum value is 255. A specification of 0 has the result that AS will
not do any form feeds except those triggered by a NEWPAGE instruction or
those implicitly engaged at the end of the assembly listing (e.g. prior to the
symbol table).

138 CHAPTER 3. PSEUDO INSTRUCTIONS

The specification of the listing’s length in characters is an optional second
parameter and serves two purposes: on the one hand, the internal line counter
of AS will continue to run correctly when a source line has to be split into
several listing lines, and on the other hand there are printers (like some
laser printers) that do not automatically wrap into a new line at line end but
instead simply discard the rest. For this reason, AS does line breaks by itself,
i.e. lines that are too long are split into chunks whose lengths are equal to
or smaller than the specified width. This may lead to double line feeds on
printers that can do line wraps on their own if one specifies the exact line
width as listing width. The solution for such a case is to reduce the assembly
listing’s width by 1. The specified line width may lie between 5 and 255
characters; a line width of 0 means similarly to the page length that AS shall
not do any splitting of listing lines; lines that are too long of course cannot
be taken into account of the form feed then any more.

The default setting for the page length is 60 lines, the default for the line
width is 0; the latter value is also assumed when PAGE is called with only one
parameter.

CAUTION! There is no way for AS to check whether the specified listing
length and width correspond to the reality!

3.7.2 NEWPAGE

NEWPAGE can be used to force a line feed though the current line is not full
up to now. This might be useful to separate program parts in the listing
that are logically different. The internal line counter is reset and the page
counter is incremented by one. The optional parameter is in conjunction
with a hierarchical page numbering AS supports up to a chapter depth of 4.
0 always refers to the lowest depth, and the maximum value may vary during
the assembly run. This may look a bit puzzling, as the following example
shows:

page 1, instruction NEWPAGE 0 → page 2
page 2, instruction NEWPAGE 1 → page 2.1
page 2.1, instruction NEWPAGE 1 → page 3.1
page 3.1, instruction NEWPAGE 0 → page 3.2
page 3.2, instruction NEWPAGE 2 → page 4.1.1

3.7. LISTING CONTROL 139

NEWPAGE <number> may therefore result in changes in different digits, de-
pending on the current chapter depth. An automatic form feed due to a
line counter overflow or a NEWPAGE without parameter is equal to NEWPAGE 0.
Previous to the output of the symbol table, an implicit NEWPAGE <maximum
up to now> is done to start a new ’main chapter’.

3.7.3 MACEXP

One can achieve by the statement

macexp off

that only the macro call and not the expanded text is listed for macro ex-
pansions. This is sensible for macro intensive codes to avoid that the listing
grows beyond all bounds. The full listing can be turned on again with a

macexp on .

This is also the default.

There is a subtle difference between the meaning of MACEXP for macros and
for all other macro-like constructs (e.g. REPT): while a macro contain an
internal flag that rules whether expansions of this macro shall be listed or not,
MACEXP directly influences all other constructs that are resolved ’in place’.
The reason for this differentiation is that there may be macros that are tested
and their expansion is therefore unnecessary, but all other macros still shall
be expanded. MACEXP serves as a default for the macro’s internal flag when it
is defined, and it may be overridden by the NOEXPAND resp. EXPAND directives.

The current setting may be read from the symbol MACEXP.

3.7.4 LISTING

works like MACEXP and accepts the same parameters, but is much more radi-
cal: After a

listing off ,

140 CHAPTER 3. PSEUDO INSTRUCTIONS

nothing at all will be written to the listing. This directive makes sense for
tested code parts or include files to avoid a paper consumption going beyond
all bounds. CAUTION! If one forgets to issue the counterpart somewhere
later, even the symbol table will not be written any more! In addition to
ON and OFF, LISTING also accepts NOSKIPPED and PURECODE as arguments.
Program parts that were not assembled due to conditional assembly will not
be written to the listing when NOSKIPPED is set, while PURECODE - as the
name indicates - even suppresses the IF directives themselves in the listing.
These options are useful if one uses macros that act differently depending on
parameters and one only wants to see the used parts in the listing.

The current setting may be read from the symbol LISTING (0=OFF, 1=ON,
2=NOSKIPPED, 3=PURECODE).

3.7.5 PRTINIT and PRTEXIT

Quite often it makes sense to switch to another printing mode (like com-
pressed printing) when the listing is sent to a printer and to deactivate
this mode again at the end of the listing. The output of the needed con-
trol sequences can be automated with these instructions if one specifies the
sequence that shall be sent to the output device prior to the listing with
PRTINIT <string> and similarly the deinitialization string with PRTEXIT

<string>. <string> has to be a string expression in both cases. The
syntax rules for string constants allow to insert control characters into the
string without too much tweaking.

When writing the listing, the assembler does not differentiate where the
listing actually goes, i.e. printer control characters are sent to the screen
without mercy!

Example:

For Epson printers, it makes sense to switch them to compressed printing
because listings are so wide. The lines

prtinit "\15"

prtexit "\18"

assure that the compressed mode is turned on at the beginning of the listing
and turned off afterwards.

3.7. LISTING CONTROL 141

3.7.6 TITLE

The assembler normally adds a header line to each page of the listing that
contains the source file’s name, date, and time. This statement allows to
extend the page header by an arbitrary additional line. The string that has
to be specified is an arbitrary string expression.

Example:

For the Epson printer already mentioned above, a title line shall be written
in wide mode, which makes it necessary to turn off the compressed mode
before:

title "\18\14Wide Title\15"

(Epson printers automatically turn off the wide mode at the end of a line.)

3.7.7 RADIX

RADIX with a numerical argument between 2 and 36 sets the default number-
ing system for integer constants, i.e. the numbering system used if nothing
else has been stated explicitly. The default is 10, and there are some possible
pitfalls to keep in mind which are described in section 2.10.1.

Independent of the current setting, the argument of RADIX is always decimal;
furthermore, no symbolic or formula expressions may be used as argument.
Only use simple constant numbers!

3.7.8 OUTRADIX

OUTRADIX can in a certain way be regarded as the opposite to RADIX: This
statement allows to configure which numbering system to use for integer re-
sults when \{...} constructs are used in string constants (see section 2.10.3).
Valid arguments range again from 2 to 36, while the default is 16.

142 CHAPTER 3. PSEUDO INSTRUCTIONS

3.8 Local Symbols

valid for: all processors

local symbols and the section concept introduced with them are a completely
new function that was introduced with version 1.39. One could say that
this part is version ”1.0” and therefore probably not the optimum. Ideas
and (constructive) criticism are therefore especially wanted. I admittedly
described the usage of sections how I imagined it. It is therefore possible
that the reality is not entirely equal to the model in my head. I promise that
in case of discrepancies, changes will occur that the reality gets adapted to
the documentation and not vice versa (I was told that the latter sometimes
takes place in larger companies...).

AS does not generate linkable code (and this will probably not change in
the near future :-(). This fact forces one to always assemble a program in
a whole. In contrast to this technique, a separation into linkable modules
would have several advantages:

• shorter assembly times as only the modified modules have to be re-
assembled;

• the option to set up defined interfaces among modules by definition of
private and public symbols;

• the smaller length of the individual modules reduces the number of
symbols per module and therefore allows to use shorter symbol names
that are still unique.

Especially the last item was something that always nagged me: once there
was a label’s name defined at the beginning of a 2000-lines program, there
was no way to reuse it somehow - even not at the file’s other end where
routines with a completely different context were placed. I was forced to use
concatenated names in the style of

<subprogram name>_<symbol name>

that had lengths ranging from 15 to 25 characters and made the program
difficult to overlook. The concept of section described in detail in the follow-
ing text was designed to cure at least the second and third item of the list
above. It is completely optional: if you do not want to use sections, simply
forget them and continue to work like you did with previous versions of AS.

3.8. LOCAL SYMBOLS 143

3.8.1 Basic Definition (SECTION/ENDSECTION)

A section represents a part of the assembler program enclosed by special
statements and has a unique name chosen by the programmer:

.

.

<other code>

.

.

SECTION <section’s name>

.

.

<code inside of the section>

.

.

ENDSECTION [section’s name]

.

.

<other code>

.

.

The name of a section must conform to the conventions for s symbol name;
AS stores section and symbol names in separate tables which is the reason
why a name may be used for a symbol and a section at the same time.
Section names must be unique in a sense that there must not be more than
one section on the same level with the same name (I will explain in the next
part what ”levels” mean). The argument of ENDSECTION is optional, it may
also be omitted; if it is omitted, AS will show the section’s name that has
been closed with this ENDSECTION. Code inside a section will be processed
by AS exactly as if it were outside, except for three decisive differences:

• Symbols defined within a section additionally get an internally gener-
ated number that corresponds to the section. These symbols are not
accessible by code outside the section (this can be changed by pseudo
instructions, later more about this).

144 CHAPTER 3. PSEUDO INSTRUCTIONS

• The additional attribute allows to define symbols of the same name
inside and outside the section; the attribute makes it possible to use a
symbol name multiple times without getting error messages from AS.

• If a symbol of a certain name has been defined inside and outside of a
section, the ”local” one will be preferred inside the section, i.e. AS first
searches the symbol table for a symbol of the referenced name that also
was assigned to the section. A search for a global symbol of this name
only takes place if the first search fails.

This mechanism e.g. allows to split the code into modules as one might have
done it with linkable code. A more fine-grained approach would be to pack
every routine into a separate section. Depending on the individual routines’
lengths, the symbols for internal use may obtain very short names.

AS will by default not differentiate between upper and lower case in sec-
tion names; if one however switches to case-sensitive mode, the case will be
regarded just like for symbols.

The organization described up to now roughly corresponds to what is possible
in the C language that places all functions on the same level. However, as
my ”high-level” ideal was Pascal and not C, I went one step further:

3.8.2 Nesting and Scope Rules

It is valid to define further sections within a section. This is analog to the
option given in Pascal to define procedures inside a procedure or function.
The following example shows this:

sym EQU 0

SECTION ModuleA

SECTION ProcA1

sym EQU 5

ENDSECTION ProcA1

3.8. LOCAL SYMBOLS 145

SECTION ProcA2

sym EQU 10

ENDSECTION ProcA2

ENDSECTION ModuleA

SECTION ModuleB

sym EQU 15

SECTION ProcB

ENDSECTION ProcB

ENDSECTION ModuleB

When looking up a symbol, AS first searches for a symbol assigned to the
current section, and afterwards traverses the list of parent sections until the
global symbols are reached. In our example, the individual sections see the
values given in table 3.5 for the symbol sym: This rule can be overridden by

section value from section...

Global 0 Global
ModuleA 0 Global
ProcA1 5 ProcA1

ProcA2 10 ProcA2

ModuleB 15 ModuleB

ProcB 15 ModuleB

Table 3.5: Valid values for the Individual Sections

explicitly appending a section’s name to the symbol’s name. The section’s
name has to be enclosed in brackets:

move.l #sym[ModulB],d0

146 CHAPTER 3. PSEUDO INSTRUCTIONS

Only sections that are in the parent section path of the current section may
be used. The special values PARENT0..PARENT9 are allowed to reference the
n-th ”parent” of the current section; PARENT0 is therefore equivalent to the
current section itself, PARENT1 the direct parent and so on. PARENT1 may be
abbreviated as PARENT. If no name is given between the brackets, like in this
example:

move.l #sym[],d0 ,

one reaches the global symbol. CAUTION! If one explicitly references a
symbol from a certain section, AS will only seek for symbols from this section,
i.e. the traversal of the parent sections path is omitted!

Similar to Pascal, it is allowed that different sections have subsections of the
same name; the principle of locality avoids irritations. One should IMHO
still use this feature as seldom as possible: Symbols listed in the symbol
resp. cross reference list are only marked with the section they are assigned
to, not with the ”section hierarchy” lying above them (this really would have
busted the available space); a differentiation is made very difficult this way.

As a SECTION instruction does not define a label by itself, the section concept
has an important difference to Pascal’s concept of nested procedures: a pascal
procedure can automatically ”see” its subprocedures(functions), AS requires
an explicit definition of an entry point. This can be done e.g. with the
following macro pair:

proc MACRO name

SECTION name

name LABEL $

ENDM

endp MACRO name

ENDSECTION name

ENDM

This example also shows that the locality of labels inside macros is not influ-
enced by sections. It makes the trick with the LABEL instruction necessary.

This does of course not solve the problem completely. The label is still local
and not referencable from the outside. Those who think that it would suffice
to place the label in front of the SECTION statement should be quiet because
they would spoil the bridge to the next theme:

3.8. LOCAL SYMBOLS 147

3.8.3 PUBLIC and GLOBAL

The PUBLIC statement allows to change the assignment of a symbol to a
certain section. It is possible to treat multiple symbols with one statement,
but I will use an example with only one symbol in the following (not hurting
the generality of this discussion). In the simplest case, one declares a symbol
to be global, i.e. it can be referenced from anywhere in the program:

PUBLIC <name>

As a symbol cannot be moved in the symbol table once it has been sorted
in, this statement has to appear before the symbol itself is defined. AS
stores all PUBLICs in a list and removes an entry from this list when the
corresponding symbol is defined. AS prints errors at the end of a section in
case that not all PUBLICs have been resolved.

Regarding the hierarchical section concept, the method of defining a symbol
as purely global looks extremely brute. There is fortunately a way to do this
in a bit more differentiated way: by appending a section name:

PUBLIC <name>:<section>

The symbol will be assigned to the referenced section and therefore also
becomes accessible for all its subsections (except they define a symbol of
the same name that hides the ”more global” symbol). AS will naturally
protest if several subsections try to export a symbol of same name to the
same level. The special PARENTn values mentioned in the previous section
are also valid for <section> to export a symbol exactly n levels up in the
section hierarchy. Otherwise only sections that are parent sections of the
current section are valid for <section>. Sections that are in another part
of the section tree are not allowed. If several sections in the parent section
path should have the same name (this is possible), the lowest level will be
taken.

This tool lets the abovementioned macro become useful:

proc MACRO name

SECTION name

PUBLIC name:PARENT

name LABEL $

ENDM

148 CHAPTER 3. PSEUDO INSTRUCTIONS

This setting is equal to the Pascal model that also only allows the ”father”
to see its children, but not the ”grandpa”.

AS will quarrel about double-defined symbols if more than one section at-
tempts to export a symbol of a certain name to the same upper section. This
is by itself a correct reaction, and one needs to ”qualify” symbols somehow
to make them distinguishable if these exports were deliberate. A GLOBAL

statement does just this. The syntax of GLOBAL is identical to PUBLIC, but
the symbol stays local instead of being assigned to a higher section. Instead,
an additional symbol of the same value but with the subsection’s name ap-
pended to the symbol’s name is created, and only this symbol is made public
according to the section specification. If for example two sections A and B

both define a symbol named SYM and export it with a GLOBAL statement to
their parent section, the symbols are sorted in under the names A SYM resp.
B SYM .

In case that source and target section are separated by more than one level,
the complete name path is prepended to the symbol name.

3.8.4 FORWARD

The model described so far may look beautiful, but there is an additional
detail not present in Pascal that may spoil the happiness: Assembler allows
forward references. Forward references may lead to situations where AS
accesses a symbol from a higher section in the first pass. This is not a
disaster by itself as long as the correct symbol is used in the second pass, but
accidents of the following type may happen:

loop: .

<code>

.

.

SECTION sub

. ; ***

.

bra.s loop

.

.

3.8. LOCAL SYMBOLS 149

loop: .

.

ENDSECTION

.

.

jmp loop ; main loop

AS will take the global label loop in the first pass and will quarrel about an
out-of-branch situation if the program part at <code> is long enough. The
second pass will not be started at all. One way to avoid the ambiguity would
be to explicitly specify the symbol’s section:

bra.s loop[sub]

If a local symbol is referenced several times, the brackets can be saved by
using a FORWARD statement. The symbol is thereby explicitly announced to
be local, and AS will only look in the local symbol table part when this
symbol is referenced. For our example, the statement

FORWARD loop

should be placed at the position marked with ***.

FORWARD must not only be stated prior to a symbol’s definition, but also prior
to its first usage in a section to make sense. It does not make sense to define
a symbol private and public; this will be regarded as an error by AS.

3.8.5 Performance Aspects

The multi-stage lookup in the symbol table and the decision to which section
a symbol shall be assigned of course cost a bit of time to compute. An 8086
program of 1800 lines length for example took 34.5 instead of 33 seconds after
a modification to use sections (80386 SX, 16MHz, 3 passes). The overhead
is therefore limited. As it has already been stated at the beginning, is is up
to the programmer if (s)he wants to accept it. One can still use AS without
sections.

150 CHAPTER 3. PSEUDO INSTRUCTIONS

3.9 Miscellaneous

3.9.1 SHARED

valid for: all processors

This statement instructs AS to write the symbols given in the parameter list
(regardless if they are integer, float or string symbols) together with their
values into the share file. It depends upon the command line parameters
described in section 2.4 whether such a file is generated at all and in which
format it is written. If AS detects this instruction and no share file is gener-
ated, a warning is the result.

CAUTION! A comment possibly appended to the statement itself will be
copied to the first line outputted to the share file (if SHARED’s argument list
is empty, only the comment will be written). In case a share file is written
in C or Pascal format, one has to assure that the comment itself does not
contain character sequences that close the comment (”*/” resp. ”*)”). AS
does not check for this!

3.9.2 INCLUDE

valid for: all processors

This instruction inserts the file given as a parameter into the just as if it
would have been inserted with an editor (the file name may optionally be
enclosed with ” characters). This instruction is useful to split source files
that would otherwise not fit into the editor or to create ”tool boxes”.

In case that the file name does not have an extension, it will automatically
be extended with INC.

Via the -i <path list> option, one can specify a list of directories that
will automatically be searched for the file. If the file is not found, a fatal
error occurs, i.e. assembly terminates immediately.

For compatibility reasons, it is valid to enclose the file name in ” characters,
i.e.

3.9. MISCELLANEOUS 151

include stddef51

and

include "stddef51.inc"

are equivalent. CAUTION! This freedom of choice is the reason why only
a string constant but no string expression is allowed!

The search list is ignored if the file name itself contains a path specification.

3.9.3 BINCLUDE

valid for: all processors

BINCLUDE can be used to embed binary data generated by other programs
into the code generated by AS (this might theoretically even be code created
by AS itself...). BINCLUDE has three forms:

BINCLUDE <file>

This way, the file is completely included.

BINCLUDE <file>,<offset>

This way, the file’s contents are included starting at <offset> up to the file’s
end.

BINCLUDE <file>,<offset>,<length>

This way, <length> bytes are included starting at <offset>.

The same rules regarding search paths apply as for INCLUDE.

152 CHAPTER 3. PSEUDO INSTRUCTIONS

3.9.4 MESSAGE, WARNING, ERROR, and FATAL

valid for: all processors

Though the assembler checks source files as strict as possible and delivers
differentiated error messages, it might be necessary from time to time to issue
additional error messages that allow an automatic check for logical error. The
assembler distinguishes among three different types of error messages that
are accessible to the programmer via the following three instructions:

• WARNING: Errors that hint at possibly wrong or inefficient code. As-
sembly continues and a code file is generated.

• ERROR: True errors in a program. Assembly continues to allow detection
of possible further errors in the same pass. A code file is not generated.

• FATAL: Serious errors that force an immediate termination of assembly.
A code file may be generated but will be incomplete.

All three instructions have the same format for the message that shall be
issued: an arbitrary (possibly computed?!) string expression which may
therefore be either a constant or variable.

These instructions generally only make sense in conjunction wit conditional
assembly. For example, if there is only a limited address space for a program,
one can test for overflow in the following way:

ROMSize equ 8000h ; 27256 EPROM

ProgStart:

.

.

<the program itself>

.

.

ProgEnd:

if ProgEnd-ProgStart>ROMSize

error "\athe program is too long!"

endif

3.9. MISCELLANEOUS 153

Apart from the instructions generating errors, there is also an instruction
MESSAGE that simply prints a message to the console resp. to the assembly
listing. Its usage is equal to the other three instructions.

3.9.5 READ

valid for: all processors

One could say that READ is the counterpart to the previous instruction group:
it allows to read values from the keyboard during assembly. You might ask
what this is good for. I will break with the previous principles and put
an example before the exact description to outline the usefulness of this
instruction:

A program needs for data transfers a buffer of a size that should be set at
assembly time. One could store this size in a symbol defined with EQU, but
it can also be done interactively with READ:

IF MomPass=1

READ "buffer size",BufferSize

ENDIF

Programs can this way configure themselves dynamically during assembly
and one could hand over the source to someone who can assemble it without
having to dive into the source code. The IF conditional shown in the exam-
ple should always be used to avoid bothering the user multiple times with
questions.

READ is quite similar to SET with the difference that the value is read from
the keyboard instead of the instruction’s arguments. This for example also
implies that AS will automatically set the symbol’s type (integer, float or
string) or that it is valid to enter formula expressions instead of a simple
constant.

READ may either have one or two parameters because the prompting message
is optional. AS will print a message constructed from the symbol’s name if
it is omitted.

154 CHAPTER 3. PSEUDO INSTRUCTIONS

3.9.6 RELAXED

valid for: all processors

By default, AS assigns a distinct syntax for integer constants to a processor
family (which is in general equal to the manufacturer’s specifications, as long
as the syntax is not too bizarre...). Everyone however has his own prefer-
ences for another syntax and may well live with the fact that his programs
cannot be translated any more with the standard assembler. If one places
the instruction

RELAXED ON

right at the program’s beginning, one may furtherly use any syntax for integer
constants, even mixed in a program. AS tries to guess automatically for
every expression the syntax that was used. This automatism does not always
deliver the result one might have in mind, and this is also the reason why this
option has to be enable explicitly: if there are no prefixes or postfixes that
unambiguously identify either Intel or Motorola syntax, the C mode will be
used. Leading zeroes that are superfluous in other modes have a meaning in
this mode:

move.b #08,d0

This constant will be understood as an octal constant and will result in an
error message as octal numbers may only contain digits from 0 to 7. One
might call this a lucky case; a number like 077 would result in trouble without
getting a message about this. Without the relaxed mode, both expressions
unambiguously would have been identified as decimal constants.

The current setting may be read from a symbol with the same name.

3.9.7 END

valid for: all processors

END marks the end of an assembler program. Lines that eventually follow
in the source file will be ignored. IMPORTANT: END may be called from
within a macro, but the IF-stack for conditional assembly is not cleared
automatically. The following construct therefore results in an error:

3.9. MISCELLANEOUS 155

IF DontWantAnymore

END

ELSEIF

END may optionally have an integer expression as argument that marks the
program’s entry point. AS stores this in the code file with a special record
and it may be post-processed e.g. with P2HEX.

END has always been a valid instruction for AS, but the only reason for this
in earlier releases of AS was compatibility; END had no effect.

156 CHAPTER 3. PSEUDO INSTRUCTIONS

Chapter 4

Processor-specific Hints

When writing the individual code generators, I strived for a maximum
amount of compatibility to the original assemblers. However, I only did
this as long as it did not mean an unacceptable additional amount of work.
I listed important differences, details and pitfalls in the following chapter.

4.1 6811

”Where can I buy such a beast, a HC11 in NMOS?”, some of you might
ask. Well, of course it does not exist, but an H cannot be represented in a
hexadecimal number (older versions of AS would not have accepted such a
name because of this), and so I decided to omit all the letters...

”Someone stating that something is impossible should be at least
as cooperative as not to hinder the one who currently does it.”

From time to time, one is forced to revise one’s opinions. Some versions
earlier, I stated at his place that I couldn’t use AS’s parser in a way that it is
also possible to to separate the arguments of BSET/BCLR resp. BRSET/BRCLR
with spaces. However, it seems that it can do more than I wanted to be-
lieve...after the n+1th request, I sat down once again to work on it and
things seem to work now. You may use either spaces or commas, but not

157

158 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

in all variants, to avoid ambiguities: for every variant of an instruction, it is
possible to use only commas or a mixture of spaces and commas as Motorola
seems to have defined it (their data books do not always have the quality of
the corresponding hardware...):

Bxxx abs8 #mask is equal to Bxxx abs8,#mask

Bxxx disp8,X #mask is equal to Bxxx disp8,X,#mask

BRxxx abs8 #mask addr is equal to BRxxx abs8,#mask,addr

BRxxx disp8,X #mask addr is equal to BRxxx disp8,X,#mask,addr

In this list, xxx is a synonym either for SET or CLR; #mask is the bit mask to
be applied (the # sign is optional). Of course, the same statements are also
valid for Y-indexed expression (not listed here).

With the K4 version of the HC11, Motorola has introduced a banking scheme,
which one one hand easily allows to once again extend an architecture that
has become ’too small’, but on the other hand not really makes programmers’
and tool developers’ lifes simpler...how does one sensibly map something like
this on a model for a programmer?

The K4 architecture extends the HC11 address space by 2x512 Kbytes, which
means that we now have a total address space of 64+1024=1088 Kbytes. AS
acts like this were one large unified addres space, with the following layout:

• $000000...$00ffff: the old HC11 address space

• $010000...$08ffff: Window 1

• $090000...$10ffff: Window 2

Via the ASSUME statement, one tells AS how the banking registers are set up,
which in turn describes which extended areas are mapped to which physical
addresses. For absolute addresses modes with addresses beyond $10000, AS
automatically computes the address within the first 64K that is to be used.
Of course this only works for direct addressing modes, it is the programmer’s
responsibility to keep the overview for indirect or indexed addressing modes!

In case one is not really sure if the current mapping is really the desired
one, the pseudo instruction PRWINS may be used, which prints the assumes
MMxxx register contents plus the current mapping(s), like this:

4.2. POWERPC 159

MMSIZ $e1 MMWBR $84 MM1CR $00 MM2CR $80

Window 1: 10000...12000 --> 4000...6000

Window 1: 90000...94000 --> 8000...c000

An instruction

jmp *+3

located at $10000 would effectively result in a jump to address $4003.

4.2 PowerPC

Of course, it is a bit crazy idea to add support in AS for a processor that was
mostly designed for usage in work stations. Remember that AS mainly is
targeted at programmers of single board computers. But things that today
represent the absolute high end in computing will be average tomorrow and
maybe obsolete the next day, and in the meantime, the Z80 as the 8088
have been retired as CPUs for personal computers and been moved to the
embedded market; modified versions are marketed as microcontrollers. With
the appearance of the MPC505 and PPC403, my suspicion has proven to
be true that IBM and Motorola try to promote this architecture in as many
fields as possible.

However, the current support is a bit incomplete: Temporarily, the Intel-
style mnemonics are used to allow storage of data and the more uncommon
RS/6000 machine instructions mentioned in [57] are missing (hopefully noone
misses them!). I will finish this as soon as information about them is available!

4.3 DSP56xxx

Motorola, which devil rode you! Which person in your company had the
”brilliant” idea to separate the parallel data transfers with spaces! In result,
everyone who wants to make his code a bit more readable, e.g. like this:

move x:var9 ,r0

move y:var10,r3 ,

160 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

is p****ed because the space gets recognized as a separator for parallel data
transfers!

Well...Motorola defined it that way, and I cannot change it. Using tabs
instead of spaces to separate the parallel operations is also allowed, and the
individual operations’ parts are again separated with commas, as one would
expect it.

[52] states that instead of using MOVEC, MOVEM, ANDI or ORI, it is also valid
to use the more general Mnemonics MODE, AND or OR. AS (currently) does
not support this.

4.4 H8/300

Regarding the assembler syntax of these processors, Hitachi generously
copied from Motorola (that wasn’t by far the worst choice...), unfortunately
the company wanted to introduce its own format for hexadecimal numbers.
To make it even worse, it is a format that uses unbalanced single quotes, just
like Microchip does. This is something I could not (I even did not want to)
reproduce with AS, as AS uses single quotes to surround ASCII character
sequences. Instead, one has to write hexadecimal numbers in the well-known
Motorola syntax: with a leading dollar sign.

4.5 SH7000/7600/7700

Unfortunately, Hitachi once again used their own format for hexadecimal
numbers, and once again I was not able to reproduce this with AS...please
use Motorola syntax!

When using literals and the LTORG instruction, a few things have to be kept
in mind if you do not want to suddenly get confronted with strange error
messages:

Literals exist due to the fact that the processor is unable to load constants out
of a range of -128 to 127 with immediate addressing. AS (and the Hitachi
assembler) hide this inability by the automatic placement of constants in

4.5. SH7000/7600/7700 161

memory which are then referenced via PC-relative addressing. The question
that now arises is where to locate these constants in memory. AS does not
automatically place a constant in memory when it is needed; instead, they
are collected until an LTORG instruction occurs. The collected constants
are then dumped en bloc, and their addresses are stored in ordinary labels
which are also visible in the symbol table. Such a label’s name is of the form

LITERAL_s_xxxx_n .

In this name, s represents the literal’s type. Possible values are W for 16-
bit constants, L for 32-bit constants and F for forward references where AS
cannot decide in anticipation which size is needed. In case of s=W or L, xxxx
denotes the constant’s value in a hexadecimal notation, whereas xxxx is a
simple running number for forward references (in a forward reference, one
does not know the value of a constant when it is referenced, so one obviously
cannot incorporate its value into the name). n is a counter that signifies
how often a literal of this value previously occurred in the current section.
Literals follow the standard rules for localization by sections. It is therefore
absolutely necessary to place literals that were generated in a certain section
before the section is terminated!

The numbering with n is necessary because a literal may occur multiple times
in a section. One reason for this situation is that PC-relative addressing only
allows positive offsets; Literals that have once been placed with an LTORG can
therefore not be referenced in the code that follows. The other reason is that
the displacement is generally limited in length (512 resp. 1024 bytes).

An automatic LTORG at the end of a program or previously to switching to a
different target CPU does not occur; if AS detects unplaced literals in such
a situation, an error message is printed.

As the PC-relative addressing mode uses the address of the current instruc-
tion plus 4, it is not possible to access a literal that is stored directly after
the instruction, like in the following example:

mov #$1234,r6

ltorg

This is a minor item since the CPU anyway would try to execute the following
data as code. Such a situation should not occur in a real program...another

162 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

pitfall is far more real: if PC-relative addressing occurs just behind a delayed
branch, the program counter is already set to the destination address, and
the displacement is computed relative to the branch target plus 2. Following
is an example where this detail leads to a literal that cannot be addressed:

bra Target

mov #$12345678,r4 ; is executed

.

.

ltorg ; here is the literal

.

.

Target: mov r4,r7 ; execution continues here

As Target+2 is on an address behind the literal, a negative displacement
would result. Things become especially hairy when one of the branch in-
structions JMP, JSR, BRAF, or BSRF is used: as AS cannot calculate the
target address (it is generated at runtime from a register’s contents), a PC
value is assumed that should never fit, effectively disabling any PC-relative
addressing at this point.

It is not possible to deduce the memory usage from the count and size of
literals. AS might need to insert a padding word to align a long word to
an address that is evenly divisible by 4; on the other hand, AS might reuse
parts of a 32-bit literal for other 16-bit literals. Of course multiple use of a
literal with a certain value will create only one entry. However, such opti-
mizations are completely suppressed for forward references as AS does not
know anything about their value.

As literals use the PC-relative addressing which is only allowed for the MOV

instruction, the usage of literals is also limited to MOV instructions. The way
AS uses the operand size is a bit tricky: A specification of a byte or word
move means to generate the shortest possible instruction that results in the
desired value placed in the register’s lowest 8 resp. 16 bits. The upper 24
resp. 16 bits are treated as ”don’t care”. However, if one specifies a longword
move or omits the size specification completely, this means that the complete
32-bit register should contain the desired value. For example, in the following
sequence

4.5. SH7000/7600/7700 163

mov.b #$c0,r0

mov.w #$c0,r0

mov.l #$c0,r0 ,

the first instruction will result in true immediate addressing, the second and
third instruction will use a word literal: As bit 7 in the number is set, the
byte instruction will effectively create the value $FFFFFFC0 in the register.
According to the convention, this wouldn’t be the desired value in the second
and third example. However, a word literal is also sufficient for the third case
because the processor will copy a cleared bit 15 of the operand to bits 16..31.

As one can see, the whole literal stuff is rather complex; I’m sorry but there
was no chance of making things simpler. It is unfortunately a part of its
nature that one sometimes gets error messages about literals that were not
found, which logically should not occur because AS does the literal processing
completely on his own. However, if other errors occur in the second pass, all
following labels will move because AS does not generate any code any more
for statements that have been identified as erroneous. As literal names are
partially built from other symbols’ values, other errors might follow because
literal names searched in the second pass differ from the names stored in the
first pass and AS quarrels about undefined symbols...if such errors should
occur, please correct all other errors first before you start cursing on me and
literals...

People who come out of the Motorola scene and want to use PC-relative
addressing explicitly (e.g. to address variables in a position-independent way)
should know that if this addressing mode is written like in the programmer’s
manual:

mov.l @(Var,PC),r8

no implicit conversion of the address to a displacement will occur, i.e. the
operand is inserted as-is into the machine code (this will probably generate
a value range error...). If you want to use PC-relative addressing on the
SH7x00, simply use ”absolute” addressing (which does not exist on machine
level):

mov.l Var,r8

In this example, the displacement will be calculated correctly (of course, the
same limitations apply for the displacement as it was the case for literals).

164 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

4.6 MELPS-4500

The program memory of these microcontrollers is organized in pages of 128
words. Honestly said, this organization only exists because there are on
the one hand branch instructions with a target that must lie within the
same page, and on the other hand ”long” branches that can reach the whole
address space. The standard syntax defined by Mitsubishi demands that
page number and offset have to be written as two distinct arguments for the
latter instructions. As this is quite inconvenient (except for indirect jumps, a
programmer has no other reason to deal with pages), AS also allows to write
the target address in a ”linear” style, for example

bl $1234

instead of

bl $24,$34 .

4.7 6502UNDOC

Since the 6502’s undocumented instructions naturally aren’t listed in any
data book, they shall be listed shortly at this place. Of course, you are using
them on your own risk. There is no guarantee that all mask revisions will
support all variants! They anyhow do not work for the CMOS successors
of the 6502, since they allocated the corresponding bit combinations with
”official” instructions...

The following symbols are used:

& binary AND
— binary OR
^ binary XOR
<< logical shift left
>> logical shift right
<<< rotate left
>>> rotate right
← assignment

4.7. 6502UNDOC 165

(..) contents of ..
.. bits ..
A accumulator
X,Y index registers X,Y
S stack pointer
An accumulator bit n
M operand
C carry
PCH upper half of program counter

Instruction : JAM or KIL or CRS
Function : none, prozessor is halted
Addressing Modes : implicit

Instruction : SLO
Function : M ← ((M) << 1)|(A)
Addressing Modes : absolute long/short, X-indexed long/short,

Y-indexed long, X/Y-indirect

Instruction : ANC
Function : A← (A)&(M), C ← A7
Addressing Modes : immediate

Instruction : RLA
Function : M ← ((M) << 1)&(A)
Addressing Modes : absolute long/short, X-indexed long/short,

Y-indexed long, X/Y-indirect

Instruction : SRE
Function : M ← ((M) >> 1)^(A)
Addressing Modes : absolute long/short, X-indexed long/short,

Y-indexed long, X/Y-indirect

166 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

Instruction : ASR
Function : A← ((A)&(M)) >> 1
Addressing Modes : immediate

Instruction : RRA
Function : M ← ((M) >>> 1) + (A) + (C)
Addressing Modes : absolute long/short, X-indexed long/short,

Y-indexed long, X/Y-indirect

Instruction : ARR
Function : A← ((A)&(M)) >>> 1
Addressing Modes : immediate

Instruction : SAX
Function : M ← (A)&(X)
Addressing Modes : absolute long/short, Y-indexed short,

Y-indirect

Instruction : ANE
Function : M ← ((A)&$ee)|((X)&(M))
Addressing Modes : immediate

Instruction : SHA
Function : M ← (A)&(X)&(PCH + 1)
Addressing Modes : X/Y-indexed long

Instruction : SHS
Function : X ← (A)&(X), S ← (X),M ← (X)&(PCH + 1)
Addressing Modes : Y-indexed long

4.7. 6502UNDOC 167

Instruction : SHY
Function : M ← (Y)&(PCH + 1)
Addressing Modes : Y-indexed long

Instruction : SHX
Function : M ← (X)&(PCH + 1)
Addressing Modes : X-indexed long

Instruction : LAX
Function : A,X ← (M)
Addressing Modes : absolute long/short, Y-indexed long/short,

X/Y-indirect

Instruction : LXA
Function : X04← (X)04&(M)04,

A04← (A)04&(M)04
Addressing Modes : immediate

Instruction : LAE
Function : X,S,A← ((S)&(M))
Addressing Modes : Y-indexed long

Instruction : DCP
Function : M ← (M)− 1, F lags← ((A)− (M))
Addressing Modes : absolute long/short, X-indexed long/short,

Y-indexed long, X/Y-indirect

Instruction : SBX
Function : X ← ((X)&(A))− (M)
Addressing Modes : immediate

168 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

Instruction : ISB
Function : M ← (M) + 1, A← (A)− (M)− (C)
Addressing Modes : absolute long/short, X-indexed long/short,

Y-indexed long, X/Y-indirect

4.8 MELPS-740

Microcontrollers of this family have a quite nice, however well-hidden feature:
If one sets bit 5 of the status register with the SET instruction, the accumula-
tor will be replaced with the memory cell addressed by the X register for all
load/store and arithmetic instructions. An attempt to integrate this feature
cleanly into the assembly syntax has not been made so far, so the only way
to use it is currently the ”hard” way (SET...instructions with accumulator
addressing...CLT).

Not all MELPS-740 processors implement all instructions. This is a place
where the programmer has to watch out for himself that no instructions are
used that are unavailable for the targeted processor; AS does not differentiate
among the individual processors of this family. For a description of the
details regarding special page addressing, see the discussion of the ASSUME

instruction.

4.9 MELPS-7700/65816

As it seems, these two processor families took disjunct development paths,
starting from the 6502 via their 8 bit predecessors. Shortly listed, the fol-
lowing differences are present:

• The 65816 does not have a B accumulator.

• The 65816 does not have instructions to multiply or divide.

• The 65816 misses the instructions SEB, CLB, BBC, BBS, CLM, SEM,

PSH, PUL and LDM. Instead, the instructions TSB, TRB, BIT, CLD,

SED, XBA, XCE and STZ take their places in the opcode table.

4.9. MELPS-7700/65816 169

The following instructions have identical function, yet different names:

65816 MELPS-7700 65816 MELPS-7700

REP CLP PHK PHG

TCS TAS TSC TSA

TCD TAD TDC TDA

PHB PHT PLB PLT

WAI WIT

Especially tricky are the instructions PHB, PLB and TSB: these instructions
have a totally different encoding and meaning on both processors!

Unfortunately, these processors address their memory in a way that is IMHO
even one level higher on the open-ended chart of perversity than the Intel-
like segmentation: They do banking! Well, this seems to be the price for the
6502 upward-compatibility; before one can use AS to write code for these
processors, one has to inform AS about the contents of several registers (using
the ASSUME instruction):

The M flag rules whether the accumulators A and B should be used with 8
bits (1) or 16 bits (0) width. Analogously, the X flag decides the width of the
X and Y index registers. AS needs this information for the decision about
the argument’s width when immediate addressing (#<constant>) occurs.

The memory is organized in 256 banks of 64 KBytes. As all registers in
the CPU core have a maximum width of 16 bits, the upper 8 bits have to
be fetched from 2 special bank registers: DT delivers the upper 8 bits for
data accesses, and PG extends the 16-bit program counter to 24 bits. A
16 bits wide register DPR allows to move the zero page known from the
6502 to an arbitrary location in the first bank. If AS encounters an address
(it is irrelevant if this address is part of an absolute, indexed, or indirect
expression), the following addressing modes will be tested:

1. Is the address in the range of DPR..DPR+$ff? If yes, use direct ad-
dressing with an 8-bit address.

2. Is the address contained in the page addressable via DT (resp. PG
for branch instructions)? If yes, use absolute addressing with a 16-bit
address.

170 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

3. If nothing else helps, use long addressing with a 24-bit address.

As one can see from this enumeration, the knowledge about the current
values of DT, PG and DPR is essential for a correct operation of AS; if the
specifications are incorrect, the program will probably do wrong addressing
at runtime. This enumeration also implied that all three address lengths are
available; if this is not the case, the decision chain will become shorter.

The automatic determination of the address length described above may be
overridden by the usage of prefixes. If one prefixes the address by a <, >,
or >> without a separating space, an address with 1, 2, or 3 bytes of length
will be used, regardless if this is the optimal length. If one uses an address
length that is either not allowed for the current instruction or too short for
the address, an error message is the result.

To simplify porting of 6502 programs, AS uses the Motorola syntax for hex-
adecimal constants instead of the Intel/IEEE syntax that is the format pre-
ferred by Mitsubishi for their 740xxx series. I still think that this is the
better format, and it looks as if the designers of the 65816 were of the same
opinion (as the RELAXED instruction allows the alternative use of Intel nota-
tion, this decision should not hurt anything). Another important detail for
the porting of programs is that it is valid to omit the accumulator A as target
for operations. For example, it is possible to simply write LDA #0 instead of
LDA A,#0.

A real goodie in the instruction set are the instructions MVN resp. MVP to do
block transfers. However, their address specification rules are a bit strange:
bits 0–15 are stored in index registers, bits 16–23 are part of the instruction.
When one uses AS, one simply specifies the full destination and source ad-
dresses. AS will then automatically grab the correct bits. This is a fine yet
important difference Mitsubishi’s assembler where you have to extract the
upper 8 bits on your own. Things become really convenient when a macro
like the following is used:

mvpos macro src,dest,len

if MomCPU=$7700

lda #len

elseif

lda #(len-1)

4.9. MELPS-7700/65816 171

endif

ldx #(src&$ffff)

ldy #(dest&$ffff)

mvp dest,src

endm

Caution, possible pitfall: if the accumulator contains the value n, the Mit-
subishi chip will transfer n bytes, but the 65816 will transfer n+1 bytes!

The PSH and PUL instructions are also very handy because they allow to save
a user-defined set to be saved to the stack resp. to be restored from the
stack. According to the Mitsubishi data book [41], the bit mask has to be
specified as an immediate operand, so the programmer either has to keep
all bit↔register assignments in mind or he has to define some appropriate
symbols. To make things simpler, I decided to extend the syntax at this
point: It is valid to use a list as argument which may contain an arbitrary
sequence of register names or immediate expressions. Therefore, the following
instructions

psh #$0f

psh a,b,#$0c

psh a,b,x,y

are equivalent. As immediate expressions are still valid, AS stays upward
compatible to the Mitsubishi assemblers.

One thing I did not fully understand while studying the Mitsubishi assembler
is the treatment of the PER instruction: this instruction allows to push a 16-
bit variable onto the stack whose address is specified relative to the program
counter. Therefore, it is an absolute addressing mode from the programmer’s
point of view. Nevertheless, the Mitsubishi assembler requests immediate
addressing, and the instructions argument is placed into the code just as-is.
One has to calculate the address in his own, which is something symbolic
assemblers were designed for to avoid...as I wanted to stay compatible, AS
contains a compromise: If one chooses immediate addressing (with a leading
sign), AS will behave like the original from Mitsubishi. But if the # sign
is omitted, as will calculate the difference between the argument’s value and
the current program counter and insert this difference instead.

172 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

A similar situation exists for the PEI instruction that pushes the contents of
a 16-bit variable located in the zero page: Though the operand represents an
address, once again immediate addressing is required. In this case, AS will
simply allow both variants (i.e. with or without a # sign).

4.10 M16

The M16 family is a family of highly complex CISC processors with an equally
complicated instruction set. One of the instruction set’s properties is the
detail that in an instruction with two operands, both operands may be of
different sizes. The method of appending the operand size as an attribute of
the instruction (known from Motorola and adopted from Mitsubishi) there-
fore had to be extended: it is valid to append attributes to the operands
themselves. For example, the following instruction

mov r0.b,r6.w

reads the lowest 8 bits of register 0, sign-extends them to 32 bits and stores
the result into register 6. However, as one does not need this feature in 9
out of 10 cases, it is still valid to append the operand size to the instruction
itself, e.g.

mov.w r0,r6

Both variants may be mixed; in such a case, an operand size appended to
an operand overrules the ”default”. An exception are instructions with two
operands. For these instructions, the default for the source operand is the
destination operand’s size. For example, in the following example

mov.h r0,r6.w

register 0 is accessed with 32 bits, the size specification appended to the
instruction is not used at all. If an instruction does not contain any size
specifications, word size (w) will be used. Remember: in contrast to the
68000 family, this means 32 bits instead of 16 bits!

The chained addressing modes are also rather complex; the ability of AS to
automatically assign address components to parts of the chain keeps things at
least halfway manageable. The only way of influencing AS allows (the original
assembler from Mitsubishi/Green Hills allows a bit more in this respect) is
the explicit setting of displacement lengths by appending :4, :16 and :32.

4.11. 4004/4040 173

4.11 4004/4040

Thanks to John Weinrich, I now have the official Intel data sheets describ-
ing these ’grandfathers’ of all microprocessors, and the questions about the
syntax of register pairs (for 8-bit operations) have been weeded out for the
moment: It is RnRm with n resp. m being even integers in the range from 0 to
E resp. 1 to F. The equation m = n + 1 must be fulfilled.

4.12 MCS-48

The maximum address space of these processors is 4 Kbytes large. This
address space is not organized in a linear way (how could this be on an Intel
CPU...). Instead, it is split into 2 banks of 2 Kbytes. The only way to
change the program counter from one bank to the other are the instructions
CALL and JMP, by setting the most significant bit of the address with the
instructions SEL MB0 resp. SEL MB1.

To simplify jumps between these two banks, the instructions JMP and CALL

contain an automatism that inserts one of these two instructions if the current
program counter and the target address are in different banks. Explicit usage
of these SEL MBx instructions should therefore not be necessary (though it is
possible), and it can puzzle the automatism, like in the following example:

000: SEL MB1

JMP 200h

AS assumes that the MB flag is 0 and therefore does not insert a SEL MBO

instruction, with the result that the CPU jumps to address A00h.

Furthermore, one should keep in mind that a jump instruction might become
longer (3 instead of 2 bytes).

4.13 MCS-51

The assembler is accompanied by the files STDDEF51.INC resp. 80C50X.INC

that define all bits and SFRs of the processors 8051, 8052, and 80515 resp.

174 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

80C501, 502, and 504. Depending on the target processor setting (made
with the CPU statement), the correct subset will be included. Therefore, the
correct order for the instructions at the beginning of a program is

CPU <processor type>

INCLUDE stddef51.inc .

Otherwise, the MCS-51 pseudo instructions will lead to error messages.

As the 8051 does not have instructions to to push the registers 0..7 onto the
stack, one has to work with absolute addresses. However, these addresses
depend on which register bank is currently active. To make this situation
a little bit better, the include files define the macro USING that accepts the
symbols Bank0...Bank3 as arguments. In response, the macro will assign the
registers’ correct absolute addresses to the symbols AR0..AR7. This macro
should be used after every change of the register banks. The macro itself
does not generate any code to switch to the bank!

The macro also makes bookkeeping about which banks have been used. The
result is stored in the integer variable RegUsage: bit 0 corresponds to bank
0, bit 1 corresponds to bank 1. and so on. To output its contents after the
source has been assembled, use something like the following piece of code:

irp BANK,Bank0,Bank1,Bank2,Bank3

if (RegUsage&(2^BANK))<>0

message "bank \{BANK} has been used"

endif

endm

The multipass feature introduced with version 1.38 allowed to introduce the
additional instructions JMP and CALL. If branches are coded using these in-
structions, AS will automatically use the variant that is optimal for the given
target address. The options are SJMP, AJMP, or LJMP for JMP resp. ACALL or
LCALL for CALL. Of course it is still possible to use these variants directly, in
case one wants to force a certain coding.

4.14 MCS-251

When designing the 80C251, Intel really tried to make the move to the new
family as smooth as possible for programmers. This culminated in the fact

4.14. MCS-251 175

that old applications can run on the new processor without having to re-
compile them. However, as soon as one wants to use the new features, some
details have to be regarded which may turn into hidden pitfalls.

The most important thing is the absence of a distinct address space for bits
on the 80C251. All SFRs can now be addressed bitwise, regardless of their
address. Furthermore, the first 128 bytes of the internal RAM are also bit
addressable. This has become possible because bits are not any more handled
by a separate address space that overlaps other address spaces. Instead,
similar to other processors, bits are addressed with a two-dimensional address
that consists of the memory location containing the bit and the bit’s location
in the byte. One result is that in an expression like PSW.7, AS will do the
separation of address and bit position itself. Unlike to the 8051, it is not any
more necessary to explicitly generate 8 bit symbols. This has the other result
that the SFRB instruction does not exist any more. If it is used in a program
that shall be ported, it may be replaced with a simple SFR instruction.

Furthermore, Intel cleaned up the cornucopia of different address spaces on
the 8051: the internal RAM (DATA resp. IDATA), the XDATA space and the
former CODE space were unified to a single CODE space that is now 16 Mbytes
large. The internal RAM starts at address 0, the internal ROM starts at
address ff0000h, which is the address code has to be relocated to. In contrast,
the SFRs were moved to a separate address space (which AS refers to as the
IO segment). However, they have the same addresses in this new address
space as they used to have on the 8051. The SFR instructions knows of
this difference and automatically assigns symbols to either the DATA or IO

segment, depending on the target processor. As there is no BIT segment any
more, the BIT instruction operates completely different: Instead of a linear
address ranging from 0..255, a bit symbol now contains the byte’s address in
bit 0..7, and the bit position in bits 24..26. Unfortunately, creating arrays of
flags with a symbolic address is not that simple any more: On an 8051, one
simply wrote:

segment bitdata

bit1 db ?

bit2 db ?

or

176 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

defbit macro name

name bit cnt

cnt set cnt+1

endm

On a 251, only the second way still works, like this:

adr set 20h ; start address of flags

bpos set 0 ; in the internal RAM

defbit macro name

name bit adr.bpos

bpos set bpos+1

if bpos=8

bpos set 0

adr set adr+1

endif

endm

Another small detail: Intel now prefers CY instead of C as a symbolic name
for the carry, so you might have to rename an already existing variable of the
same name in your program. However, AS will continue to understand also
the old variant when using the instructions CLR, CPL, SETB, MOV, ANL,

or ORL. The same is conceptually true for the additional registers R8..R15,

WR0..WR30, DR0..DR28, DR56, DR60, DPX, and SPX.

Intel would like everyone to write absolute addresses in a syntax of XX:YYYY,
where XX is a 64K bank in the address space resp. signifies addresses in the
I/O space with an S. As one might guess, I am not amused about this, which
is why it is legal to alternitavely use linear addresses in all places. Only the
S for I/O addresses is incircumventable, like in this case:

Carry bit s:0d0h.7

Without the prefix, AS would assume an address in the CODE segment, and
only the first 128 bits in this space are bit-addressable...

Like for the 8051, the generic branch instructions CALL and JMP exist that
automatically choose the shortest machine code depending on the address

4.15. 8085UNDOC 177

layout. However, while JMP also may use the variant with a 24-bit address,
CALL will not do this for a good reason: In contrast to ACALL and LCALL,
ECALL places an additional byte onto the stack. A CALL instruction would
result where you would not know what it will do. This problem does not
exist for the JMP instructions.

There is one thing I did not understand: The 80251 is also able to push
immediate operands onto the stack, and it may push either single bytes or
complete words. However, the same mnemonic (PUSH) is assigned to both
variants - how on earth should an assembler know if an instruction like

push #10

shall push a byte or a word containing the value 10? So the current rule
is that PUSH always pushes a byte; if one wants to push a word, simply use
PUSHW instead of PUSH.

Another well-meant advise: If you use the extended instruction set, be sure to
operate the processor in source mode; otherwise, all instructions will become
one byte longer! The old 8051 instructions that will in turn become one byte
longer are not a big matter: AS will either replace them automatically with
new, more general instructions or they deal with obsolete addressing modes
(indirect addressing via 8 bit registers).

4.15 8085UNDOC

Similarly to the Z80 or 6502, Intel did not further specify the undocumented
8085 instructions. This however means that other assemblers might use dif-
ferent mnemonics for the same function. Therefore, I will list the nistructions
in the following. Once again, usage of these instructions is at one’s own risk
- even the Z80 which is principally upward compatible to the 8085 uses the
opcodes for entirely different functions...

Instruction : DSUB [reg]

Function : HL ← HL - reg
Flags : CY, S, X5, AC, Z, V, P
Arguments : reg = B for BC (optional)

178 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

Instruction : ARHL
Function : HL,CY ← HL >> 1 (arithmetisch)
Flags : CY
Arguments : none

Instruction : RDEL
Function : CY,DE ← DE << 1
Flags : CY, V
Arguments : none

Instruction : LDHI d8

Function : DE ← HL + d8

Flags : none
Arguments : d8 = 8-bit constant

Instruction : LDSI d8

Function : DE ← SP + d8

Flags : none
Arguments : d8 = 8-bit constant

Instruction : RST flag

Function : restart to 40h if flag=1
Flags : none
Arguments : flag = V for overflow bit

Instruction : SHLX [reg]

Function : [reg] ← HL

4.16. 8086..V35 179

Flags : none
Arguments : reg = D for DE (optional)

Instruction : LHLX [reg]

Function : HL ← [reg]
Flags : none
Arguments : reg = D for DE (optional)

Instruction : JNX5 addr

Function : jump to addr if X5=0
Flags : none
Arguments : addr = absolute 16-bit address

Instruction : JX5 addr

Function : jump to addr if X5=1
Flags : none
Arguments : addr = absolute 16-bit address

Mit X5 ist dabei das ansonsten unbenutzte Bit 5 im PSW-Register gemeint.

4.16 8086..V35

Actually, I had sworn myself to keep the segment disease of Intel’s 8086 out
of the assembler. However, as there was a request and as students are more
flexible than the developers of this processor obviously were, there is now
a rudimentary support of these processors in AS. When saying, ’rudimen-
tary’, it does not mean that the instruction set is not fully covered. It means
that the whole pseudo instruction stuff that is available when using MASM,
TASM, or something equivalent does not exist. To put it in clear words, AS

180 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

was not primarily designed to write assembler programs for PC’s (heaven
forbid, this really would have meant reinventing the wheel!); instead, the de-
velopment of programs for single-board computers was the main goal (which
may also be equipped with an 8086 CPU).

For die-hards who still want to write DOS programs with AS, here is a small
list of things to keep in mind:

• Only COM files may be created.

• Only use the CODE segment, and place also all variables in this segment.

• DOS initializes all segment registers to the code segment. An ASSUME

DS:DATA, SS:DATA right at the program’s beginning is therefore nec-
essary.

• DOS loads the code to a start address of 100h. An ORG to this address
is absolutely necessary.

• The conversion to a binary file is done with P2BIN (see later in this
document), with an address filter of $-$.

For these processors, AS only supports a small programming model, i.e. there
is one code segment with a maximum of 64 Kbytes and a data segment of
equal size for data (which cannot be set to initial values for COM files). The
SEGMENT instruction allows to switch between these two segments. From this
facts results that branches are always intrasegment branches if they refer
to targets in this single code segment. In case that far jumps should be
necessary, they are possible via CALLF or JMPF with a memory address or a
Segment:Offset value as argument.

Another big problem of these processors is their assembler syntax, which is
sometimes ambiguous and whose exact meaning can then only be deduced
by looking at the current context. In the following example, either absolute
or immediate addressing may be meant, depending on the symbol’s type:

mov ax,value

4.16. 8086..V35 181

assembler address contents

MASM mov ax,offset vari mov ax,vari

lea ax,vari mov ax,[vari]

lea ax,[vari]

AS mov ax,vari mov ax,[vari]

lea ax,[vari]

Table 4.1: Differences AS↔MASM Concerning Addressing Syntax

When using AS, an expression without brackets always is interpreted as
immediate addressing. For example, when either a variable’s address or its
contents shall be loaded, the differences listed in table 4.1 are present between
MASM and AS:

When addressing via a symbol, the assembler checks whether they are as-
signed to the data segment and tries to automatically insert an appropriate
segment prefix. This happens for example when symbols from the code
segment are accessed without specifying a CS segment prefix. However, this
mechanism can only work if the ASSUME instruction (see there) has previously
been applied correctly.

The Intel syntax also requires to store whether bytes or words were stored at
a symbol’s address. AS will do this only when the DB resp. DW instruction is
in the same source line as the label. For any other case, the operand size has
to be specified explicitly with the BYTE PTR, WORD PTR,... operators. As
long as a register is the other operator, this may be omitted, as the operand
size is then clearly given by the register’s name.

In an 8086-based system, the coprocessor is usually synchronized via via the
processor’s TEST input line which is connected to toe coprocessor’s BUSY
output line. AS supports this type of handshaking by automatically inserting
a WAIT instruction prior to every 8087 instruction. If this is undesired for
any reason, an N has to be inserted after the F in the mnemonic; for example,

FINIT

FSTSW [vari]

becomes

182 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

FNINIT

FNSTSW [vari]

This variant is valid for all coprocessor instructions.

4.17 8X30x

The processors of this family have been optimized for an easy manipulation
of bit groups at peripheral addresses. The instructions LIV and RIV were
introduced to deal with such objects in a symbolic fashion. They work similar
to EQU, however they need three parameters:

1. the address of the peripheral memory cell that contains the bit group
(0..255);

2. the number of the group’s first bit (0..7);

3. the length of the group, expressed in bits (1..8).

CAUTION! The 8X30x does not support bit groups that span over more
than one memory address. Therefore, the valid value range for the length can
be stricter limited, depending on the start position. AS does not perform
any checks at this point, you simply get strange results at runtime!

Regarding the machine code, length and position are expressed vis a 3 bit
field in the instruction word and a proper register number (LIVx resp. RIVx).
If one uses a symbolic object, AS will automatically assign correct values to
this field, but it is also allowed to specify the length explicitly as a third
operand if one does not work with symbolic objects. If AS finds such a
length specification in spite of a symbolic operand, it will compare both
lengths and issue an error if they do not match (the same will happen for the
MOVE instruction if two symbolic operands with different lengths are used
- the instruction simply only has a single length field...).

Apart from the real machine instructions, AS defines similarly to its ”idol”
MCCAP some pseudo instructions that are implemented as builtin macros:

• NOP is a shortform for MOVE AUX,AUX

4.18. XA 183

• HALT is a shortform for JMP *

• XML ii is a shortform for XMIT ii,R12 (only 8X305)

• XMR ii is a shortform for XMIT ii,R13 (only 8X305)

• SEL <busobj> is a shortform for XMIT <adr>,IVL/IVR, i.e. it per-
forms the necessary preselection to access <busobj>.

The CALL and RTN instructions MCCAP also implements are currently miss-
ing due to sufficient documentation. The same is true for a set of pseudo
instructions to store constants to memory. Time may change this...

4.18 XA

Similar to its predecessor MCS/51, but in contrast to its ’competitor’
MCS/251, the Philips XA has a separate address space for bits, i.e. all
bits that are accessible via bit instructions have a certain, one-dimensional
address which is stored as-is in the machine code. However, I could not take
the obvious opportunity to offer this third address space (code and data are
the other two) as a separate segment. The reason is that - in contrast to the
MCS/51 - some bit addresses are ambiguous: bits with an address from 256
to 511 refer to the bits of memory cells 20h..3fh in the current data segment.
This means that these addresses may correspond to different physical bits,
depending on the current state. Defining bits with the help of DC instruc-
tions - something that would be possible with a separate segment - would
not make too much sense. However, the BIT instruction still exists to define
individual bits (regardless if they are located in a register, the RAM or SFR
space) that can then be referenced symbolically. If the bit is located in RAM,
the address of the 64K-bank is also stored. This way, AS can check whether
the DS register has previously be assigned a correct value with an ASSUME

instruction.

In contrast, nothing can stop AS’s efforts to align potential branch targets
to even addresses. Like other XA assemblers, AS does this by inserting NOPs
right before the instruction in question.

184 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

4.19 AVR

In contrast to the AVR assembler, AS by default uses the Intel format to
write hexadecimal contants instead of the C syntax. All right, I did not
look into the (free) AVR assembler before, but when I started with the AVR
part, there was hardly mor einformation about the AVR than a preliminary
manual describing processor types that were never sold...this problem can be
solved with a simple RELAXED ON.

Optionally, AS can generate so-called ”object files” for the AVRs (it also
works for other CPUs, but it does not make any sense for them...). These
are files containing code and source line info what e.g. allows a step-by-step
execution on source level with the WAVRSIM simulator delivered by Atmel.
Unfortunately, the simulator seems to have trouble with source file names
longer than approx. 20 characters: Names are truncated and/or extended by
strange special characters when the maximum length is exceeded. AS there-
fore stores file name specifications in object files without a path specification.
Therefore, problems may arise when files like includes are not in the current
directory.

A small specialty are machine instructions that have already been defined by
Atmel as part of the architecture, but up to now haven’t been implemented
in any of the family’s members. The instructions in question are MUL, JMP,

and CALL. Considering the latter ones, one may ask himself how to reach the
4 Kwords large address space of the AT90S8515 when the ’next best’ instruc-
tions RJMP and RCALL can only branch up to 2 Kwords forward or backward.
The trick is named ’discarding the upper address bits’ and described in detail
with the WRAPMODE statement.

4.20 Z80UNDOC

As one might guess, Zilog did not make any syntax definitions for the un-
documented instructions; furthermore, not everyone might know the full set.
It might therefore make sense to list all instructions at this place:

Similar to a Z380, it is possible to access the byte halves of IX and IY
separately. In detail, these are the instructions that allow this:

4.21. Z380 185

INC Rx LD R,Rx LD Rx,n

DEC Rx LD Rx,R LD Rx,Ry

ADD/ADC/SUB/SBC/AND/XOR/OR/CP A,Rx

Rx and Ry are synonyms for IXL, IXU, IYL or IYU. Keep however in mind
that in the case of LD Rx,Ry, both registers must be part of the same index
register.

The coding of shift instructions leaves an undefined bit combination which
is now accessible as the SLIA instruction. SLIA works like SLA with the
difference of entering a 1 into bit position 0. Like all other shift instructions,
SLIA also allows another undocumented variant:

SLIA R,(XY+d)

In this case, R is an arbitrary 8-bit register (excluding index register halves...),
and (XY+d) is a normal indexed address. This operation has the additional
effect of copying the result into the register. This also works for the RES and
SET instructions:

SET/RES R,n,(XY+d)

Furthermore, two hidden I/O instructions exist:

IN (C) resp. TSTI

OUT (C),0

Their operation should be clear. CAUTION! Noone can guarantee that all
mask revisions of the Z80 execute these instructions, and the Z80’s successors
will react with traps if they find one of these instructions. Use them on your
own risk...

4.21 Z380

As this processor was designed as a grandchild of the still most popular 8-bit
microprocessor, it was a sine-qua-non design target to execute existing Z80
programs without modification (of course, they execute a bit faster, roughly
by a factor of 10...). Therefore, all extended features can be enabled after
a reset by setting two bits which are named XM (eXtended Mode, i.e. a

186 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

32-bit instead of a 16-bit address space) respectively LW (long word mode,
i.e. 32-bit instead of 16-bit operands). One has to inform AS about their
current setting with the instructions EXTMODE resp. LWORDMODE, to enable AS
to check addresses and constants against the correct upper limits. The toggle
between 32- and 16-bit instruction of course only influences instructions that
are available in a 32-bit variant. Unfortunately, the Z380 currently offers
such variants only for load and store instructions; arithmetic can only be
done in 16 bits. Zilog really should do something about this, otherwise the
most positive description for the Z380 would be ”16-bit processor with 32-bit
extensions”...

The whole thing becomes complicated by the ability to override the operand
size set by LW with the instruction prefixes DDIR W resp. DDIR LW. AS will
note the occurrence of such instructions and will toggle setting for the in-
struction following directly. By the way, one should never explicitly use other
DDIR variants than W resp. LW, as AS will introduce them automatically when
an operand is discovered that is too long. Explicit usage might puzzle AS.
The automatism is so powerful that in a case like this:

DDIR LW

LD BC,12345678h ,

the necessary IW prefix will automatically be merged into the previous in-
struction, resulting in

DDIR LW,IW

LD BC,12345668h .

The machine code that was first created for DDIR LW is retracted and re-
placed, which is signified with an R in the listing.

4.22 TLCS-900(L)

These processors may run in two operating modes: on the one hand, in min-
imum mode, which offers almost complete source code compatibility to the
Z80 and TLCS-90, and on the other hand in maximum mode, which is nec-
essary to make full use of the processor’s capabilities. The main differences
between these two modes are:

4.22. TLCS-900(L) 187

• width of the registers WA, BC, DE, and HL: 16 or 32 bits;

• number of register banks: 8 or 4;

• code address space: 64 Kbytes or 16 Mbytes;

• length of return addresses: 16 or 32 bits.

To allow AS to check against the correct limits, one has to inform him about
the current execution mode via the MAXMODE instruction (see there). The
default is the minimum mode.

From this follows that, depending on the operating mode, the 16-bit resp.
32-bit versions of the bank registers have to be used for addressing, i.e. WA,
BC, DE and HL for the minimum mode resp. XWA, XBC, XDE and XHL
for the maximum mode. The registers XIX..XIZ and XSP are always 32
bits wide and therefore always have to to be used in this form for addressing;
in this detail, existing Z80 code definitely has to be adapted (not including
that there is no I/O space and all I/O registers are memory-mapped...).

The syntax chosen by Toshiba is a bit unfortunate in the respect of choosing
an single quote (’) to reference the previous register bank. The processor
independent parts of AS already use this character to mark character con-
stants. In an instruction like

ld wa’,wa ,

AS will not recognize the comma for parameter separation. This problem
can be circumvented by usage of an inverse single quote (‘), for example

ld wa‘,wa

Toshiba delivers an own assembler for the TLCS-900 series (TAS900), which
is different from AS in the following points:

188 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

Symbol Conventions

• TAS900 differentiates symbol names only on the first 32 characters. In
contrast, AS always stores symbol names with the full length (up to
255 characters) and uses them all for differentiation.

• TAS900 allows to write integer constants either in Intel or C notation
(with a 0 prefix for octal or a 0x prefix for hexadecimal constants).
By default, AS only supports the Intel notation. With the help of the
RELAXED instruction, one also gets the C notation (among other).

• AS does not distinguish between upper and lower case. In contrast,
TAS900 differentiates between upper- and lowercase letters in symbol
names. One needs to engage the -u command line option to force AS
to do this.

Syntax

For many instructions, the syntax checking of AS is less strict than the check-
ing of TAS900. In some (rare) cases, the syntax is slightly different. These
extensions and changes are on the one hand for the sake of a better porta-
bility of existing Z80 codes, on the other hand they provide a simplification
and better orthogonality of the assembly syntax:

• In the case of LDA, JP, and CALL, TAS requires that address expressions
like XIX+5 must not be placed in parentheses, as it is usually the case.
For the sake of better orthogonality, AS requires parentheses for LDA.
They are optional if JP resp. CALL are used with a simple, absolute
address.

• In the case of JP, CALL, JR, and SCC, AS leaves the choice to the
programmer whether to explicitly write out the default condition T

(= true) as first parameter or not. TAS900 in contrast only allows
to use the default condition implicitly (e.g. jp (xix+5) instead of jp
t,(xix+5)).

• For the EX instruction, AS allows operand combinations which are not
listed in [106] but can be reduced to a standard combination by swap-
ping the operands. Combinations like EX f‘,f or EX wa,(xhl) become
possible. In contrast, TAS900 limits to the ’pure’ combinations.

4.22. TLCS-900(L) 189

• AS allows to omit an increment resp. decrement of 1 when using the
instructions INC and DEC. TAS900 instead forces the programmer to
explicit usage of ’1’.

• The similar is true for the shift instructions: If the operand is a register,
TAS900 requires that even a shift count of 1 has to be written explicitly;
however, when the operand is in memory, the hardware limits the shift
count to 1 which must not be written in this case. With AS, a shift
count of 1 is always optional and valid for all types of operands.

Macro Processor

The macro processor of TAS900 is an external program that operates like a
preprocessor. It consists of two components: The first one is a C-like prepro-
cessor, and the second one is a special macro language (MPL) that reminds
of high level languages. The macro processor of AS instead is oriented to-
wards ”classic” macro assemblers like MASM or M80 (both programs from
Microsoft). It is a fixed component of AS.

Output Format

TAS900 generates relocatable code that allows to link separately compiled
programs to a single application. AS instead generates absolute machine
code that is not linkable. There are currently no plans to extend AS in this
respect.

Pseudo Instructions

Due to the missing linker, AS lacks a couple of pseudo instructions needed for
relocatable code TAS900 implements. The following instructions are avail-
able with equal meaning:

EQU, DB, DW, ORG, ALIGN, END, TITLE, SAVE, RESTORE

190 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

TAS900 AS meaning/function

DL <Data> DD <Data> define longword constants
DSB <number> DB <number> DUP (?) reserve bytes of memory
DSW <number> DW <number> DUP (?) reserve words of memory
DSD <number> DD <number> DUP (?) reserve longwords of memory
$MIN[IMUM] MAXMODE OFF following code runs

in minimum mode
$MAX[IMUM] MAXMODE ON following code runs

in maximum mode
$SYS[TEM] SUPMODE ON following code runs

in system mode
$NOR[MAL] SUPMODE OFF following code runs

in user mode
$NOLIST LISTING OFF turn off assembly listing
$LIST LISTING ON turn on assembly listing
$EJECT NEWPAGE start new page in listing

Table 4.2: equivalent instructions TAS900↔AS

The latter two have an extended functionality for AS. Some TAS900 pseudo
instructions can be replaced with equivalent AS instructions (see table 4.2).

Toshiba manufactures two versions of the processor core, with the L version
being an ”economy version”. AS will make the following differences between
TLCS-900 and TLCS-900L:

• The instructions MAX and NORMAL are not allowed for the L version; the
MIN instruction is disabled for the full version.

• The L version does not know the normal stack pointer XNSP/NSP, but
instead has the interrupt nesting register INTNEST.

The instructions SUPMODE and MAXMODE are not influenced, just as their ini-
tial setting OFF. The programmer has to take care of the fact that the L
version starts in maximum mode and does not have a normal mode. How-
ever, AS shows a bit of mercy against the L variant by suppressing warnings
for privileged instructions.

4.23. TLCS-90 191

4.23 TLCS-90

Maybe some people might ask themselves if I mixed up the order a little bit,
as Toshiba first released the TLCS-90 as an extended Z80 and afterwards
the 16-bit version TLCS-900. Well, I discovered the ’90 via the ’900 (thank
you Oliver!). The two families are quite similar, not only regarding their
syntax but also in their architecture. The hints for the ’90 are therefore a
subset of of the chapter for the ’900: As the ’90 only allows shifts, increments,
and decrements by one, the count need not and must not be written as the
first argument. Once again, Toshiba wants to omit parentheses for memory
operands of LDA, JP, and CALL, and once again AS requires them for the
sake of orthogonality (the exact reason is of course that this way, I saved an
extra in the address parser, but one does not say such a thing aloud).

Principally, the TLCS-90 series already has an address space of 1 Mbyte
which is however only accessible as data space via the index registers. AS
therefore does not regard the bank registers and limits the address space to
64 Kbytes. This should not limit too much as this area above is anyway only
reachable via indirect addressing.

4.24 TLCS-870

Once again Toshiba...a company quite productive at the moment! Especially
this branch of the family (all Toshiba microcontrollers are quite similar in
their binary coding and programming model) seems to be targeted towards
the 8051 market: the method of separating the bit position from the address
expression with a dot had its root in the 8051. However, it creates now
exactly the sort of problems I anticipated when working on the 8051 part:
On the one hand, the dot is a legal part of symbol names, but on the other
hand, it is part of the address syntax. This means that AS has to separate
address and bit position and must process them independently. Currently, I
solved this conflict by seeking the dot starting at the end of the expression.
This way, the last dot is regarded as the separator, and further dots stay
parts of the address. I continue to urge everyone to omit dots in symbol
names, they will lead to ambiguities:

LD CF,A.7 ; accumulator bit 7 to carry

LD C,A.7 ; constant ’A.7’ to accumulator

192 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

4.25 TLCS-47

This family of 4-bit microcontrollers should mark the low end of what is
supportable by AS. Apart from the ASSUME instruction for the data bank
register (see there), there is only one thing that is worth mentioning: In the
data and I/O segment, nibbles are reserved instead of byte (it’s a 4-bitter...).
The situation is similar to the bit data segment of the 8051, where a DB

reserves a single bit, with the difference that we are dealing with nibbles.

Toshiba defined an ”extended instruction set” for this processor family to
facilitate the work with their limited instruction set. In the case of AS, it
is defined in the include file STDDEF47.INC. However, some instructions that
could not be realized as macros are ”builtins” and are therefore also available
without the include file:

• the B instruction that automatically chooses the optimal version of the
jump instruction (BSS; BS, or BSL);

• LD in the variant of HL with an immediate operand;

• ROLC and RORC with a shift amplitude higher than one.

4.26 TLCS-9000

This is the first time that I implemented a processor for AS which was not
available at that point of time. Unfortunately, Toshiba decided to put this
processor ”on ice”, so we won’t see any silicon in the near future. This has
of course the result that this part

1. is a ”paper design”, i.e. there was so far no chance to test it in the
reality and

2. the documentation for the ’9000 I could get hold of [109] were prelimi-
nary, so they could not deliver clarity on every detail.

Therefore, errors in this code generator are quite possible (and will of course
be fixed if it should ever become possible!). At least the few examples listed
in [109] are assembled correctly.

4.27. 29XXX 193

4.27 29xxx

As it was already described in the discussion of the ASSUME instruction, AS
can use the information about the current setting of the RBP register to
detect accesses to privileged registers in user mode. This ability is of course
limited to direct accesses (i.e. without using the registers IPA...IPC), and
there is one more pitfall: as local registers (registers with a number >127)
are addressed relative to the stack pointer, but the bits in RBP always refer
to absolute numbers, the check is NOT done for local registers. An extension
would require AS to know always the absolute value of SP, which would at
least fail for recursive subroutines...

4.28 80C16x

As it was already explained in the discussion of the ASSUME instruction, AS
tries to hide the fact that the processor has more physical than logical RAM
as far as possible. Please keep in mind that the DPP registers are valid
only for data accesses and only have an influence on absolute addressing,
neither on indirect nor on indexed addresses. AS cannot know which value
the computed address may take at runtime... The paging unit unfortunately
does not operate for code accesses so one has to work with explicit long or
short CALLs, JMPs, or RETs. At least for the ”universal” instructions CALL

and JMP, AS will automatically use the shortest variant, but at least for the
RET one should know where the call came from. JMPS and CALLS principally
require to write segment and address separately, but AS is written in a way
that it can split an address on its own, e.g. one can write

jmps 12345h

instead of

jmps 1,2345h

Unfortunately, not all details of the chip’s internal instruction pipeline are
hidden: if CP (register bank address), SP (stack), or one of the paging regis-
ters are modified, their value is not available for the instruction immediately

194 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

following. AS tries to detect such situations and will issue a warning in such
cases. Once again, this mechanism only works for direct accesses.

Bits defined with the BIT instruction are internally stored as a 12-bit word,
containing the address in bits 4..11 and the bit position in the four LSBs. This
order allows to refer the next resp. previous bit by incrementing or decre-
menting the address. This will however not work for explicit bit specifications
when a word boundary is crossed. For example, the following expression will
result in a range check error:

bclr r5.15+1

We need a BIT in this situation:

msb bit r5.15

.

.

bclr msb+1

The SFR area was doubled for the 80C167/165/163: bit 12 flags that a
bit lies in the second part. Siemens unfortunately did not foresee that 256
SFRs (128 of them bit addressable) would not suffice for successors of the
80C166. As a result, it would be impossible to reach the second SFR area
from F000H..F1DFH with short addresses or bit instructions if the developers
had not included a toggle instruction:

EXTR #n

This instruction has the effect that for the next n instructions (0 < n < 5),
it is possible to address the alternate SFR space instead of the normal one.
AS does not only generate the appropriate machine code when it encounters
this instruction. It also sets an internal flag that will only allow accesses to
the alternate SFR space for the next n instructions. Of course, they may not
contain jumps... Of course, it is always possible to define bits from either
area at any place, and it is always possible to reach all registers with absolute
addresses. In contrast, short and bit addressing only works for one area at a
time, attempts contradicting to this will result in an error message.

The situation is similar for prefix instructions and absolute resp. indirect
addressing: as the prefix argument and the address expression cannot always
be evaluated at assembly time, chances for checking are limited and AS will
limit itself to warnings...in detail, the situation is as follows:

4.29. PIC16C5X/16C8X 195

• fixed specification of a 64K bank with EXTS or EXTSR: the address ex-
pression directly contains the lower 16 bits of the target address. If the
prefix and the following instruction have a constant operand, AS will
check if the the prefix argument and bits 16..23 of the target address
are equal.

• fixed specification of a 16K page with EXTP or EXTPR: the address ex-
pression directly contains the lower 14 bits of the target address. Bits
14 and 15 are fixed to 0, as the processor ignores them in this mode.
If the prefix and the following instruction have a constant operand,
AS will check if the the prefix argument and bits 14..23 of the target
address are equal.

An example to clarify things a bit (the DPP registers have their reset values):

extp #7,#1 ; range from 112K..128K

mov r0,1cdefh ; results in address 0defh in code

mov r0,1cdefh ; -->warning

exts #1,#1 ; range from 64K..128K

mov r0,1cdefh ; results in address 0cdefh in code

mov r0,1cdefh ; -->warning

4.29 PIC16C5x/16C8x

Similar to the MCS-48 family, the PICs split their program memory into
several banks because the opcode does not offer enough space for a complete
address. AS uses the same automatism for the instructions CALL and GOTO,
i.e. the PA bits in the status word are set according to the start and target
address. However, this procedure is far more problematic compared to the
48’s:

1. The instructions are not any more one word long (up to three words).
Therefore, it is not guaranteed that they can be skipped with a condi-
tional branch.

2. It is possible that the program counter crosses a page boundary while
the program sequence is executed. The setting of PA bits AS assumes
may be different from reality.

196 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

The instructions that operate on register W and another register normally
require a second parameter that specifies whether the result shall be stored
in W or the register. Under AS, it is valid to omit the second parameter.
The assumed target then depends upon the operation’s type: For unary
operations, the result is by default stored back into the register. These
instructions are:

COMF, DECF, DECFSZ, INCF, INCFSZ, RLF, RRF, and SWAPF

The other operations by default regard W as an accumulator:

ADDWF, ANDWF, IORWF, MOVF, SUBWF, and XORWF

The syntax defined by Microchip to write literals is quite obscure and reminds
of the syntax used on IBM 360/370 systems (greetings from the stone-age...).
To avoid introducing another branch into the parser, with AS one has to write
constants in the Motorola syntax (optionally Intel or C in RELAXED mode).

4.30 PIC 17C4x

With two exceptions, the same hints are valid as for its two smaller broth-
ers: the corresponding include file only contains register definitions, and the
problems concerning jump instructions are much smaller. The only excep-
tion is the LCALL instruction, which allows a jump with a 16-bit address. It
is translated with the following ”macro”:

MOVLW <addr15..8>

MOWF 3

LCALL <addr0..7>

4.31. ST6 197

4.31 ST6

These processors have the ability to map their code ROM pagewise into the
data area. I am not keen on repeating the whole discussion of the ASSUME

instruction at this place, so I refer to the corresponding section (3.2.15) for
an explanation how to read constants out of the code ROM without too much
headache.

Some builtin ”macros” show up when one analyzes the instruction set a bit
more in detail. The instructions I found are listed in table 4.3 (there are
probably even more...):

instruction in reality

CLR A SUB A,A

SLA A ADD A,A

CLR addr LDI addr,0

NOP JRZ PC+1

Table 4.3: Hidden Macros in the ST62’s Instruction Set

Especially the last case is a bit astonishing...unfortunately, some instructions
are really missing. For example, there is an AND instruction but no OR...not
to speak of an XOR. For this reason, the include file STDDEF62.INC contains
also some helping macros (additionally to register definitions).

The original assembler AST6 delivered by SGS-Thomson partially uses dif-
ferent pseudo instructions than AS. Apart from the fact that AS does not
mark pseudo instructions with a leading dot, the following instructions are
identical:

ASCII, ASCIZ, BLOCK, BYTE, END, ENDM, EQU, ERROR, MACRO,

ORG, TITLE, WARNING

Table 4.4 shows the instructions which have AS counterparts with similar
function.

198 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

AST6 AS meaning/function

.DISPLAY MESSAGE output message

.EJECT NEWPAGE new page in assembly listing

.ELSE ELSEIF conditional assembly

.ENDC ENDIF conditional assembly

.IFC IF... conditional assembly

.INPUT INCLUDE insert include file

.LIST LISTING, MACEXP settings for listing

.PL PAGE page length of listing

.ROMSIZE CPU set target processor

.VERS VERSION (symbol) query version

.SET EVAL redefine variables

Table 4.4: Equivalent Instructions AST6↔AS

4.32 ST7

In [81], the .w postfix to signify 16-bit addresses is only defined for memory
indirect operands. It is used to mark that a 16-bit address is stored at a zero
page address. AS additionally allows this postfix for absolute addresses or
displacements of indirect address expressions to force 16-bit displacements in
spite of an 8-bit value (0..255).

4.33 ST9

The ST9’s bit addressing capabilities are quite limited: except for the BTSET

instruction, only bits within the current set of working registers are accessible.
A bit address is therefore of the following style:

rn.[!]b ,

whereby ! means an optional complement of a source operand. If a bit is
defined symbolically, the bit’s register number is stored in bits 7..4, the bit’s
position is stored in bits 3..1 and the optional complement is kept in bit 0.
AS distinguishes explicit and symbolic bit addresses by the missing dot. A

4.34. 6804 199

bit’s symbolic name therefore must not contain a dot, thought it would be
legal in respect to the general symbol name conventions. It is also valid to
invert a symbolically referred bit:

bit2 bit r5.3

.

.

bld r0.0,!bit2

This opportunity also allows to undo an inversion that was done at definition
of the symbol.

The include file REGST9.INC defines the symbolic names of all on-chip regis-
ters and their associated bits. Keep however in mind that the bit definitions
only work after previously setting the working register bank to the address
of these peripheral registers!

In contrast to the definition file delivered with the AST9 assembler from
SGS-Thomson, the names of peripheral register names are only defined as
general registers (R...), not also as working registers (r...). The reason for
this is that AS does not support register aliases; a tribute to assembly speed.

4.34 6804

To be honest: I only implemented this processor in AS to quarrel about SGS-
Thomson’s peculiar behaviour. When I first read the 6804’s data book, the
”incomplete” instruction set and the built-in macros immediately reminded
me of the ST62 series manufactured by the same company. A more thorough
comparison of the opcodes gave surprising insights: A 6804 opcode can be
generated by taking the equivalent ST62 opcode and mirroring all the bits!
So Thomson obviously did a bit of processor core recycling...which would be
all right if they would not try to hide this: different peripherals, motorola
instead of Zilog-style syntax, and the awful detail of not mirroring operand
fields in the opcode (e.g. bit fields containing displacements). The last item
is also the reason that finally convinced me to support the 6804 in AS. I
personally can only guess which department at Thomson did the copy...

In contrast to its ST62 counterpart, the include file for the 6804 does not
contain instruction macros that help a bit to deal with the limited machine
instruction set. This is left as an exercise to the reader!

200 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

4.35 TMS3201x

It seems that every semiconductor’s ambition is to invent an own notation
for hexadecimal numbers. Texas Instrument took an especially eccentric
approach for these processors: a > sign as prefix! The support of such a
format in AS would have lead to extreme conflicts with AS’s compare and
shift operators. I therefore decided to use the Intel notation, which is what
TI also uses for the 340x0 series and the 3201x’s successors...

The instruction word of these processors unfortunately does not have enough
bits to store all 8 bits for direct addressing. This is why the data address
space is split into two banks of 128 words. AS principally regards the data
address space as a linear segment of 256 words and automatically clears bit
7 on direct accesses (an exception is the SST instruction that can only write
to the upper bank). The programmer has to take care that the bank flag
always has the correct value!

Another hint that is well hidden in the data book: The SUBC instruction
internally needs more than one clock for completion, but the control unit
already continues to execute the next instruction. An instruction following
SUBC therefore may not access the accumulator. AS does not check for such
conditions!

4.36 TMS320C2x

As I did not write this code generator myself (that does not lower its quality
by any standard), I can only roughly line out why there are some instructions
that force a prefixed label to be untyped, i.e. not assigned to any specific
address space: The 2x series of TMS signal processors has a code and a data
segment which are both 64 Kbytes large. Depending on external circuitry,
code and data space may overlap, e.g. to allow storage of constants in the
code area and access them as data. Data storage in the code segment may
be necessary because older versions of AS assume that the data segment only
consists of RAM that cannot have a defined power-on state in a single board
system. They therefore reject storage of contents in other segments than
CODE. Without the feature of making symbols untyped, AS would punish
every access to a constant in code space with a warning (”symbol out of

4.37. TMS320C3X 201

wrong segment”). To say it in detail, the following instructions make labels
untyped:

BSS, STRING, RSTRING, BYTE, WORD , LONG

FLOAT, DOUBLE, EFLOAT, BFLOAT and TFLOAT

If one needs a typed label in front of one of these instructions, one can work
around this by placing the label in a separate line just before the pseudo
instruction itself. On the other hand, it is possible to place an untyped label
in front of another pseudo instruction by defining the label with EQU, e.g.

<name> EQU $.

4.37 TMS320C3x

The syntax detail that created the biggest amount of headache for me while
implementing this processor family is the splitting of parallel instructions
into two separate source code lines. Fortunately, both instructions of such a
construct are also valid single instructions. AS therefore first generates the
code for the first instruction and replaces it by the parallel machine code
when a parallel construct is encountered in the second line. This operation
can be noticed in the assembly listing by the machine code address that does
not advance and the double dot replaced with a R.

Compared to the TI assembler, AS is not as flexible regarding the position
of the double lines that signify a parallel operation (||): One either has to
place them like a label (starting in the first column) or to prepend them to
the second mnemonic. The line parser of AS will run into trouble if you do
something else...

4.38 TMS9900

Similar to most older TI microprocessor families, TI used an own format for
hexadecimal and binary constants. AS instead favours the Intel syntax which
is also common for newer processor designs from TI.

The TI syntax for registers allows to use a simple integer number between 0
and 15 instead of a real name (Rx or WRx). This has two consequences:

202 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

• R0...R15 resp. WR0..WR15 are simple predefined integer symbols with
values from 0 to 15, and the definition of register aliases is a simple
matter of EQU.

• In contrast to several other processors, I cannot offer the additional AS
feature that allows to omit the character sigifying absolute addressing
(a sign in this case). As a missing character would mean register
numbers (from 0 to 15) in this case, it was not possible to offer the
optional omission.

Furthermore, TI sometimes uses Rx to name registers and WRx at other
places...currently both variants are recognized by AS.

4.39 TMS70Cxx

This processor family belongs to the older families developed by TI and
therefore TI’s assemblers use their proprietary syntax for hexadecimal resp.
binary constants (a prefixed < resp. ? character). As this format could
not be realized for AS, the Intel syntax is used by default. This is the
format TI to which also switched over when introducing the successors, of
this family, the 370 series of microcontrollers. Upon a closer inspection of
both’s machine instruction set, one discovers that about 80% of all instruction
are binary upward compatible, and that also the assembly syntax is almost
identical - but unfortunately only almost. TI also took the chance to make
the syntax more orthogonal and simple. I tried to introduce the majority of
these changes also into the 7000’s instruction set:

• It is valid to use the more common # sign for immediate addressing
instead of the percent sign.

• If a port address (P...) is used as source or destination in a AND,

BTJO, BTJZ, MOV, OR, or XOR instruction, it is not necessary to use the
mnemonic variant with an appended P - the general form is sufficient.

• The prefixed @ sign for absolute or B-relative addressing may be omit-
ted.

4.40. TMS370XXX 203

• Instead of CMPA, CMP with A as target may be written.

• Instead of LDA resp. STA, one can simply use the MOV instruction with
A as source resp. destination.

• One can write MOVW instead of MOVD.

• It is valid to abbreviate RETS resp. RETI as RTS resp. RTI.

• TSTA resp. TSTB may be written as TST A resp. TST B.

• XCHB B is an alias for TSTB.

An important note: these variants are only allowed for the TMS70Cxx - the
corresponding 7000 variants are not allowed for the 370 series!

4.40 TMS370xxx

Though these processors do not have specialized instructions for bit manip-
ulation, the assembler creates (with the help of the DBIT instruction - see
there) the illusion as if single bits were addressable. To achieve this, the
DBIT instructions stores an address along with a bit position into an integer
symbol which may then be used as an argument to the pseudo instructions
SBIT0, SBIT1, CMPBIT, JBIT0, and JBIT1. These are translated into the
instructions OR, AND, XOR, BTJZ, and BTJO with an appropriate bit mask.

There is nothing magic about these bit symbols, they are simple integer
values that contain the address in their lower and the bit position in their
upper half. One could construct bit symbols without the DBIT instruction,
like this:

defbit macro name,bit,addr

name equ addr+(bit<<16)

endm

but this technique would not lead to the EQU-style syntax defined by TI (the
symbol to be defined replaces the label field in a line). CAUTION! Though
DBIT allows an arbitrary address, the pseudo instructions can only operate
with addresses either in the range from 0..255 or 1000h..10ffh. The processor
does not have an absolute addressing mode for other memory ranges...

204 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

4.41 MSP430

The MSP was designed to be a RISC processor with a minimal power con-
sumption. The set of machine instructions was therefore reduced to the
absolute minimum (RISC processors do not have a microcode ROM so ev-
ery additional instruction has to be implemented with additional silicon that
increases power consumption). A number of instructions that are hardwired
for other processors are therefore emulated with other instructions. For AS,
these instructions are defined in the include file REGMSP.INC. You will get
error messages for more than half of the instructions defined by TI if you
forget to include this file!

4.42 COP8 & SC/MP

National unfortunately also decided to use the syntax well known from IBM
mainframes (and much hated by me..) to write non-decimal integer con-
stants. Just like with other processors, this does not work with AS’s parser.
ASMCOP however fortunately also seems to allow the C syntax, which is
why this became the default for the COP series and the SC/MP...

4.43 SC144xxx

Originally, National offered a relatively simple assembler for this series of
DECT controllers. An much more powerful assembler has been announced
by IAR, but it is not available up to now. However, since the development
tools made by IAR are as much target-independent as possible, one can
roughly estimate the pseudo instructions it will support by looking at other
available target platforms. With this in mind, the (few) SC144xx-specific in-
structions DC, DC8, DW16, DS, DS8, DS16, DW were designed. Of course, I
didn’t want to reinvent the wheel for pseudo instructions whose functionality
is already part of the AS core. Therefore, here is a little table with equiva-
lences. The statements ALIGN, END, ENDM, EXITM, MACRO, ORG, RADIX,

SET, and REPT both exist for the IAR assembler and AS and have same
functionality. Changes are needed for the following instructions:

4.44. 75K0 205

IAR AS Funktion

#include include include file
#define SET, EQU define symbol
#elif, ELIF, ELSEIF ELSEIF start another

IF branch
#else, ELSE ELSE last branch of an IF

construct
#endif, ENDIF ENDIF ends an IF construct
#error ERROR, FATAL create error message
#if, IF IF start an IF construct
#ifdef IFDEF symbol defined ?
#ifndef IFNDEF symbol not defined ?
#message MESSAGE output message
=, DEFINE, EQU =, EQU fixed value assignment
EVEN ALIGN 2 force PC to be equal
COL, PAGSIZ PAGE set page size for listing
ENDR ENDM end REPT construct
LSTCND, LSTOUT LISTING control amount of listing
LSTEXP, LSTREP MACEXP list expanded macros?
LSTXRF <command line> generate cross reference
PAGE NEWPAGE new page in listing
REPTC IRPC repetition with character

replacement

There is no direct equivalent for CASEON, CASEOFF, LOCAL, LSTPAG, #undef,
and REPTI.

A 100% equivalent is of course impossible as long as there is no C-like pre-
processor in AS. C-like comments unfortunately are also impossible at the
moment. Caution: When modifying IAR codes for AS, do not forget to
move converted preprocessor statements out of column 1 as AS reserves this
column exclusively for labels!

4.44 75K0

Similar to other processors, the assembly language of the 75 series also knows
pseudo bit operands, i.e. it is possible to assign a combination of address and

206 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

bit number to a symbol that can then be used as an argument for bit oriented
instructions just like explicit expressions. The following three instructions for
example generate the same code:

ADM sfr 0fd8h

SOC bit ADM.3

skt 0fd8h.3

skt ADM.3

skt SOC

AS distinguishes direct and symbolic bit accesses by the missing dot in sym-
bolic names; it is therefore forbidden to use dots in symbol names to avoid
misunderstandings in the parser.

The storage format of bit symbols mostly accepts the binary coding in the
machine instructions themselves: 16 bits are used, and there is a ”long” and
a ”short” format. The short format can store the following variants:

• direct accesses to the address range from 0FBxH to 0FFxH

• indirect accesses in the style of Addr.@L (0FC0H ≤ Addr ≤0FFFH)

• indirect accesses in the style of @H+d4.bit

The upper byte is set to 0, the lower byte contains the bit expression coded
according to [73]. The long format in contrast only knows direct addressing,
but it can cover the whole address space (given a correct setting of MBS
and MBE). A long expression stores bits 0..7 of the address in the lower
byte, the bit position in bits 8 and 9, and a constant value of 01 in bits 10
and 11. The highest bits allow to distinguish easily between long and short
addresses via a check if the upper byte is 0. Bits 12..15 contain bits 8..11 of
the address; they are not needed to generate the code, but they have to be
stored somewhere as the check for correct banking can only take place when
the symbol is actually used.

4.45. 78K0 207

4.45 78K0

NEC uses different ways to mark absolute addressing in its data books:

• absolute short: no prefix

• absolute long: prefix of !

• PC relative: prefix of $

Under AS, these prefixes are only necessary if one wants to force a certain
addressing mode and the instruction allows different variants. Without a
prefix, AS will automatically select the shortest variant. It should therefore
rarely be necessary to use a prefix in practice.

4.46 78K2

Analogous to the 78K0, NEC here also uses dollar signs and exclamation
marks to specify different lengths of address expressions. The selection be-
tween long and short addresses is done automatically (both in RAM and SFR
areas), only relative addressing has to be selected explicitly, if an instruction
supports both variants (like BR).

An additional remark (which is also true for the 78K0): Those who want to
use Motorola syntax via RELAXED, might have to put hexadecimal constants in
parentheses, since the leading dollar sign might be misunderstood as relative
addressing...

4.47 uPD772x

Both the 7720 and 7725 are provided by the same code generator and are
extremely similar in their instruction set. One should however not beleive
that they are binary compatible: To get space for the longer address fields
and additional instructions, the bit positions of some fields in the instruction
word have changed, and the instruction length has changed from 23 to 24
bits. The code format therefore uses different header ids for both CPUs.

They both have in common that in addition to the code and data segment,
there is also a ROM for storage of constants. In the case of AS, it is mapped
onto the ROMDATA segment!

208 CHAPTER 4. PROCESSOR-SPECIFIC HINTS

4.48 F2MC16L

Along with the discussion of the ASSUME statement, it has already been men-
tioned that it is important to inform AS about the correct current values of
all bank registers - if your program uses more than 64K RAM or 64K ROM.
With these assumptions in mind, AS checks every direct memory access for
attempts to access a memory location that is currently not in reach. Of
course, standard situations only require knowledge of DTB and DPR for this
purpose, since ADB resp. SSB/USB are only used for indirect accesses via
RW2/RW6 resp. RW3/RW7 and this mechanism anyway doesn’t work for
indirect accesses. However, similar to the 8086, it is possible to place a prefix
in front of an instruction to replace DTB by a different register. AS therefore
keeps track of used segment prefixes and toggles appropriately for the next
machine instruction. A pseudo instruction placed between the prefix and the
machine instruction does not reset the toggle. This is also true for pseudo
instructions that store data or modify the program counter. Which doesn’t
make much sense anyway...

Chapter 5

File Formats

In this chapter, the formats of files AS generates shall be explained whose
formats are not self-explanatory.

5.1 Code Files

The format for code files generated by the assembler must be able to separate
code parts that were generated for different target processors; therefore, it
is a bit different from most other formats. Though the assembler package
contains tools to deal with code files, I think is a question of good style to
describe the format in short:

If a code file contains multibyte values, they are stored in little endian order.
This rule is already valid for the 16-bit magic word $1489, i.e. every code
file starts with the byte sequence $89/$14.

This magic word is followed by an arbitrary number of ”records”. A record
may either contain a continuous piece of the code or certain additional in-
formation. Even without switching to different processor types, a file may
contain several code-containing records, in case that code or constant data
areas are interrupted by reserved memory areas that should not be initialized.
This way, the assembler tries to keep the file as short as possible.

Common to all records is a header byte which defines the record’s type and
its contents. Written in a PASCALish way, the record structure can be
described in the following way:

209

210 CHAPTER 5. FILE FORMATS

FileRecord = RECORD CASE Header:Byte OF

$00:(Creator:ARRAY[] OF Char);

$01..

$7f:(StartAdr : LongInt;

Length : Word;

Data : ARRAY[0..Length-1] OF Byte);

$80:(EntryPoint:LongInt);

$81:(Header : Byte;

Segment : Byte;

Gran : Byte;

StartAdr : LongInt;

Length : Word;

Data : ARRAY[0..Length-1] OF Byte);

END

This description does not express fully that the length of data fields is variable
and depends on the value of the Length entries.

A record with a header byte of $81 is a record that may contain code or data
from arbitrary segments. The first byte (Header) describes the processor
family the following code resp. data was generated for (see tables 5.1 and
5.2).

The Segment field signifies the address space the following code belongs to.
The assignment defined in table 5.3 applies. The Gran field describes the
code’s ”granularity”, i.e. the size of the smallest addressable unit in the
following set of data. This value is a function of processor type and segment
and is an important parameter for the interpretation of the following two
fields that describe the block’s start address and its length: While the start
address refers to the granularity, the Length value is always expressed in
bytes! For example, if the start address is $300 and the length is 12, the
resulting end address would be $30b for a granularity of 1, however $303
for a granularity of 4! Granularities that differ from 1 are rare and mostly
appear in DSP CPU’s that are not designed for byte processing. For example,
a DSP56K’s address space is organized in 64 Kwords of 16 bits. The resulting
storage capacity is 128 Kbytes, however it is organized as 216 words that are
addressed with addresses 0,1,2,...65535!

The start address is always 32 bits in size, independent of the processor
family. In contrast, the length specification has only 16 bits, i.e. a record
may have a maximum length of 4+4+2+(64K-1) = 65545 bytes.

5.1. CODE FILES 211

Header Family Header Family

$01 680x0, 6833x $03 M*Core
$04 XGATE $05 PowerPC
$09 DSP56xxx $11 65xx/MELPS-740
$12 MELPS-4500 $13 M16
$14 M16C $15 F2MC8L
$16 F2MC16L $19 65816/MELPS-7700
$21 MCS-48 $25 SYM53C8xx
$29 29xxx $2a i960
$31 MCS-51 $32 ST9
$33 ST7 $37 2650
$38 1802/1805 $39 MCS-96/196/296
$3a 8X30x $3b AVR
$3c XA $3f 4004/4040
$41 8080/8085 $42 8086..V35
$47 TMS320C6x $48 TMS9900
$49 TMS370xxx $4a MSP430
$4b TMS320C54x $4c 80C166/167
$51 Z80/180/380 $52 TLCS-900
$53 TLCS-90 $54 TLCS-870
$55 TLCS-47 $56 TLCS-9000
$59 eZ8 $5b KCPSM3
$5c LatticeMico8 $5e 68RS08
$5f COP4 $60 78K2
$61 6800, 6301, 6811 $62 6805/HC08
$63 6809 $64 6804
$65 68HC16 $66 68HC12
$67 ACE $68 H8/300(H)
$69 H8/500 $6a 807x
$6b KCPSM $6c SH7000
$6d SC14xxx $6e SC/MP
$6f COP8 $70 PIC16C8x
$71 PIC16C5x $72 PIC17C4x
$73 TMS-7000 $74 TMS3201x
$75 TMS320C2x $76 TMS320C3x

Table 5.1: Header Bytes for the Different Processor Families

212 CHAPTER 5. FILE FORMATS

Header Family Header Family

$77 TMS320C20x/TMS320C5x $78 ST6
$79 Z8 $7a µPD78(C)10
$7b 75K0 $7c 78K0
$7d µPD7720 $7e µPD7725
$7f µPD77230

Table 5.2: Header Bytes for the Different Processor Families

number segment number segment

$00 <undefined> $01 CODE

$02 DATA $03 IDATA

$04 XDATA $05 YDATA

$06 BDATA $07 IO

$08 REG $09 ROMDATA

Table 5.3: Codings of the Segment Field

Data records with a Header ranging from $01 to $7f present a shortcut and
preserve backward compatibility to earlier definitions of the file format: in
their case, the Header directly defines the processor type, the target seg-
ment is fixed to CODE and the granularity is implicitly given by the processor
type, rounded up to the next power of two. AS prefers to use these records
whenever data or code should go into the CODE segment.

A record with a Header of $80 defines an entry point, i.e. the address where
execution of the program should start. Such a record is the result of an END

statement with a corresponding address as argument.

The last record in a file bears the Header $00 and has only a string as data
field. This string does not have an explicit length specification; its end is
equal to the file’s end. The string contains only the name of the program
that created the file and has no further meaning.

5.2 Debug Files

Debug files may optionally be generated by AS. They deliver important in-
formation for tools used after assembly, like disassemblers or debuggers. AS

5.2. DEBUG FILES 213

can generate debug files in one of three formats: On the one hand, the object
format used by the AVR tools from Atmel respectively a NoICE-compatible
command file, and on the other hand an own format. The first two are de-
scribed in detail in [4] resp. the NoICE documentations, which is why the
following description limits itself to the AS-specific MAP format:

The information in a MAP file is split into three groups:

• symbol table

• memory usage per section

• machine addresses of source lines

The second item is listed first in the file. A single entry in this list consists
of two numbers that are separated by a : character:

<line number>:<address>

Such an entry states that the machine code generated for the source state-
ment in a certain line is stored at the mentioned address (written in hex-
adecimal notation). With such an information, a debugger can display the
corresponding source lines while stepping through a program. As a program
may consist of several include files, and due to the fact that a lot of processors
have more than one address space (though admittedly only one of them is
used to store executable code), the entries described above have to be sorted.
AS does this sorting in two levels: The primary sorting criteria is the target
segment, and the entries in one of these sections are sorted according to files.
The sections resp. subsections are separated by special lines in the style of

Segment <segment name>

resp.

File <file name> .

The source line info is followed by the symbol table. Similar to the source
line info, the symbol table is primarily sorted by the segments individual
symbols are assigned to. In contrast to the source line info, an additional
section NOTHING exists which contains the symbols that are not assigned to
any specific segment (e.g. symbols that have been defined with a simple
EQU statement). A section in the symbol table is started with a line of the
following type:

214 CHAPTER 5. FILE FORMATS

Symbols in Segment <segment name>

The symbols in a section are sorted according to the alphabetical order of
their names, and one symbol entry consists of exactly one line. Such a line
consists of 5 fields witch are separated by at least a single space:

The first field is the symbol’s name, possibly extended by a section number
enclosed in brackets. Such a section number limits the range of validity for a
symbol. The second field designates the symbol’s type: Int stands for integer
values, Float for floating point numbers, and String for character arrays.
The third field finally contains the symbol’s value. If the symbol contains
a string, it is necessary to use a special encoding for control characters and
spaces. Without such a coding, spaces in a string could be misinterpreted
as delimiters to the next field. AS uses the same syntax that is also valid
for assembly source files: Instead of the character, its ASCII value with a
leading backslash (\) is inserted. For example, the string

This is a test

becomes

This\032is\032\a\032test .

The numerical value always has three digits and has to be interpreted as a
decimal value. Naturally, the backslash itself also has to be coded this way.

The fourth field specifies - if available - the size of the data structure placed
at the address given by the symbol. A debugger may use this information to
automatically display variables in their correct length when they are referred
symbolically. In case AS does not have any information about the symbol
size, this field simply contains the value -1.

Finally,the fifth field states via the values 0 or 1 if the symbol has been used
during assembly. A program that reads the symbol table can use this field
to skip unused symbols as they are probably unused during the following
debugging/disassembly session.

The third section in a debug file describes the program’s sections in detail.
The need for such a detailed description arises from the sections’ ability to
limit the validity range of symbols. A symbolic debugger for example cannot
use certain symbols for a reverse translation, depending on the current PC
value. It may also have to regard priorities for symbol usage when a value
is represented by more than one symbol. The definition of a section starts
with a line of the following form:

5.2. DEBUG FILES 215

Info for Section nn ssss pp

nn specifies the section’s number (the number that is also used in the symbol
table as a postfix for symbol names), ssss gives its name and pp the number
of its parent section. The last information is needed by a retranslator to
step upward through a tree of sections until a fitting symbol is found. This
first line is followed by a number of further lines that describe the code
areas used by this section. Every single entry (exactly one entry per line)
either describes a single address or an address range given by a lower and
an upper bound (separation of lower and upper bound by a minus sign).
These bounds are ”inclusive”, i.e. the bounds themselves also belong to the
area. Is is important to note that an area belonging to a section is not
additionally listed for the section’s parent sections (an exception is of course
a deliberate multiple allocation of address areas, but you would not do this,
would you?). On the one hand, this allows an optimized storage of memory
areas during assembly. On the other hand, this should not be an obstacle
for symbol backtranslation as the single entry already gives an unambiguous
entry point for the symbol search path. The description of a section is ended
by an empty line or the end of the debug file.

Program parts that lie out of any section are not listed separately. This
implicit ”root section” carries the number -1 and is also used as parent section
for sections that do not have a real parent section.

It is possible that the file contains empty lines or comments (semi colon at
line start). A program reading the file has to ignore such lines.

216 CHAPTER 5. FILE FORMATS

Chapter 6

Utility Programs

To simplify the work with the assembler’s code format a bit, I added some
tools to aid processing of code files. These programs are released under the
same license terms as stated in section 1.1!

Common to all programs are the possible return codes they may deliver upon
completion (see table 6.1).

return code error condition

0 no errors
1 error in command line parameters
2 I/O error
3 file format error

Table 6.1: Return Codes of the Utility Programs

Just like AS, all programs take their input from STDIN and write messages to
STDOUT (resp. error messages to STDERR). Therefore, input and output
redirections should not be a problem.

In case that numeric or address specifications have to be given in the com-
mand line, they may also be written in hexadecimal notation when they are
prefixed with a dollar character or a 0x like in C. (e.g. $10 or 0x10 instead
of 16).

Unix shells however assign a special meaning to the dollar sign, which makes UNIX

217

218 CHAPTER 6. UTILITY PROGRAMS

it necessary to escape a dollar sign with a backslash. The 0x variant is
definitely more comfortable in this case.

Otherwise, calling conventions and variations are equivalent to those of AS
(except for PLIST and AS2MSG); i.e. it is possible to store frequently used
parameters in an environment variable (whose name is constructed by ap-
pending CMD to the program’s name, i.e. BINDCMD for BIND), to negate
options, and to use all upper- resp. lower-case writing (for details on this,
see section 2.4).

Address specifications always relate to the granularity of the processor cur-
rently in question; for example, on a PIC, an address difference of 1 means
a word and not a byte.

6.1 PLIST

PLIST is the simplest one of the five programs supplied: its purpose is simply
to list all records that are stored in a code file. As the program does not do
very much, calling is quite simple:

PLIST <file name>

The file name will automatically be extended with the extension P if it doesn’t
already have one.

CAUTION! At this place, no wildcards are allowed! If there is a necessity
to list several files with one command, use the following ”mini batch”:

for %n in (*.p) do plist %n

PLIST prints the code file’s contents in a table style, whereby exactly one line
will be printed per record. The individual rows have the following meanings:

• code type: the processor family the code has been generated for.

• start address: absolute memory address that expresses the load desti-
nation for the code.

• length: length of this code chunk in bytes.

6.2. BIND 219

• end address: last address of this code chunk. This address is calculated
as start address+length-1.

All outputs are in hexadecimal notation.

Finally, PLIST will print a copyright remark (if there is one in the file),
together with a summaric code length.

Simply said, PLIST is a sort of DIR for code files. One can use it to examine
a file’s contents before one continues to process it.

6.2 BIND

BIND is a program that allows to concatenate the records of several code
files into a single file. A filter function is available that can be used to copy
only records of certain types. Used in this way, BIND can also be used to
split a code file into several files.

The general syntax of BIND is

BIND <source file(s)> <target file> [options]

Just like AS, BIND regards all command line arguments that do not start
with a +, - or / as file specifications, of which the last one must designate
the destination file. All other file specifications name sources, which may
again contain wildcards.

Currently, BIND defines only one command line option:

• f <Header[,Header]>: sets a list of record headers that should be
copied. Records with other header IDs will not be copied. Without
such an option, all records will be copied. The headers given in the list
correspond to the HeaderID field of the record structure described in
section 5.1. Individual headers in this list are separated with commas.

For example, to filter all MCS-51 code out of a code file, use BIND in the
following way:

BIND <source name> <target name> -f $31

If a file name misses an extension, the extension P will be added automati-
cally.

220 CHAPTER 6. UTILITY PROGRAMS

6.3 P2HEX

P2HEX is an extension of BIND. It has all command line options of BIND
and uses the same conventions for file names. In contrary to BIND, the
target file is written as a Hex file, i.e. as a sequence of lines which represent
the code as ASCII hex numbers.

P2HEX knows 8 different target formats, which can be selected via the com-
mand line parameter F:

• Motorola S-Records (-F Moto)

• MOS Hex (-F MOS)

• Intel Hex (Intellec-8, -F Intel)

• 16-Bit Intel Hex (MCS-86, -F Intel16)

• 32-Bit Intel Hex (-F Intel32)

• Tektronix Hex (-F Tek)

• Texas Instruments DSK (-F DSK)

• Atmel AVR Generic (-F Atmel, see [4])

If no target format is explicitly specified, P2HEX will automatically choose
one depending in the processor type: S-Records for Motorola CPUs, Hitachi,
and TLCS-900, MOS for 65xx/MELPS, DSK for the 16 bit signal processors
from Texas, Atmel Generic for the AVRs, and Intel Hex for the rest. De-
pending on the start addresses width, the S-Record format will use Records
of type 1, 2, or 3, however, records in one group will always be of the same
type. This automatism can be partially suppressed via the command line
option

-M <1|2|3>

A value of 2 resp. 3 assures that that S records with a minimum type of 2
resp. 3 will be used, while a value of 1 corresponds to the full automatism.

Normally, the AVR format always uses an address length of 3 bytes. Some
programs however do not like that...which is why there is a switch

6.3. P2HEX 221

-avrlen <2|3>

that allows to reduce the address length to two bytes in case of emergency.

The Intel, MOS and Tektronix formats are limited to 16 bit addresses, the
16-bit Intel format reaches 4 bits further. Addresses that are to long for a
given format will be reported by P2HEX with a warning; afterwards, they
will be truncated (!).

For the PIC microcontrollers, the switch

-m <0..3>

allows to generate the three different variants of the Intel Hex format. For-
mat 0 is INHX8M which contains all bytes in a Lo-Hi-Order. Addresses
become double as large because the PICs have a word-oriented address space
that increments addresses only by one per word. This format is also the
default. With Format 1 (INHX16M), bytes are stored in their natural order.
This is the format Microchip uses for its own programming devices. For-
mat 2 (INHX8L) resp. 3 (INHX8H) split words into their lower resp. upper
bytes. With these formats, P2HEX has to be called twice to get the complete
information, like in the following example:

p2hex test -m 2

rename test.hex test.obl

p2hex test -m 3

rename test.hex test.obh

For the Motorola format, P2HEX additionally uses the S5 record type men-
tioned in [8]. This record contains the number of data records (S1/S2/S3)
to follow. As some programs might not know how to deal with this record,
one can suppress it with the option

+5 .

In case a source file contains code record for different processors, the different
hex formats will also show up in the target file - it is therefore strongly
advisable to use the filter function.

Apart form this filter function, P2HEX also supports an address filter, which
is useful to split the code into several parts (e.g. for a set of EPROMs):

222 CHAPTER 6. UTILITY PROGRAMS

-r <start address>-<end address>

The start address is the first address in the window, and the end address
is the last address in the window, not the first address that is out of the
window. For example, to split an 8051 program into 4 2764 EPROMs, use
the following commands:

p2hex <source file> eprom1 -f $31 -r $0000-$1fff

p2hex <source file> eprom2 -f $31 -r $2000-$3fff

p2hex <source file> eprom3 -f $31 -r $4000-$5fff

p2hex <source file> eprom4 -f $31 -r $6000-$7fff

By default, the address window is 32 Kbytes large and starts at address 0.

CAUTION! This type of splitting does not change the absolute addresses
that will be written into the files! If the addresses in the individual hex files
should rather start at 0, one can force this with the additional switch

-a .

On the other hand, to move the addresses to a different location, one may
use the switch

-R <value> .

The value given is an offset, i.e. it is added to the addresses given in the
code file.

A special value for start and stop address arguments is a single dollar sign
($). This stands for the very first resp. last address that has been used in
the code file. So, if you want to be sure that always the whole program is
stored in the hex file, set the address filter

-r $-$

and you do not have to worry about address filters any more. Dollar signs
and fixed addresses may of course me mixed. For example, the setting

-r $-$7fff

6.3. P2HEX 223

limits the upper end to 32 Kbytes.

By using an offset, it is possible to move a file’s contents to an arbitrary
position. This offset is simply appended to a file’s name, surrounded with
parentheses. For example, if the code in a file starts at address 0 and you
want to move it to address 1000 hex in the hex file, append ($1000) to the
file’s name (without spaces!).

As the TI DSK format has the ability to distinguish between data and code,
there is a switch

-d <start>-<end>

to designate the address range that should be written as data instead of code.
For this option, single dollar signs are not allowed! This option should not
be used in new projects any more, since P2HEX now can directly handle
data in the DATA segment.

While this switch is only relevant for the DSK format, the option

-e <address>

is also valid for the Intel and Motorola formats. Its purpose is to set the
entry address that will be inserted into the hex file. If such a command
line parameter is missing, P2HEX will search a corresponding entry in the
code file. If even this fails, no entry address will be written to the hex
file (DSK/Intel) or the field reserved for the entry address will be set to 0
(Motorola).

Unfortunately, one finds different statements about the last line of an Intel-
Hex file in literature. Therefore, P2HEX knows three different variants that
may be selected via the command-line parameter i and an additional number:

0 :00000001FF

1 :00000001

2 :0000000000

By default, variant 0 is used which seems to be the most common one.

If the target file name does not have an extension, an extension of HEX is
supposed.

By default, P2HEX will print a maximum of 16 data bytes per line, just as
most other tools that output Hex files. If you want to change this, you may
use the switch

224 CHAPTER 6. UTILITY PROGRAMS

-l <count> .

The allowed range of values goes from 2 to 254 data bytes; odd values will
implicitly be rounded down to an even count.

In most cases, the temporary code files generated by AS are not of any further
need after P2HEX has been run. The command line option

-k

allows to instruct P2HEX to erase them automatically after conversion.

In contrast to BIND, P2HEX will not produce an empty target file if only
one file name (i.e. the target name) has been given. Instead, P2HEX will
use the corresponding code file. Therefore, a minimal call in the style of

P2HEX <name>

is possible, to generate <name>.hex out of <name>.p.

6.4 P2BIN

P2BIN works similar to P2HEX and offers the same options (except for the
a and i options that do not make sense for binary files), however, the result is
stored as a simple binary file instead of a hex file. Such a file is for example
suitable for programming an EPROM.

P2BIN knows three additional options to influence the resulting binary file:

• l <8 bit number>: sets the value that should be used to fill unused
memory areas. By default, the value $ff is used. This value assures
that every half-way intelligent EPROM burner will skip these areas.
This option allows to set different values, for example if you want to
generate an image for the EPROM versions of MCS-48 microcontrollers
(empty cells of their EPROM array contain zeroes, so $00 would be the
correct value in this case).

6.4. P2BIN 225

• s: commands the program to calculate a checksum of the binary file.
This sum is printed as a 32-bit value, and the two’s complement of the
least significant bit will be stored in the file’s last byte. This way, the
modulus- 256-sum of the file will become zero.

• m: is designed for the case that a CPU with a 16- or 32-bit data bus is
used and the file has to be split for several EPROMs. The argument
may have the following values:

– ALL: copy everything

– ODD: copy all bytes with an odd address

– EVEN: copy all bytes with an even address

– BYTE0..BYTE3: copy only bytes with an address of 4n+0 .. 4n+3

– WORD0, WORD1: copy only the lower resp. upper 16- bit word of a
32-bit word

To avoid confusions: If you use this option, the resulting binary file will
become smaller because only a part of the source will be copied. Therefore,
the resulting file will be smaller by a factor of 2 or 4 compared to ALL. This
is just natural...

In case the code file does not contain an entry address, one may set it via
the -e command line option just like with P2HEX. Upon request, P2BIN
prepends the resulting image with this address. The command line option

-S

activates this function. It expects a numeric specification ranging from 1 to
4 as parameter which specifies the length of the address field in bytes. This
number may optionally be prepended wit a L or B letter to set the endian
order of the address. For example, the specification B4 generates a 4 byte
address in big endian order, while a specification of L2 or simply 2 creates a
2 byte address in little endian order.

226 CHAPTER 6. UTILITY PROGRAMS

6.5 AS2MSG

AS2MSG is not a tool in the real sense, it is a filter that was designed to
simplify the work with the assembler for (fortunate) users of Borland Pascal
7.0. The DOS IDEs feature a ’tools’ menu that can be extended with own
programs like AS. The filter allows to directly display the error messages
paired with a line specification delivered by AS in the editor window. A new
entry has to be added to the tools menu to achieve this (Options/Tools/New).
Enter the following values:

- Title: ~m~acro assembler

- Program path: AS

- Command line:

-E !1 $EDNAME $CAP MSG(AS2MSG) $NOSWAP $SAVE ALL

- assign a hotkey if wanted (e.g. Shift-F7)

The -E option assures that Turbo Pascal will not become puzzled by STDIN
and STDERR.

I assume that AS and AS2MSG are located in a directory listed in the PATH

variable. After pressing the appropriate hotkey (or selecting AS from the
tools menu), as will be called with the name of the file loaded in the active
editor window as parameter. The error messages generated during assembly
are redirected to a special window that allows to browse through the errors.
Ctrl-Enter jumps to an erroneous line. The window additionally contains
the statistics AS prints at the end of an assembly. These lines obtain the
dummy line number 1.

TURBO.EXE (Real Mode) and BP.EXE (Protected Mode) may be used for this
way of working with AS. I recommend however BP, as this version does not
have to ’swap’ half of the DOS memory before before AS is called.

Appendix A

Error Messages of AS

Here is a list of all error messages emitted by AS. Each error message is
described by:

• the internal error number (it is displayed only if AS is started with the
-n option)

• the text of the error message

• error type:

– Warning: informs the user that a possible error was found, or that
some inefficient binary code could be generated. The assembly
process is not stopped.

– Error: an error was detected. The assembly process continues,
but no binary code is emitted.

– Fatal: unrecoverable error. The assembly process is terminated.

• reason of the error: the situation originating the error.

• argument: a further explanation of the error message.

0 useless displacement

Type:
warning

227

228 APPENDIX A. ERROR MESSAGES OF AS

Reason:
680x0, 6809 and COP8 CPUs: an address displacement of 0 was
given. An address expression without displacement is generated,
and a convenient number of NOPs are emitted to avoid phasing
errors.

Argument:
none

10 short addressing possible

Type:
warning

Reason:
680x0-, 6502 and 68xx CPUs: a given memory location can be
reached using short addressing. A short addressing instruction
is emitted, together with the required number of NOPs to avoid
phasing errors.

Argument:
none

20 short jump possible

Type:
warning

Reason:
680x0- and 8086 CPUs can execute jumps using a short or long
displacement. If a shorter jump was not explicitly requested, in
the first pass room for the long jump is reserved. Then the code
for the shorter jump is emitted, and the remaining space is filled
with NOPs to avoid phasing errors.

Argument:
none

30 no sharefile created, SHARED ignored

Type:
warning

229

Reason:
A SHARED directive was found, but on the command line no options
were specified, to generate a shared file.

Argument:
none

40 FPU possibly cannot read this value (>=1E1000)

Type:
warning

Reason:
The BCD-floating point format used by the 680x0-FPU allows
such a large exponent, but according to the latest databooks, this
cannot be fully interpreted. The corresponding word is assembled,
but the associated function is not expected to produce the correct
result.

Argument:
none

50 privileged instruction

Type:
warning

Reason:
A Supervisor-mode directive was used, that was not preceded by
an explicit SUPMODE ON directive

Argument:
none

60 distance of 0 not allowed for short jump (NOP created instead)

Type:
warning

Reason:
A short jump with a jump distance equal to 0 is not allowed by
680x0 resp. COP8 processors, since the associated code word is
used to identify long jump instruction. Instead of a jump instruc-
tion, AS emits a NOP

230 APPENDIX A. ERROR MESSAGES OF AS

Argument:
none

70 symbol out of wrong segment

Type:
warning

Reason:
The symbol used as an operand comes from an address space that
cannot be addressed together with the given instruction

Argument:
none

75 segment not accessible

Type:
warning

Reason:
The symbol used as an operand belongs to an address space that
cannot be accessed with any of the segment registers of the 8086

Argument:
The name of the inaccessible segment

80 change of symbol values forces additional pass

Type:
warning

Reason:
A symbol changed value, with respect to previous pass. This
warning is emitted only if the -r option is used.

Argument:
name of the symbol that changed value.

90 overlapping memory usage

Type:
warning

231

Reason:
The analysis of the usage list shows that part of the program
memory was used more than once. The reason can be an excessive
usage of ORG directives.

Argument:
none

100 none of the CASE conditions was true

Type:
warning

Reason:
A SWITCH...CASE directive without ELSECASE clause was exe-
cuted, and none of the CASE conditions was found to be true.

Argument:
none

110 page might not be addressable

Type:
warning

Reason:
The symbol used as an operand was not found in the memory
page defined by an ASSUME directive (ST6, 78(C)10).

Argument:
none

120 register number must be even

Type:
warning

Reason:
The CPU allows to concatenate only register pairs, whose start
address is even (RR0, RR2, ..., only for Z8).

Argument:
none

130 obsolete instruction, usage discouraged

232 APPENDIX A. ERROR MESSAGES OF AS

Type:
warning

Reason:
The instruction used, although supported, was superseded by a
new instruction. Future versions of the CPU could no more im-
plement the old instruction.

Argument:
none

140 unpredictable execution of this instruction

Type:
warning

Reason:
The addressing mode used for this instruction is allowed, how-
ever a register is used in such a way that its contents cannot be
predicted after the execution of the instruction.

Argument:
none

150 localization operator senseless out of a section

Type:
warning

Reason:
An aheaded must be used, so that it is explicitly referred to the
local symbols used in the section. When the operator is used out
of a section, there are no local symbols, because this operator is
useless in this context.

Argument:
none

160 senseless instruction

Type:
warning

233

Reason:
The instruction used has no meaning, or it can be substituted by
an other instruction, shorter and more rapidly executed.

Argument:
none

170 unknown symbol value forces additional pass

Type:
warning

Reason:
AS expects a forward definition of a symbol, i.e. a symbol was
used before it was defined. A further pass must be executed. This
warning is emitted only if the -r option was used.

Argument:
none

180 address is not properly aligned

Type:
warning

Reason:
An address was used that is not an exact multiple of the operand
size. Although the CPU databook forbids this, the address could
be stored in the instruction word, so AS simply emits a warning.

Argument:
none.

190 I/O-address must not be used here

Type:
warning

Reason:
The addressing mode or the address used are correct, but the
address refers to the peripheral registers, and it cannot be used in
this circumstance.

Argument:
none.

234 APPENDIX A. ERROR MESSAGES OF AS

200 possible pipelining effects

Type:
warning

Reason:
A register is used in a series of instructions, so that a sequence of
instructions probably does not generate the desired result. This
usually happens when a register is used before its new content was
effectively loaded in it.

Argument:
the register probably causing the problem.

210 multiple use of address register in one instruction

Type:
warning

Reason:
A register used for the addressing is used once more in the same
instruction, in a way that results in a modification of the register
value. The resulting address does not have a well defined value.

Argument:
the register used more than once.

220 memory location is not bit addressable

Type:
warning

Reason:
Via a SFRB statement, it was tried to declare a memory cell as
bit addressable which is not bit addressable due to the 8051’s
architectural limits.

Argument:
none

230 stack is not empty

Type:
warning

235

Reason:
At the end of a pass, a stack defined by the program is not empty.

Argument:
the name of the stack and its remaining depth

240 NUL character in string, result is undefined

Type:
warning

Reason:
A string constant contains a NUL character. Though this works
with the Pascal version, it is a problem for the C version of AS
since C itself terminates strings with a NUL character. i.e. the
string would have its end for C just at this point...

Argument:
none

250 instruction crosses page boundary

Type:
warning

Reason:
The parts of a machine statement partiallly lie on different pages.
As the CPU’s instruction counter does not get incremented across
page boundaries, the processor would fetch at runtime the first
byte of the old page instead of the instruction’s following byte;
the program would execute incorrectly.

Argument:
none

260 range overflow

Type:
warning

Reason:
A numeric value was out of the allowed range. AS brought the
value back into the allowed range by truncating upper bits, but it
is not guaranteed that meaningful and correct code is generated
by this.

236 APPENDIX A. ERROR MESSAGES OF AS

Argument:
none

270 negative argument for DUP

Type:
warning

Reason:
The repetition argument of a DUP directive was smaller than 0.
Analogous to a count of exactly 0, no data is stored.

Argument:
none

280 single X operand interpreted as indexed and not implicit addressing

Type:
warning

Reason:
A single X operand may be interpreted either as register X or x-
indexed addressing with zero displacement, since Motorola does
not specify this variant. AS chooses the latter, which may not be
the desired one.

Argument:
none

300 bit number will be truncated

Type:
warning

Reason:
This instruction only operates on byte resp. longword operands.
bit numbers beyond 7 resp. 31 will be treated modulo-8 resp.
modulo-32 by the CPU.

Argument:
none

1000 symbol double defined

237

Type:
error

Reason:
A new value is assigned to a symbol, using a label or a EQU, PORT,

SFR, LABEL, SFRB or BIT instruction: however this can be done
only using SET/EVAL.

Argument:
the name of the offending symbol, and the line number where it
was defined for the first time, according to the symbol table.

1010 symbol undefined

Type:
error

Reason:
A symbol is still not defined in the symbol table, also after a
second pass.

Argument:
the name of the undefined symbol.

1020 invalid symbol name

Type:
error

Reason:
A symbol does not fulfill the requirements that symbols must have
to be considered valid by AS. Please pay attention that more strin-
gent syntax rules exist for macros and function parameters.

Argument:
the wrong symbol

1090 invalid format

Type:
error

Reason:
The instruction format used does not exist for this instruction.

238 APPENDIX A. ERROR MESSAGES OF AS

Argument:
the known formats for this command

1100 useless attribute

Type:
error

Reason:
The instruction (processor or pseudo) cannot be used with a point-
suffixed attribute.

Argument:
none

1105 attribute may only be one character long

Type:
error

Reason:
The attribute following a point after an instruction must not be
longer or shorter than one character.

Argument:
none

1107 undefined attribute

Type:
error

Reason:
This instruction uses an invalid attribute.

Argument:
none

1110 wrong number of operands

Type:
error

Reason:
The number of arguments issued for the instruction (processor or
pseudo) does not conform with the accepted number of operands.

239

Argument:
none

1115 wrong number of operations

Type:
error

Reason:
The number of options given with this command is not correct.

Argument:
none

1120 addressing mode must be immediate

Type:
error

Reason:
The instruction can be used only with immediate operands (pre-
ceded by #).

Argument:
none

1130 invalid operand size

Type:
error

Reason:
Although the operand is of the right type, it does not have the
correct length (in bits).

Argument:
none

1131 conflicting operand sizes

Type:
error

Reason:
The operands used have different length (in bits)

240 APPENDIX A. ERROR MESSAGES OF AS

Argument:
none

1132 undefined operand size

Type:
error

Reason:
It is not possible to estimate, from the opcode and from the
operands, the size of the operand (a trouble with 8086 assembly).
You must define it with a BYTE or WORD PTR prefix.

Argument:
none

1135 invalid operand type

Type:
error

Reason:
an expression does not have a correct operand type (integer/-
decimal/string)

Argument:
the operand type

1140 too many arguments

Type:
error

Reason:
No more than 20 arguments can be given to any instruction

Argument:
none

1200 unknown opcode

Type:
error

241

Reason:
An was used that is neither an AS instruction, nor a known
mnemonic for the current processor type.

Argument:
none

1300 number of opening/closing brackets does not match

Type:
error

Reason:
The expression parser found an expression enclosed by parenthe-
ses, where the number of opening and closing parentheses does
not match.

Argument:
the wrong expression

1310 division by 0

Type:
error

Reason:
An expression on the right side of a division or modulus operation
was found to be equal to 0.

Argument:
none

1315 range underflow

Type:
error

Reason:
An integer word underflowed the allowed range.

Argument:
the value of the word and the allowed minimum (in most cases,
maybe I will complete this one day...)

1320 range overflow

242 APPENDIX A. ERROR MESSAGES OF AS

Type:
error

Reason:
An integer word overflowed the allowed range.

Argument:
the value of the world, and the allowed maximum (in most cases,
maybe I will complete this one day...)

1325 address is not properly aligned

Type:
error

Reason:
The given address does not correspond with the size needed by
the data transfer, i.e. it is not an integral multiple of the operand
size. Not all processor types can use unaligned data.

Argument:
none

1330 distance too big

Type:
error

Reason:
The displacement used for an address is too large.

Argument:
none

1340 short addressing not allowed

Type:
error

Reason:
The address of the operand is outside of the address space that
can be accessed using short-addressing mode.

Argument:
none

243

1350 addressing mode not allowed here

Type:
error

Reason:
the addressing mode used, although usually possible, cannot be
used here.

Argument:
none

1351 number must be even

Type:
error

Reason:
At this point, only even addresses are allowed, since the low order
bit is used for other purposes or it is reserved.

Argument:
none

1355 addressing mode not allowed in parallel operation

Type:
error

Reason:
The addressing mode(s) used are allowed in sequential, but not in
parallel instructions

Argument:
none

1360 undefined condition

Type:
error

Reason:
The branch condition used for a conditional jump does not exist.

Argument:
none

244 APPENDIX A. ERROR MESSAGES OF AS

1365 incompatible conditions

Type:
error

Reason:
The used combination of conditions is not poosible in a single
instruction.

Argument:
the condition where the incompatibility was detected.

1370 jump distance too big

Type:
error

Reason:
the jump instruction and destination are too apart to execute the
jump with a single step

Argument:
none

1375 jump distance is odd

Type:
error

Reason:
Since instruction must only be located at even addresses, the jump
distance between two instructions must always be even, and the
LSB of the jump distance is used otherwise. This issue was not
verified here. The reason is usually the presence of an odd number
of data in bytes or a wrong ORG.

Argument:
none

1380 invalid argument for shifting

Type:
error

245

Reason:
only a constant or a data register can be used for defining the shift
size. (only for 680x0)

Argument:
none

1390 operand must be in range 1..8

Type:
error

Reason:
constants for shift size or ADDQ argument can be only within the
1..8 range (only for 680x0)

Argument:
none

1400 shift amplitude too big

Type:
error

Reason:
(no more used)

Argument:
none

1410 invalid register list

Type:
error

Reason:
The register list argument of MOVEM or FMOVEM has a wrong format
(only for 680x0)

Argument:
none

1420 invalid addressing mode for CMP

Type:
error

246 APPENDIX A. ERROR MESSAGES OF AS

Reason:
The operand combination used with the CMP instruction is not
allowed (only for 680x0)

Argument:
none

1430 invalid CPU type

Type:
error

Reason:
The processor type used as argument for CPU command is un-
known to AS.

Argument:
the unknown processor type

1440 invalid control register

Type:
error

Reason:
The control register used by a MOVEC is not (yet) available for the
processor defined by the CPU command.

Argument:
none

1445 invalid register

Type:
error

Reason:
The register used, although valid, cannot be used in this context.

Argument:
none

1450 RESTORE without SAVE

Type:
error

247

Reason:
A RESTORE command was found, that cannot be coupled with a
corresponding SAVE.

Argument:
none

1460 missing RESTORE

Type:
error

Reason:
After the assembling pass, a SAVE command was missing.

Argument:
none.

1465 unknown macro control instruction

Type:
error

Reason:
A macro option parameter is unknown to AS.

Argument:
the dubious option.

1470 missing ENDIF/ENDCASE

Type:
error

Reason:
after the assembling, some of the IF- or CASE- constructs were
found without the closing command

Argument:
none

1480 invalid IF-structure

Type:
error

248 APPENDIX A. ERROR MESSAGES OF AS

Reason:
The command structure in a IF- or SWITCH- sequence is wrong.

Argument:
none

1483 section name double defined

Type:
error

Reason:
In this program module a section with the same name still exists.

Argument:
the multiple-defined name

1484 unknown section

Type:
error

Reason:
In the current scope, there are no sections with this name

Argument:
the unknown name

1485 missing ENDSECTION

Type:
error

Reason:
Not all the sections were properly closed.

Argument:
none

1486 wrong ENDSECTION

Type:
error

249

Reason:
The given ENDSECTION does not refer to the most deeply nested
one.

Argument:
none

1487 ENDSECTION without SECTION

Type:
error

Reason:
An ENDSECTION command was found, but the associated section
was not defined before.

Argument:
none

1488 unresolved forward declaration

Type:
error

Reason:
A symbol declared with a FORWARD or PUBLIC statement could not
be resolved.

Argument:
the name of the unresolved symbol.

1489 conflicting FORWARD < − > PUBLIC-declaration

Type:
error

Reason:
A symbol was defined both as public and private.

Argument:
the name of the symbol.

1490 wrong numbers of function arguments

Type:
error

250 APPENDIX A. ERROR MESSAGES OF AS

Reason:
The number of arguments used for referencing a function does not
match the number of arguments defined in the function definition.

Argument:
none

1495 unresolved literals (missing LTORG)

Type:
error

Reason:
At the end of the program, or just before switching to another
processor type, unresolved literals still remain.

Argument:
none

1500 instruction not allowed on

Type:
error

Reason:
Although the instruction is correct, it cannot be used with the
selected member of the CPU family.

Argument:
none

1505 addressing mode not allowed on

Type:
error

Reason:
Although the addressing mode used is correct, it cannot be used
with the selected member of the CPU family.

Argument:
none

1510 invalid bit position

251

Type:
error

Reason:
Either the number of bits specified is not allowed, or the command
is not completely specified.

Argument:
none

1520 only ON/OFF allowed

Type:
error

Reason:
This pseudo command accepts as argument either ON or OFF

Argument:
none

1530 stack is empty or undefined

Type:
error

Reason:
It was tried to access a stack via a POPV instruction that was either
never defined or already emptied.

Argument:
the name of the stack in question

1540 not exactly one bit set

Type:
error

Reason:
Not exactly one bit was set in a mask passed to the BITPOS func-
tion.

Argument:
none

1550 ENDSTRUCT without STRUCT

252 APPENDIX A. ERROR MESSAGES OF AS

Type:
error

Reason:
An ENDSTRUCT instruction was found though there is currently no
structure definition in progress.

Argument:
none

1551 open structure definition

Type:
error

Reason:
After end of assembly, not all STRUCT instructions have been closed
with appropriate ENDSTRUCTs.

Argument:
the innermost, unfinished structure definition

1552 wrong ENDSTRUCT

Type:
error

Reason:
the name parameter of an ENDSTRUCT instruction does not corre-
spond to the innermost open structure definition.

Argument:
none

1553 phase definition not allowed in structure definition

Type:
error

Reason:
What should I say about that? PHASE inside a record simply does
not make sense and only leads to confusion...

Argument:
none

253

1554 invalid STRUCT directive

Type:
error

Reason:
Only EXTNAMES resp. NOEXTNAMES are allowed as directives of a
STRUCT statement.

Argument:
the unknown directive

1560 instruction is not repeatable

Type:
error

Reason:
This machine instruction cannot be repeated via a RPT construct.

Argument:
none

1600 unexpected end of file

Type:
error

Reason:
It was tried to read past the end of a file with a BINCLUDE state-
ment.

Argument:
none

1700 ROM-offset must be in range 0..63

Type:
error

Reason:
The ROM table of the 680x0 coprocessor has only 64 entries.

Argument:
none

254 APPENDIX A. ERROR MESSAGES OF AS

1710 invalid function code

Type:
error

Reason:
The only function code arguments allowed are SFC, DFC, a data
register, or a constant in the interval of 0..15 (only for 680x0
MMU).

Argument:
none

1720 invalid function code mask

Type:
error

Reason:
Only a number in the interval 0..15 can be used as function code
mask (only for 680x0 MMU)

Argument:
none

1730 invalid MMU register

Type:
error

Reason:
The MMU does not have a register with this name (only for 680x0
MMU).

Argument:
none

1740 level must be in range 0..7

Type:
error

Reason:
The level for PTESTW and PTESTR must be a constant in the range
of 0...7 (only for 680x0 MMU).

255

Argument:
none

1750 invalid bit mask

Type:
error

Reason:
The bit mask used for a bit field command has a wrong format
(only for 680x0).

Argument:
none

1760 invalid register pair

Type:
error

Reason:
The register here defined cannot be used in this context, or there
is a syntactic error (only for 680x0).

Argument:
none

1800 open macro definition

Type:
error

Reason:
An incomplete macro definition was found. Probably an ENDM was
forgotten.

Argument:
none

1805 EXITM not called from within macro

Type:
error

256 APPENDIX A. ERROR MESSAGES OF AS

Reason:
EXITM is designed to terminate a macro expansion. This instruc-
tion only makes sense within macros and an attempt was made to
call it in the absence of macros.

Argument:
none

1810 more than 10 macro parameters

Type:
error

Reason:
A macro cannot have more than 10 parameters

Argument:
none

1815 macro double defined

Type:
error

Reason:
A macro was defined more than once in a program section.

Argument:
the multiply defined macro name.

1820 expression must be evaluatable in first pass

Type:
error

Reason:
The command used has an influence on the length of the emitted
code, so that forward references cannot be resolved here.

Argument:
none

1830 too many nested IFs

Type:
error

257

Reason:
(no more implemented)

Argument:
none

1840 ELSEIF/ENDIF without IF

Type:
error

Reason:
A ELSEIF- or ENDIF- command was found, that is not preceded
by an IF- command.

Argument:
none

1850 nested / recursive macro call

Type:
error

Reason:
(no more implemented)

Argument:
none

1860 unknown function

Type:
error

Reason:
The function invoked was not defined before.

Argument:
The name of the unknown function

1870 function argument out of definition range

Type:
error

258 APPENDIX A. ERROR MESSAGES OF AS

Reason:
The argument does not belong to the allowed argument range
associated to the referenced function.

Argument:
none

1880 floating point overflow

Type:
error

Reason:
Although the argument is within the range allowed to the function
arguments, the result is not valid

Argument:
none

1890 invalid value pair

Type:
error

Reason:
The base-exponent pair used in the expression cannot be com-
puted

Argument:
none

1900 instruction must not start on this address

Type:
error

Reason:
No jumps can be performed by the selected CPU from this address.

Argument:
none

1905 invalid jump target

Type:
error

259

Reason:
No jumps can be performed by the selected CPU to this address.

Argument:
none

1910 jump target not on same page

Type:
error

Reason:
Jump command and destination must be in the same memory
page.

Argument:
none

1920 code overflow

Type:
error

Reason:
An attempt was made to generate more than 1024 code or data
bytes in a single memory page.

Argument:
none

1925 address overflow

Type:
error

Reason:
The address space for the processor type actually used was filled
beyond the maximum allowed limit.

Argument:
none

1930 constants and placeholders cannot be mixed

Type:
error

260 APPENDIX A. ERROR MESSAGES OF AS

Reason:
Instructions that reserve memory, and instructions that define
constants cannot be mixed in a single pseudo instruction.

Argument:
none

1940 code must not be generated in structure definition

Type:
error

Reason:
a STRUCT construct is only designed to describe a data structure
and not to create one; therefore, no instructions are allowed that
generate code.

Argument:
none

1950 parallel construct not possible here

Type:
error

Reason:
Either these instructions cannot be executed in parallel, or they
are not close enough each other, to do parallel execution.

Argument:
none

1960 invalid segment

Type:
error

Reason:
The referenced segment cannot be used here.

Argument:
The name of the segment used.

1961 unknown segment

261

Type:
error

Reason:
The segment referenced with a SEGMENT command does not exist
for the CPU used.

Argument:
The name of the segment used

1962 unknown segment register

Type:
error

Reason:
The segment referenced here does not exist (8086 only)

Argument:
none

1970 invalid string

Type:
error

Reason:
The string has an invalid format.

Argument:
none

1980 invalid register name

Type:
error

Reason:
The referenced register does not exist, or it cannot be used here.

Argument:
none

1985 invalid argument

262 APPENDIX A. ERROR MESSAGES OF AS

Type:
error

Reason:
The command used cannot be performed with the REP-prefix.

Argument:
none

1990 indirect mode not allowed

Type:
error

Reason:
Indirect addressing cannot be used in this way

Argument:
none

1995 not allowed in current segment

Type:
error

Reason:
(no more implemented)

Argument:
none

1996 not allowed in maximum mode

Type:
error

Reason:
This register can be used only in minimum mode

Argument:
none

1997 not allowed in minimum mode

Type:
error

263

Reason:
This register can be used only in maximum mode

Argument:
none

2000 execution packet crosses address boundary

Type:
error

Reason:
An execution packet must not cross a 32-byte address boundary

Argument:
none

2001 multiple use of same execution unit

Type:
error

Reason:
One of the CPU’s execution units was used more than once in an
execution packet

Argument:
the name of the execution unit

2002 multiple long read operations

Type:
error

Reason:
An execution packet contains more than one long read operation,
which is not allowed

Argument:
one of the functional units executing a long read

2003 multiple long write operations

Type:
error

264 APPENDIX A. ERROR MESSAGES OF AS

Reason:
An execution packet contains more than one long write operation,
which is not allowed

Argument:
one of the functional units executing a long write

2004 long read with write operation

Type:
error

Reason:
An execution packet contains both a long read and a write oper-
ation, which is not allowed.

Argument:
one of the execution units executing the conflicting operations

2005 too many reads of one register

Type:
error

Reason:
The same register was referenced more than four times in the same
execution packet.

Argument:
the name of the register referenced too often

2006 overlapping destinations

Type:
error

Reason:
The same register was written more than one time in the same
instruction packet, which is not allowed.

Argument:
the name of the register in question

2008 too many absolute branches in one execution packet

265

Type:
error

Reason:
An execution packet contains more than one direct branch, which
is not allowed.

Argument:
none

2009 instruction cannot be executed on this unit

Type:
error

Reason:
This instruction cannot be executed on this functional unit.

Argument:
none

2010 invalid escape sequence

Type:
error

Reason:
The special character defined using a backslash sequence is not
defined

Argument:
none

2020 invalid combination of prefixes

Type:
error

Reason:
The prefix combination here defined is not allowed, or it cannot
be translated into binary code

Argument:
none

2030 constants cannot be redefined as variables

266 APPENDIX A. ERROR MESSAGES OF AS

Type:
error

Reason:
A symbol that has once been declared as constant with EQU must
not be modified afterwards with SET.

Argument:
the name of the symbol in question

2035 variables cannot be redefined as constants

Type:
error

Reason:
A symbol that has once been declared as variable with SET must
not be redeclared afterwards as constant (e.g. with EQU.

Argument:
the name of the symbol in question

2040 structure name missing

Type:
error

Reason:
A structure’s definition lacks the identifier name for the new struc-
ture

Argument:
none

2050 empty argument

Type:
error

Reason:
Empty strings must not be used in the argument list for this state-
ment

Argument:
none

267

10001 error in opening file

Type:
fatal

Reason:
An error was detected while trying to open a file for input.

Argument:
description of the I/O error

10002 error in writing listing

Type:
fatal

Reason:
An error happened while AS was writing the listing file.

Argument:
description of the I/O error

10003 file read error

Type:
fatal

Reason:
An error was detected while reading a source file.

Argument:
description of the I/O error

10004 file write error

Type:
fatal

Reason:
While AS was writing a code or share file, an error happened.

Argument:
description of the I/O error

10006 heap overflow

268 APPENDIX A. ERROR MESSAGES OF AS

Type:
fatal

Reason:
The memory available is not enough to store all the data needed
by AS. Try using the DPMI or OS/2 version of AS.

Argument:
none

10007 stack overflow

Type:
fatal

Reason:
The program stack crashed, because too complex formulas, or a
bad disposition of symbols and/or macros were used. Try again,
using AS with the option -A.

Argument:
none

Appendix B

I/O Error Messages

The following error messages are generated not only by AS, but also by the
auxiliary programs, like PLIST, BIND, P2HEX, and P2BIN. Only the most
probable error messages are here explained. Should you meet an undocu-
mented error message, then you probably met a program bug! Please inform
us immediately about this!!

2 file not found
The file requested does not exist, or it is stored on another drive.

3 path not found
The path of a file does not exist, or it is on another drive.

4 too much open files
There are no more file handles available to DOS. Increase their number
changing the value associated to FILES= in the file CONFIG.SYS.

5 file access not allowed
Either the network access rights do not allow the file access, or an
attempt was done to rewrite or rename a protected file.

6 invalid file handler

12 invalid access mode

15 invalid drive letter
The required drive does not exist.

269

270 APPENDIX B. I/O ERROR MESSAGES

16 The file cannot be deleted

17 RENAME cannot be done on this drive

100 Unexpected end of file
A file access tried to go beyond the end of file, although according to
its structure this should not happen. The file is probably corrupted.

101 disk full
This is self explaining! Please, clean up !

102 ASSIGN failed

103 file not open

104 file not open for reading

105 file not open for writing

106 invalid numerical format

150 the disk is write-protected
When you don’t use a hard disk as work medium storage, you should
sometimes remove the protecting tab from your diskette!

151 unknown device
you tried to access a peripheral unit that is unknown to DOS. This
should not usually happen, since the name should be automatically
interpreted as a filename.

152 drive not ready
close the disk drive door.

153 unknown DOS function

154 invalid disk checksum
A bad read error on the disk. Try again; if nothing changes, reformat
the floppy disk resp. begin to take care of your hard disk!

155 invalid FCB

271

156 position error
the diskette/hard disk controller has not found a disk track. See nr.
154 !

157 format unknown
DOS cannot read the diskette format

158 sector not found
As nr. 156, but the controller this time could not find a disk sector in
the track.

159 end of paper
You probably redirected the output of AS to a printer. Assembler
printout can be veeery long...

160 device read error
The operating system detected an unclassificable read error

161 device write error
The operating system detected an unclassificable write error

162 general failure error
The operating system has absolutely no idea of what happened to the
device.

272 APPENDIX B. I/O ERROR MESSAGES

Appendix C

Frequently Asked Questions

In this chapter, I tried to collect some questions that arise very often together
with their answers. Answers to the problems presented in this chapter might
also be found at other places in this manual, but one maybe does not find
them immediately...

Q: I am fed up with DOS. Are there versions of AS for other operating
systems ?

A: Apart from the protected mode version that offers more memory when
working under DOS, ports exist for OS/2 and Unix systems like Linux
(currently in test phase). Versions that help operating system manu-
facturers located in Redmont to become even richer are currently not
planned. I will gladly make the sources of AS available for someone else
who wants to become active in this direction. The C variant is proba-
bly the best way to start a port into this direction. He should however
not expect support from me that goes beyond the sources themselves...

Q: Is a support of the XYZ processor planned for AS?

A: New processors are appearing all the time and I am trying to keep pace
by extending AS. The stack on my desk labeled ”undone” however
never goes below the 4 inch watermark... Wishes coming from users

273

274 APPENDIX C. FREQUENTLY ASKED QUESTIONS

of course play an important role in the decision which candidates will
be done first. The internet and the rising amount of documentation
published in electronic form make the acquisition of data books easier
than it used to be, but it always becomes difficult when more exotic
or older architectures are wanted. If the processor family in question
is not in the list of families that are planned (see chapter 1), adding a
data book to a request will have a highly positive influence. Borrowing
books is also fine.

Q: Having a free assembler is really fine, but I now also had use for a disas-
sembler...and a debugger...a simulator would also really be cool!

A: AS is a project I work on in leisure time, the time I have when I do not
have to care of how to make my living. AS already takes a significant
portion of that time, and sometimes I make a time-out to use my
soldering iron, enjoy a Tangerine Dream CD, watch TV, or simply to
fulfill some basic human needs... I once started to write the concept
of a disassembler that was designed to create source code that can be
assembled and that automatically separates code and data areas. I
quickly stopped this project again when I realized that the remaining
time simply did not suffice. I prefer to work on one good program than
to struggle for half a dozen of mediocre apps. Regarded that way, the
answer to the question is unfortunately ”no”...

Q: The screen output of AS is messed up with strange characters, e.g. arrows
and brackets. Why?

A: AS will by default use some ANSI control sequences for screen control.
These sequences will appear unfiltered on your screen if you did not
install an ANSI driver. Either install an ANSI driver or use the DOS
command SET USEANSI=N to turn the sequences off.

Q: AS suddenly terminates with a stack overflow error while assembling my
program. Did my program become to large?

A: Yes and No. Your program’s symbol table has grown a bit unsymmet-
rically what lead to high recursion depths while accessing the table.
Errors of this type especially happen in the 16-bit-OS/2 version of AS

275

which has a very limited stack area. Restart AS with the -A command
line switch. If this does not help, too complex formula expression are
also a possible cause of stack overflows. In such a case, try to split the
formula into intermediate steps.

Q: It seems that AS does not assemble my program up to the end. It worked
however with an older version of AS (1.39).

A: Newer versions of AS no longer ignore the END statement; they actually
terminate assembly when an END is encountered. Especially older in-
clude files made by some users tended to contain an END statement at
their end. Simply remove the superfluous END statements.

Q: I made an assembly listing of my program because I had some more
complicated assembly errors in my program. Upon closer investigation
of the listing, I found that some branches do not point to the desired
target but instead to themselves!

A: This effect happens in case of forward jumps in the first pass. The formula
parser does not yet have the target address in its symbol table, and as it
is a completely independent module, it has to think of a value that even
does not hurt relative branches with short displacement lengths. This
is the current program counter itself...in the second pass, the correct
values would have appeared, but the second pass did not happen due to
errors in the first one. Correct the other errors first so that AS gets into
the second pass, and the listing should look more meaningful again.

Q: Assembly of my program works perfectly, however I get an empty file
when I try to convert it with P2HEX or P2BIN.

A: You probably did not set the address filter correctly. This filter by default
cuts out an area ranging from 0 to 32 Kbytes. If you program contains
memory chunks outside this range, they will be ignored. If your code is
completely beyond the 32K barrier (this is commonplace for processors
of the 65xx and 68xx series), you will get the result you just described.
Simply set the address filter to a range that suits your needs (see the
chapter dealing with P2BIN/P2HEX).

276 APPENDIX C. FREQUENTLY ASKED QUESTIONS

Q: I cannot enter the dollar character when using P2BIN or P2HEX under
Unix. The automatic address range setting does not work, instead I
get strange error messages.

A: Unix shells use the dollar character for expansion of shell variables. If
you want to pass a dollar character to an application, prefix it with a
backslash (\). In the special case of the address range specification for
P2HEX and P2BIN, you may also use 0x instead of the dollar character,
which removes this prblen completely.

Q: I use AS on a Linux system, the loader program for my target system
however runs on a Windows machine. To simplify things, both systems
access the same network drive. Unfortunately, the Windows side refuses
to read the hex files created by the Linux side :-(

A: Windows and Linux systems use slightly different formats for text files
(hex files are a sort of text files). Windows terminates every line with
the characters CR (carriage return) and LF (linefeed), however Linux
only uses the linefeed. It depends on the Windows program’s ’goodwill’
whether it will accept text files in the Linux format or not. If not, it
is possible to transfer the files via FTP in ASCII mode instead of a
network drive. Alternatively, the hex files can be converted to the
Windows format. For example, the program unix2dos can be used to
do this, or a small script under Linux:

awk ’{print $0"\r"}’ test.hex >test_cr.hex

Appendix D

Pseudo-Instructions Collected

This appendix is designed as a quick reference to look up all pseudo instruc-
tions provided by AS. The list is ordered in two parts: The first part lists
the instructions that are always available, and this list is followed by lists
that enumerate the instructions additionally available for a certain processor
family.

Instructions that are always available

= := ALIGN BINCLUDE CASE

CHARSET CPU DEPHASE DOTTEDSTRUCTS ELSE

ELSECASE ELSEIF END ENDCASE ENDIF

ENDM ENDS ENDSECTION ENDSTRUCT ENUM

ERROR EQU EXITM FATAL FORWARD

FUNCTION GLOBAL IF IFB IFDEF

IFEXIST IFNB IFNDEF IFNEXIST IFNUSED

IFUSED INCLUDE IRP LABEL LISTING

MACEXP MACRO MESSAGE NEWPAGE ORG

PAGE PHASE POPV PUSHV PRTEXIT

PRTINIT PUBLIC READ RELAXED REPT

RESTORE SAVE SECTION SEGMENT SHARED

STRUC STRUCT SWITCH TITLE UNION

WARNING WHILE

277

278 APPENDIX D. PSEUDO-INSTRUCTIONS COLLECTED

There is an additional SET resp. EVAL instruction (in case SET is already a
machine instruction).

Motorola 680x0

DC[.<size>] DS[.<size>] FULLPMMU FPU PADDING

PMMU SUPMODE

Motorola 56xxx

DC DS XSFR YSFR

PowerPC

BIGENDIAN DB DD DQ DS

DT DW REG SUPMODE

Motorola M-Core

DC[.<size>] DS[.<size>] REG SUPMODE

Motorola XGATE

ADR BYT DC[.<size>] DFS DS[.<size>]
FCB FCC FDB PADDING RMB

279

Motorola 68xx/Hitachi 6309

ADR BYT DC[.<size>] DFS DS[.<size>]
FCB FCC FDB PADDING RMB

Motorola/Freescale 6805/68HC(S)08

ADR BYT DFS FCB FCC

FDB RMB

Motorola 6809/Hitachi 6309

ADR ASSUME BYT DFS FCB

FCC FDB RMB

Motorola 68HC12

ADR BYT DC[.<size>] DFS DS[.<size>]
FCB FCC FDB PADDING RMB

Motorola 68HC16

ADR ASSUME BYT DC[.<size>] DFS

DS[.<size>] FCBFCC FDB PADDING

RMB

Freescale 68RS08

ADR BYT DFS FCB FCC

FDB RMB

280 APPENDIX D. PSEUDO-INSTRUCTIONS COLLECTED

Hitachi H8/300(L/H)

DC[.<size>] DS[.<size>] MAXMODE PADDING

Hitachi H8/500

ASSUME DC[.<size>] DS[.<size>] MAXMODE PADDING

Hitachi SH7x00

COMPLITERALS DC[.<size>] DS[.<size>] LTORG PADDING

SUPMODE

65xx/MELPS-740

ADR ASSUME BYT DFS FCB

FCC FDB RMB

65816/MELPS-7700

ADR ASSUME BYT DB DD

DQ DS DT DW DFS

FCB FCC FDB RMB

Mitsubishi MELPS-4500

DATA RES SFR

281

Mitsubishi M16

DB DD DQ DS DT

DW

Mitsubishi M16C

DB DD DQ DS DT

DW

Intel 4004

DATA DS REG

Intel 8008

DB DD DQ DS DT

DW

Intel MCS-48

DB DD DQ DS DT

DW

Intel MCS-(2)51

BIGENDIAN BIT DB DD DQ

DS DT DW PORT SFR

SFRB SRCMODE

282 APPENDIX D. PSEUDO-INSTRUCTIONS COLLECTED

Intel MCS-96

ASSUME DB DD DQ DS

DT DW

Intel 8080/8085

DATA DS

Intel 8080/8085

DB DD DQ DS DT

DW PORT

Intel i960

DB DD DQ DS DT

DW FPU SPACE SUPMODE

WORD

Signetics 8X30x

LIV RIV

Philips XA

ASSUME BIT DB DC[.<size>] DD

DQ DS[.<size>] DT DW PADDING

PORT SUPMODE

283

Atmel AVR

DATA PACKING PORT REG RES

AMD 29K

ASSUME DB DD DQ DS

DT DW EMULATED SUPMODE

Siemens 80C166/167

ASSUME BIT DB DD DQ

DS DT DW REG

Zilog Zx80

DB DD DEFB DEFW DQ

DS DT DW EXTMODE LWORDMODE

Zilog Z8

DB DD DQ DS DT

DW SFR

Xilinx KCPSM

CONSTANT NAMEREG REG

284 APPENDIX D. PSEUDO-INSTRUCTIONS COLLECTED

Xilinx KCPSM3

CONSTANT DB DD DQ DS

DT DW NAMEREG PORT REG

LatticeMico8

DB DD DQ DS DT

DW PORT REG

Toshiba TLCS-900

DB DD DQ DS DT

DW MAXIMUM SUPMODE

Toshiba TLCS-90

DB DD DQ DS DT

DW

Toshiba TLCS-870

DB DD DQ DS DT

DW

Toshiba TLCS-47(0(A))

ASSUME DB DD DQ DS

DT DW PORT

285

Toshiba TLCS-9000

DB DD DQ DS DT

DW

Microchip PIC16C5x

DATA RES SFR ZERO

Microchip PIC16C8x

DATA RES SFR ZERO

Microchip PIC17C42

DATA RES SFR ZERO

SGS-Thomson ST6

ASCII ASCIZ ASSUME BYTE BLOCK

SFR WORD

SGS-Thomson ST7

DC[.<size>] DS[.<size>] PADDING

286 APPENDIX D. PSEUDO-INSTRUCTIONS COLLECTED

SGS-Thomson ST9

ASSUME BIT DB DD DQ

DS DT DW REG

6804

ADR BYT DFS FCB FCC

FDB RMB SFR

Texas TM3201x

DATA PORT RES

Texas TM32C02x

BFLOAT BSS BYTE DATA DOUBLE

EFLOAT TFLOAT LONG LQxx PORT

Qxx RES RSTRING STRING WORD

Texas TMS320C3x

ASSUME BSS DATA EXTENDED SINGLE

WORD

Texas TM32C020x/TM32C05x/TM32C054x

BFLOAT BSS BYTE DATA DOUBLE

EFLOAT TFLOAT LONG LQxx PORT

Qxx RES RSTRING STRING WORD

287

Texas TMS320C6x

BSS DATA DOUBLE SINGLE

WORD

Texas TMS9900

BSS BYTE PADDING WORD

Texas TMS70Cxx

DB DD DQ DS DT

DW

Texas TMS370

DB DBIT DD DQ DS

DT DW

Texas MSP430

BSS BYTE PADDING WORD

National SC/MP

DB DD DQ DS DT

DW

288 APPENDIX D. PSEUDO-INSTRUCTIONS COLLECTED

National INS807x

DB DD DQ DS DT

DW

National COP4

ADDR ADDRW BYTE DB DD

DQ DS DSB DSW DT

FB FW SFR WORD

National COP8

ADDR ADDRW BYTE DB DD

DQ DS DSB DSW DT

FB FW SFR WORD

National COP8

DC DC8 DS DS8 DS16

DW DW16

Fairchild ACE

DB DD DQ DS DT

DW

289

NEC µPD78(C)1x

ASSUME DB DD DQ DS

DT DW

NEC 75K0

ASSUME BIT DB DD DQ

DS DT DW SFR

NEC 78K0

DB DD DQ DS DT

DW

NEC 78K2

BIT DB DD DQ DS

DT DW

NEC µPD772x

DATA RES

NEC µPD772x

DS DW

290 APPENDIX D. PSEUDO-INSTRUCTIONS COLLECTED

Symbios Logic SYM53C8xx

Fujitsu F2MC8L

DB DD DQ DS DT

DW

Fujitsu F2MC16L

DB DD DQ DS DT

DW

Mitsubishi M16C

DB DD DQ DS DT

DW

Appendix E

Predefined Symbols

To be exact, boolean symbols are just ordinary integer symbols with the
difference that AS will assign only two different values to them (0 or 1,
corresponding to False or True). AS does not store special symbols in the
symbol table. For performance reasons, they are realized with hardcoded
comparisons directly in the parser. They therefore do not show up in the
assembly listing’s symbol table. Predefined symbols are only set once at
the beginning of a pass. The values of dynamic symbols may in contrast
change during assembly as they reflect settings made with related pseudo
instructions. The values added in parentheses give the value present at the
beginning of a pass.

The names given in this table also reflect the valid way to reference these
symbols in case-sensitive mode.

The names listed here should be avoided for own symbols; either one can
define but not access them (special symbols), or one will receive an error
message due to a double-defined symbol. The ugliest case is when the redef-
inition of a symbol made by AS at the beginning of a pass leads to a phase
error and an infinite loop...

291

292 APPENDIX E. PREDEFINED SYMBOLS

name data type definition meaning

ARCHITECTURE string predef. target platform AS was
compiled for, in the style
processor-manufacturer-
operating system

BIGENDIAN boolean dyn.(0) storage of constants MSB
first ?

CASESENSITIVE boolean normal case sensitivity in symbol
names ?

CONSTPI float normal constant Pi (3.1415.....)
DATE string predef. date of begin of assembly
FALSE boolean predef. 0 = logically ”false”
HASFPU boolean dyn.(0) coprocessor instructions

enabled ?
HASPMMU boolean dyn.(0) MMU instructions enabled ?
INEXTMODE boolean dyn.(0) XM flag set for 4 Gbyte

address space ?
INLWORDMODE boolean dyn.(0) LW flag set for 32 bit

instructions ?
INMAXMODE boolean dyn.(0) processor in maximum

mode ?
INSUPMODE boolean dyn.(0) processor in supervisor

mode ?

Table E.1: Predefined Symbols - Part 1

293

name data type definition meaning

INSRCMODE boolean dyn.(0) processor in source mode ?
FULLPMMU boolean dyn.(0/1) full PMMU instruction set

allowed ?
LISTON boolean dyn.(1) listing enabled ?
MACEXP boolean dyn.(1) expansion of macro con-

structs in listing enabled ?
MOMCPU integer dyn. number of target CPU

(68008) currently set
MOMCPUNAME string dyn. name of target CPU

(68008) currently set
MOMFILE string special current source file

(including include files)
MOMLINE integer special current line number in

source file
MOMPASS integer special number of current pass
MOMSECTION string special name of current section or

empty string if out of any
section

MOMSEGMENT string special name of address space
currently selected
with SEGMENT

Table E.2: Predefined Symbols - Part 2

294 APPENDIX E. PREDEFINED SYMBOLS

name data type definition meaning

NESTMAX Integer dyn.(256) maximum nesting level
of macro expansions

PADDING boolean dyn.(1) pad byte field to even
count ?

RELAXED boolean dyn.(0) any syntax allowed integer
constants ?

PC integer special curr. program counter
(Thomson)

TIME string predef. time of begin of assembly
(1. pass)

TRUE integer predef. 1 = logically ”true”
VERSION integer predef. version of AS in BCD

coding, e.g. 1331 hex for
version 1.33p1

WRAPMODE Integer predef. shortened program counter
assumed?

integer special curr. program counter
(Motorola, Rockwell, Micro-
chip, Hitachi)

$ integer special curr. program counter (Intel,
Zilog, Texas, Toshiba, NEC,
Siemens, AMD)

Table E.3: Predefined Symbols - Part 3

Appendix F

Shipped Include Files

The distribution of AS contains a couple of include files. Apart from include
files that only refer to a specific processor family (and whose function should
be immediately clear to someone who works with this family), there are a
few processor-independent files which include useful functions. The functions
defined in these files shall be explained briefly in the following sections:

F.1 BITFUNCS.INC

This file defines a couple of bit-oriented functions that might be hardwired
for other assemblers. In the case of AS however, thaey are implemented with
the help of user-defined functions:

• mask(start,bits) returns an integer with bits bits set starting at position
start;

• invmask(start,bits) returns one’s complement to mask();

• cutout(x,start,bits) returns bits bits masked out from x starting at po-
sition start without shifting them to position 0;

• hi(x) returns the second lowest byte (bits 8..15) of x;

• lo(x) returns the lowest byte (bits 8..15) of x;

295

296 APPENDIX F. SHIPPED INCLUDE FILES

• hiword(x) returns the second lowest word (bits 16..31) of x;

• loword(x) returns the lowest word (bits 0..15) of x;

• odd(x) returns TRUE if x is odd;

• even(x) returns TRUE if x is even;

• getbit(x,n) extracts bit n out of x and returns it as 0 or 1;

• shln(x,size,n) shifts a word x of length size to the left by n places;

• shrn(x,size,n) shifts a word x of length size to the right by n places;

• rotln(x,size,n) rotates the lowest size bits of an integer x to the left by
n places;

• rotrn(x,size,n) rotates the lowest size bits of an integer x to the right
by n places;

F.2 CTYPE.INC

This include file is similar to the C include file ctype.h which offers functions
to classify characters. All functions deliver either TRUE or FALSE:

• isdigit(ch) becomes TRUE if ch is a valid decimal digit (0..9);

• isxdigit(ch) becomes TRUE if ch is a valid hexadecimal digit (0..9, A..F,
a..f);

• isupper(ch) becomes TRUE if ch is an uppercase letter, excluding spe-
cial national characters);

• islower(ch) becomes TRUE if ch is a lowercase letter, excluding special
national characters);

• isalpha(ch) becomes TRUE if ch is a letter, excluding special national
characters);

F.2. CTYPE.INC 297

• isalnum(ch) becomes TRUE if ch is either a letter or a valid decimal
digit;

• isspace(ch) becomes TRUE if ch is an ’empty’ character (space, form
feed, line feed, carriage return, tabulator);

• isprint(ch) becomes TRUE if ch is a printable character, i.e. no control
character up to code 31;

• iscntrl(ch) is the opposite to isprint();

• isgraph(ch) becomes TRUE if ch is a printable and visible character;

• ispunct(ch) becomes TRUE if ch is a printable special character (i.e.
neither space nor letter nor number);

298 APPENDIX F. SHIPPED INCLUDE FILES

Appendix G

Acknowledgments

”If I have seen farther than other men,
it is because I stood on the shoulders of giants.”
–Sir Isaac Newton

”If I haven’t seen farther than other men,
it is because I stood in the footsteps of giants.”
–unknown

If one decides to rewrite a chapter that has been out of date for two years, it
is almost unavoidable that one forgets to mention some of the good ghosts
who contributed to the success this project had up to now. The first ”thank
you” therefore goes to the people whose names I unwillingly forgot in the
following enumeration!

The concept of AS as a universal cross assembler came from Bernhard (C.)
Zschocke who needed a ”student friendly”, i.e. free cross assembler for his
microprocessor course and talked me into extending an already existing 68000
assembler. The rest is history... The microprocessor course held at RWTH
Aachen also always provided the most engaged users (and bug-searchers) of
new AS features and therefore contributed a lot to today’s quality of AS.

The internet and FTP have proved to be a big help for spreading AS and
reporting of bugs. My thanks therefore go to the FTP admins (Bernd Casimir
in Stuttgart, Norbert Breidor in Aachen, and Jürgen Meißburger in Jülich).

299

300 APPENDIX G. ACKNOWLEDGMENTS

Especially the last one personally engaged a lot to establish a practicable
way in Jülich.

As we are just talking about the ZAM: Though Wolfgang E. Nagel is not
personally involved into AS, he is at least my boss and always puts at least
four eyes on what I am doing. Regarding AS, there seems to be at least one
that smiles...

A program like AS cannot be done without appropriate data books and
documentation. I received information from an enormous amount of people,
ranging from tips up to complete data books. An enumeration follows (as
stated before, without guarantee for completelessness!):

Ernst Ahlers, Charles Altmann, Marco Awater, Len Bayles, Andreas Bolsch,
Rolf Buchholz, Bernd Casimir, Gunther Ewald, Stephan Hruschka, Peter
Kliegelhöfer, Ulf Meinke, Matthias Paul, Norbert Rosch, Steffen Schmid,
Leonhard Schneider, Ernst Schwab, Michael Schwingen, Oliver Sellke, Chris-
tian Stelter, Patrik Strömdahl, Oliver Thamm, Thorsten Thiele, Andreas
Wassatsch, John Weinrich.

...and an ironic ”thank you” to Rolf-Dieter-Klein and Tobias Thiel who
demonstrated with their ASM68K how one should not do it and thereby
indirectly gave me the impulse to write something better!

I did not entirely write AS on my own. AS contains the OverXMS rou-
tines from Wilbert van Leijen which can move the overlay modules into the
extended memory. A really nice library, easy to use without problems!

The TMS320C2x/5x code generators and the file STDDEF2x.INC come from
Thomas Sailer, ETH Zurich. It’s surprising, he only needed one weekend
to understand my coding and to implement the new code generator. Either
that was a long nightshift or I am slowly getting old...

Appendix H

Changes since Version 1.3

• version 1.31:

– additional MCS-51 processor type 80515. The number is again
only stored by the assembler. The file STDDEF51.INC was extended
by the necessary SFRs. CAUTION! Some of the 80515 SFRs
have moved to other addresses!

– additional support for the Z80 processor;

– faster 680x0 code generator.

• version 1.32:

– syntax for zero page addresses for the 65xx family was changed
from addr.z to <addr (similar to 68xx);

– additional support for the 6800, 6805, 6301, and 6811 processors;

– the 8051 part now also understands DJNZ, PUSH, and POP (sorry);

– the assembly listing now not also list the symbols but also the
macros that have been defined;

– additional instructions IFDEF/IFNDEF for conditional assembly
based on the existence of a symbol;

– additional instructions PHASE/DEPHASE to support code that shall
be moved at runtime to a different address;

301

302 APPENDIX H. CHANGES SINCE VERSION 1.3

– additional instructions WARNING, ERROR, and FATAL to print user-
defined error messages;

– the file STDDEF51.INC additionally contains the macro USING to
simplify working with the MCS-51’s register banks;

– command line option u to print segment usage;

• version 1.33:

– additionally supports the 6809 processor;

– added string variables;

– The instructions TITLE, PRTINIT, PRTEXIT, ERROR, WARNING,
and FATAL now expect a string expression. Constants therefore
now have to be enclosed in ” instead of ’ characters. This is also
true for DB, DC.B, and BYT;

– additional instruction ALIGN to align the program counter for Intel
processors;

– additional instruction LISTING to turn the generation of an as-
sembly listing on or off;

– additional instruction CHARSET for user-defined character sets.

• version 1.34:

– the second pass is now omitted if there were errors in the first
pass;

– additional predefined symbol VERSION that contains the version
number of AS;

– additional instruction MESSAGE to generate additional messages
under program control;

– formula parser is now accessible via string constants;

– if an error in a macro occurs, additionally the line number in the
macro itself is shown;

– additional function UPSTRING to convert a string to all upper-case.

• version 1.35:

303

– additional function TOUPPER to convert a single character to upper
case;

– additional instruction FUNCTION for user-defined functions;

– additional command line option D to define symbols from outside;

– the environment variable ASCMD for commonly used command line
options was introduced;

– the program will additionally be checked for double usage of mem-
ory areas if the u option is enabled;

– additional command line option C to generate a cross reference
list.

• version 1.36:

– additionally supports the PIC16C5x and PIC17C4x processor
families;

– the assembly listing additionally shows the nesting depth of in-
clude files;

– the cross reference list additionally shows the definition point of
a symbol;

– additional command line option A to force a more compact layout
of the symbol table.

• version 1.37:

– additionally supports the processors 8086, 80186, V30, V35, 8087,
and Z180;

– additional instructions SAVE and RESTORE for an easier switching
of some flags;

– additional operators for logical shifts and bit mirroring;

– command line options may now be negated with a plus sign;

– additional filter AS2MSG for a more comfortable work with AS
under Turbo-Pascal 7.0;

– ELSEIF now may have an argument for construction of IF-THEN-
-ELSE ladders;

304 APPENDIX H. CHANGES SINCE VERSION 1.3

– additional CASE construct for a more comfortable conditional as-
sembly;

– user-defined functions now may have more than one argument;

– P2HEX can now additionally generate hex files in a format suit-
able for 65xx processors;

– BIND, P2HEX, and P2BIN now have the same scheme for com-
mand line processing like AS;

– additional switch i for P2HEX to select one out three possibilities
for the termination record;

– additional functions ABS and SGN;

– additional predefined symbols MOMFILE and MOMLINE;

– additional option to print extended error messages;

– additional instruction IFUSED and IFNUSED to check whether a
symbol has been used so far;

– The environment variables ASCMD, BINDCMD etc. now optionally
may contain the name of a file that provides more space for op-
tions;

– P2HEX can now generate the hex formats specified by Microchip
(p4);

– a page length specification of 0 now allows to suppress automatic
formfeeds in the assembly listing completely (p4);

– symbols defined in the command line now may be assigned an
arbitrary value (p5).

• version 1.38:

– changed operation to multipass mode. This enables AS to gener-
ate optimal code even in case of forward references;

– the 8051 part now also knows the generic JMP and CALL instruc-
tions;

– additionally supports the Toshiba TLCS-900 series (p1);

– additional instruction ASSUME to inform the assembler about the
8086’s segment register contents (p2);

305

– additionally supports the ST6 series from SGS-Thomson (p2);

– ..and the 3201x signal processors from Texas Instruments (p2);

– additional option F for P2HEX to override the automatic format
selection (p2);

– P2BIN now can automatically set the start resp. stop address of
the address window by specifying dollar signs (p2);

– the 8048 code generator now also knows the 8041/42 instruction
extensions (p2);

– additionally supports the Z8 microcontrollers (p3).

• version 1.39:

– additional opportunity to define sections and local symbols;

– additional command line switch h to force hexadecimal numbers
to use lowercase;

– additional predefined symbol MOMPASS to read the number of the
currently running pass;

– additional command line switch t to disable individual parts of
the assembly listing;

– additionally knows the L variant of the TLCS-900 series and the
MELPS-7700 series from Mitsubishi (p1);

– P2HEX now also accepts dollar signs as start resp. stop address
(p2);

– additionally supports the TLCS-90 family from Toshiba (p2);

– P2HEX now also can output data in Tektronix and 16 bit Intel
Hex format (p2);

– P2HEX now prints warnings for address overflows (p2);

– additional include file STDDEF96.INC with address definitions for
the TLCS-900 series (p3);

– additional instruction READ to allow interactive input of values
during assembly (p3);

– error messages are written to the STDERR channel instead of
standard output (p3);

306 APPENDIX H. CHANGES SINCE VERSION 1.3

– the STOP instruction missing for the 6811 is now available (scusi,
p3);

– additionally supports the µPD78(C)1x family from NEC (p3);

– additionally supports the PIC16C84 from NEC (p3);

– additional command line switch E to redirect error messages to a
file (p3);

– The MELPS-7700’s ’idol’ 65816 is now also available (p4);

– the ST6 pseudo instruction ROMWIN has been removed was inte-
grated into the ASSUME instruction (p4);

– additionally supports the 6804 from SGS-Thomson (p4);

– via the NOEXPORT option in a macro definition, it is now possible
to define individually for every macro whether it shall appear in
the MAC file or not (p4);

– the meaning of MACEXP regarding the expansion of macros has
changed slightly due to the additional NOEXPAND option in the
macro definition (p4);

– The additional GLOBAL option in the macro definition now addi-
tionally allows to define macros that are uniquely identified by
their section name (p4).

• version 1.40:

– additionally supports the DSP56000 from Motorola;

– P2BIN can now also extract the lower resp. upper half of a 32-bit
word;

– additionally supports the TLCS-870 and TLCS-47 families from
Toshiba (p1);

– a prefixed ! now allows to reach machine instructions hidden by
a macro (p1);

– the GLOBAL instruction now allows to export symbols in a qualified
style (p1);

– the additional r command line switch now allows to print a list of
constructs that forced additional passes (p1);

307

– it is now possible to omit an argument to the E command line
option; AS will then choose a fitting default (p1);

– the t command line option now allows to suppress line numbering
in the assembly listing (p1);

– escape sequences may now also be used in ASCII style integer
constants (p1);

– the additional pseudo instruction PADDING now allows to enable
or disable the insertion of padding bytes in 680x0 mode (p2);

– ALIGN is now a valid instruction for all targets (p2);

– additionally knows the PIC16C64’s SFRs (p2);

– additionally supports the 8096 from Intel (p2);

– DC additionally allows to specify a repetition factor (r3);

– additionally supports the TMS320C2x family from Texas Instru-
ments (implementation done by Thomas Sailer, ETH Zurich, r3);
P2HEX has been extended appropriately;

– an equation sign may be used instead of EQU (r3);

– additional ENUM instruction to define enumerations (r3);

– END now has a real effect (r3);

– additional command line switch n to get the internal error numbers
in addition to the error messages (r3);

– additionally supports the TLCS-9000 series from Toshiba (r4);

– additionally supports the TMS370xxx series from Texas Instru-
ments, including a new DBIT pseudo instruction (r5);

– additionally knows the DS80C320’s SFR’s (r5);

– the macro processor is now also able to include files from within
macros. This required to modify the format of error messages
slightly. If you use AS2MSG, replace it with the new version! (r5)

– additionally supports the 80C166 from Siemens (r5);

– additional VAL function to evaluate string expressions (r5);

– it is now possible to construct symbol names with the help of
string expressions enclosed in braces (r5);

308 APPENDIX H. CHANGES SINCE VERSION 1.3

– additionally knows the 80C167’s peculiarities (r6);

– the MELPS740’s special page addressing mode is now supported
(r6);

– it is now possible to explicitly reference a symbol from a certain
section by appending its name enclosed in brackets. The construc-
tion with an @ sign has been removed! (r6)

– additionally supports the MELPS-4500 series from Mitsubishi
(r7);

– additionally supports H8/300 and H8/300H series from Hitachi
(r7);

– settings made with LISTING resp. MACEXP may now be read back
from predefined symbols with the same names (r7);

– additionally supports the TMS320C3x series from Texas Instru-
ments (r8);

– additionally supports the SH7000 from Hitachi (r8);

– the Z80 part has been extended to also support the Z380 (r9);

– the 68K part has been extended to know the differences of the
683xx micro controllers (r9);

– a label not any more has to be placed in the first row if it is marked
with a double dot (r9);

– additionally supports the 75K0 series from NEC (r9);

– the additional command line option o allows to set a user-defined
name for the code file (r9);

– the ~~ operator has been moved to a bit more senseful ranking
(r9);

– ASSUME now also knows the 6809’s DPR register and its implica-
tions (pardon, r9);

– the 6809 part now also knows the 6309’s secret extensions (r9);

– binary constants now also may be written in a C-like notation
(r9);

• version 1.41:

309

– the new predefined symbol MOMSEGMENT allows to inquire the cur-
rently active segment;

– := is now allowed as a short form for SET/EVAL;

– the new command line switch q allows to force a ”silent” assembly;

– the key word PARENT to reference the parent section has been
extended by PARENT0..PARENT9;

– the PowerPC part has been extended by the microcontroller ver-
sions MPC505 and PPC403;

– symbols defined with SET or EQU may now be assigned to a certain
segment (r1);

– the SH7000 part now also knows the SH7600’s extensions (and
should compute correct displacements...) (r1);

– the 65XX part now differentiates between the 65C02 and 65SC02
(r1);

– additionally to the symbol MOMCPU, there is now also a string sym-
bol MOMCPUNAME that contains the processor’s full name (r1);

– P2HEX now also knows the 32-bit variant of the Intel hex format
(r1);

– additionally knows the 87C750’s limitations (r2);

– the internal numbers for fatal errors have been moved to the area
starting at 10000, making more space for normal error messages
(r2);

– unused symbols are now marked with a star in the symbol table
(r2);

– additionally supports the 29K family from AMD (r2);

– additionally supports the M16 family from Mitsubishi (r2);

– additionally supports the H8/500 family from Hitachi (r3);

– the number of data bytes printed per line by P2HEX can now be
modified (r3);

– the number of the pass that starts to output warnings created by
the r command line switch is now variable (r3);

– the macro processor now knows a WHILE statement that allows to
repeat a piece of code a variable number of times (r3);

310 APPENDIX H. CHANGES SINCE VERSION 1.3

– the PAGE instruction now also allows to set the line with of the
assembly listing (r3);

– CPU aliases may now be defined to define new pseudo processor
devices (r3);

– additionally supports the MCS/251 family from Intel (r3);

– if the cross reference list has been enabled, the place of the first
definition is given for double definitions of symbols (r3);

– additionally supports the TMS320C5x family from Texas Instru-
ments (implementation done by Thomas Sailer, ETH Zurich, r3);

– the OS/2 version should now also correctly work with long file
names. If one doesn’t check every s**t personally... (r3);

– the new pseudo instruction BIGENDIAN now allows to select in
MCS-51/251 mode whether constants should be stored in big en-
dian or little endian format (r3);

– the 680x0 part now differentiates between the full and reduced
MMU instruction set; a manual toggle can be done via the
FULLPMMU instruction (r3);

– the new command line option I allows to print a list of all include
files paired with their nesting level (r3);

– additionally supports the 68HC16 family from Motorola (r3);

– the END statement now optionally accepts an argument as entry
point for the program (r3);

– P2BIN and P2HEX now allow to move the contents of a code file
to a different address (r4);

– comments appended to a SHARED instruction are now copied to
the share file (r4);

– additionally supports the 68HC12 family from Motorola (r4);

– additionally supports the XA family from Philips (r4);

– additionally supports the 68HC08 family from Motorola (r4);

– additionally supports the AVR family from Atmel (r4);

– to achieve better compatibility to the AS11 from Motorola, the
pseudo instructions FCB, FDB, FCC, and RMB were added (r5);

311

– additionally supports the M16C from Mitsubishi (r5);

– additionally supports the COP8 from National Semiconductor
(r5);

– additional instructions IFB and IFNB for conditional assembly (r5);

– the new EXITM instruction now allows to terminate a macro ex-
pansion (r5);

– additionally supports the MSP430 from Texas Instruments (r5);

– LISTING now knows the additional variants NOSKIPPED and
PURECODE to remove code that was not assembled from the listing
(r5);

– additionally supports the 78K0 family from NEC (r5);

– BIGENDIAN is now also available in PowerPC mode (r5);

– additional BINCLUDE instruction to include binary files (r5);

– additional TOLOWER and LOWSTRING functions to convert characters
to lower case (r5);

– it is now possible to store data in other segments than CODE. The
file format has been extended appropriately (r5);

– the DS instruction to reserve memory areas is now also available
in Intel mode (r5);

– the U command line switch now allows to switch AS into a case
sensitive mode that differentiates between upper and lower case
in the names of symbols, user-defined functions, macros, macro
parameters, and sections (r5);

– SFRB now also knows the mapping rules for bit addresses in the
RAM areas; warnings are generated for addresses that are not bit
addressable (r5);

– additional instructions PUSHV and POPV to save symbol values tem-
porarily (r5);

– additional functions BITCNT, FIRSTBIT, LASTBIT, and BITPOS

for bit processing (r5);

– the 68360 is now also known as a member of the CPU32 processors
(r5);

312 APPENDIX H. CHANGES SINCE VERSION 1.3

– additionally supports the ST9 family from SGS-Thomson (r6);

– additionally supports the SC/MP from National Semiconductor
(r6);

– additionally supports the TMS70Cxx family from Texas Instru-
ments (r6);

– additionally supports the TMS9900 family from Texas Instru-
ments (r6);

– additionally knows the 80296’s instruction set extensions (r6);

– the supported number of Z8 derivatives has been extended (r6);

– additionally knows the 80C504’s mask defects (r6);

– additional register definition file for Siemens’ C50x processors (r6);

– additionally supports the ST7 family from SGS-Thomson (r6);

– the Tntel pseudo instructions for data disposal are now also valid
for the 65816/MELPS-7700 (r6);

– for the 65816/MELPS-7700, the address length may now be set
explicitly via prefixes (r6);

– additionally supports the 8X30x family from Signetics (r6);

– from now on, PADDING is enabled by default only for the 680x0
family (r7);

– the new predefined symbol ARCHITECTURE can now be used to
query the platform AS was compiled for (r7);

– additional statements STRUCT and ENDSTRUCT to define data struc-
tures (r7);

– hex and object files for the AVR tools may now be generated
directly (r7);

– MOVEC now also knows the 68040’s control registers (r7);

– additional STRLEN function to calculate the length of a string (r7);

– additional ability to define register symbols (r7 currently only At-
mel AVR);

– additionally knows the 6502’s undocumented instructions (r7);

– P2HEX and P2BIN now optionally can erase the input files auto-
matically (r7);

313

– P2BIN can additionally prepend the entry address to the resulting
image (r7);

– additionally supports the ColdFire family from Motorola as a vari-
ation of the 680x0 core (r7);

– BYT/FCB, ADR/FDB, and FCC now also allow the repetition factor
known from DC (r7);

– additionally supports Motorola’s M*Core (r7);

– the SH7000 part now also knows the SH7700’s extensions (r7);

– the 680x0 part now also knows the 68040’s additional instructions
(r7);

– the 56K part now also knows the instruction set extensions up to
the 56300 (r7).

– the new CODEPAGE statement now allows to keep several character
sets in parallel (r8);

– The argument variations for CHARSET have been extended (r8);

– New string functions SUBSTR and STRSTR (r8);

– additional IRPC statement in the macro processor (r8);

– additional RADIX statement to set the default numbering system
for integer constants (r8);

– instead of ELSEIF, it is now valid to simply write ELSE (r8);

– == may be used as equality operator instead of = (r8);

– BRANCHEXT for the Philips XA now allows to automatically extend
the reach of short branches (r8);

– debug output is now also possible in NoICE format (r8);

– additionally supports the i960 family from Intel (r8);

– additionally supports the µPD7720/7725 signal processors from
NEC (r8);

– additionally supports the µPD77230 signal processor from NEC
(r8);

– additionally supports the SYM53C8xx SCSI processors from Sym-
bios Logic (r8);

314 APPENDIX H. CHANGES SINCE VERSION 1.3

– additionally supports the 4004 from Intel (r8);

– additionally supports the SC14xxx series of National (r8);

– additionally supports the instruction extensions of the PPC
403GC (r8);

– additional command line option cpu to set the default target pro-
cessor (r8);

– key files now also may be referenced from the command line (r8);

– additional command line option shareout to set the output file
for SHARED definitions (r8);

– new statement WRAPMODE to support AVR processors with a short-
ened program counter (r8);

– additionally supports the C20x instruction subset in the C5x part
(r8);

– hexadecimal address specifications for the tools now may also be
made in C notation (r8);

– the numbering system for integer results in \{...} expressions is
now configurable via OUTRADIX (r8);

– the register syntax for 4004 register pairs has been corrected (r8);

– additionally supports the F2MC8L family from Fujitsu (r8);

– P2HEX now allows to set the minimum address length for S record
addresses (r8);

– additionally supports the ACE family from Fairchild (r8);

– REG is now also allowed for PowerPCs (r8);

– additional switch in P2HEX to relocate all addresses (r8);

– The switch x now additionally allows a second level of detailness
to print the source line in question (r8).

• version 1.42:

– the default integer syntax for Atmel AVR is now the C Syntax;

– additional command line option olist to set the list file’s name
and location;

– additionally supports the F2MC16L family from Fujitsu;

315

– additional instruction PACKING for the AVR family;

– additional implicit macro parameters ALLARGS and ARGCOUNT;

– additional instruction SHIFT to process variable macro argument
lists;

– support for temporary symbols;

– additional instruction MAXNEST to set the maximum nesting depth
of macro expansions;

– additional command line argument noicemask to control the
amount of segments listed in a NoICE debug info file;

– additionally supports the 180x family from Intersil;

– additionally supports the 68HC11K4 address windowing;

– P2HEX now allows to vary the address field length of AVR HEX
files;

– the new command line option -gnuerrors allows to output error
messages in a GNU C-style format;

– additionally supports the TMS320C54x family from Texas Instru-
ments;

– new macro option INTLABEL;

– added Atmel MegaAVR 8/16 instructions and register definitions;

– ENDIF/ENDCASE show the line number of the corresponding open-
ing statement in the listing;

– the 8051 part now also supports the extended address space of the
Dallas DS80C390;

– added nameless temporary smbols;

– additionally supports the undocumented 8085 instructions;

– improved structure handling;

– added EXPRTYPE() function;

– allow line continuation;

– integrated support for KCPSM/PicoBlaze provided by Andreas
Wassatsch;

316 APPENDIX H. CHANGES SINCE VERSION 1.3

– additionally supports the 807x family from National Semiconduc-
tor;

– additionally supports the Intel 4040;

– additionally supports the Zilog eZ8;

– additionally supports the 78K2 family from NEC;

– additionally supports the KCPSM3 variant from Xilinx;

– additionally supports the LatticeMico8;

– additionally supports the 12X instruction extensions and the
XGATE core of the 68HC12 family;

– additionally supports the Signetics 2650;

– additionally supports the COP4 family from National Semicon-
ductor;

– additionally supports the HCS08 extensions by Freesacle;

– additionally supports the RS08 family by Freescale;

– additionally supports the Intel 8008;

– add another optional syntax for integer constants;

– added function CHARFROMSTR;

– additionally allow Q for octal constants in Intel mode;

– add another variant for temporary symbols;

Appendix I

Hints for the AS Source Code

As I already mentioned in the introduction, I release the source code of AS
on request. The following shall give a few hints to their usage.

I.1 Language Preliminaries

In the beginning, AS was a program written in Turbo-Pascal. This was
roughly at the end of the eighties, and there were a couple of reasons for this
choice: First, I was much more used to it than to any C compiler, and com-
pared to Turbo Pascal’s IDE, all DOS-based C compilers were just crawling
along. In the beginning of 1997 however, it became clear that things had
changed: One factor was that Borland had decided to let its confident DOS
developers down (once again, explicitly no ’thank you’, you boneheads from
Borland!) and replaced version 7.0 of Borland Pascal with something called
’Delphi’, which is probably a wonderful tool to develop Windows programs
which consist of 90% user interface and accidentaly a little bit of content,
however completely useless for command-line driven programs like AS. Fur-
thermore, my focus of operating systems had made a clear move towards
Unix, and I probably could have waited arbitrarily long for a Borland Pascal
for Linux (to all those remarking now that Borland would be working on
something like that: this is Vapourware, dont́ believe them anything until
you can go into a shop and actually buy it!). It was therefore clear that C
was the way to go.

317

318 APPENDIX I. HINTS FOR THE AS SOURCE CODE

After this eperience what results the usage of ’island systems’ may have, I
put a big emphasize on portability while doing the translation to C; however,
since AS for example deals with binary data in an exactly format and uses
operating systen-specific functions at some places which may need adaptions
when one compliles AS the first time for a new platform.

AS is tailored for a C compiler that conforms to the ANSI C standard; C++
is explicitly not required. If you are still using a compiler conforming to the
outdated Kernighan&Ritchie standard, you should consider getting a newer
compiler: The ANSI C standard has been fixed in 1989 and there should be
an ANSI C compiler for every contemporary platform, maybe by using the
old compiler to build GNU-C. Though there are some switches in the source
code to bring it nearer to K&R, this is not an officially supported feature
which I only use internally to support a quite antique Unix. Everything left
to say about K&R is located in the file README.KR.

The inclusion of some additional features not present in the Pascal version
(e.g. dynamically loadable message files, test suite, automatic generation
of the documentation from one source format) has made the source tree
substantially more complicated. I will attempt to unwire everything step by
step:

I.2 Capsuling System dependencies

As I already mentioned, As has been tailored to provide maximum platform
independence and portability (at least I believe so...). This means packing
all platform dependencies into as few files as possible. I will describe these
files now, and this section is the first one because it is probably one of the
most important:

The Build of all components of AS takes place via a central Makefile. To
make it work, it has to be accompanied by a fitting Makefile.def that
gives the platform dependent settings like compiler flags. The subdirec-
tory Makefile.def-samples contains a couple of includes that work for
widespread platforms (but which need not be optimal...). In case your plat-
form is not among them, you may take the file Makefile.def.tmpl as a
starting point (and send me the result!).

I.3. SYSTEM-INDEPENDENT FILES 319

A further component to capure system dependencies is the file sysdefs.h.
Practically all compilers predefine a couple of preprocessor symbols that de-
scribe the target processor and the used operating system. For example, on
a Sun Sparc under Solaris equipped with the GNU compiler, the symbols
__sparc and __SVR4. sysdefs.h exploits these symbols to provide a homo-
geneous environment for the remaining, system-independent files. Especially,
this covers integer datatypes of a specific length, but it may also include the
(re)definition of C functions which are not present or non-standard-like on
a specific platform. It’s best to read this files yourself if you like to know
which things may occur... Generally, the #ifdef statement are ordered in
two levels: First, a specific processor platform is selected, the the operating
systems are sorted out in such a section.

If you port AS to a new platform, you have to find two symbols typical for
this platform and extend sysdefs.h accordingly. Once again, I’m interested
in the result...

I.3 System-Independent Files

...represent the largest part of all modules. Describing all functions in detail is
beyond the scope of this description (those who want to know more probably
start studying the sources, my programming style isn’t that horrible either...),
which is why I can only give a short list at this place with all modules their
function:

I.3.1 Modules Used by AS

as.c

This file is AS’s root: it contains the main() function of AS, the processing
of all command line options, the overall control of all passes and parts of the
macro processor.

asmallg.c

This module processes all statements defined for all processor targets, e.g.
EQU and ORG. The CPU pseudo-op used to switch among different processor
targets is also located here.

320 APPENDIX I. HINTS FOR THE AS SOURCE CODE

asmcode.c

This module contains the bookkeping needed for the code output file. It
exports an interface that allows to open and close a code file and offers
functions to write code to (or take it back from) the file. An important job
of this module is to buffer the write process, which speeds up execution by
writing the code in larger blocks.

asmdebug.c

AS can optionally generate debug information for other tools like simulators
or debuggers, allowing a backward reference to the source code. They get
collected in this module and can be output after assembly in one of several
formats.

asmdef.c

This modules only contains declarations of constants used in different places
and global variables.

asmfnums.c

AS assigns internally assigns incrementing numbers for each used source file.
These numbers are used for quick referencing. Assignment of numbers and
the conversion between names and numbers takes place here.

asmif.c

Here ara ll routines located controlling conditional assembly. The most im-
portant exported variable is a flag called IfAsm which controls whether code
generation is currently turned on or off.

asminclist.c

This module holds the definition of the list stucture that allows AS to print
the nesting of include files to the assembly list file.

I.3. SYSTEM-INDEPENDENT FILES 321

asmitree.c

When searching for the mnemonic used in a line of code, a simple linear
comparison with all available machine instructions (as it is still done in most
code generators, for reasons of simplicity and laziness) is not necessary the
most effective method. This module defines two improved structures (binary
tree and hash table) which provide a more efficient search and are destined to
replace the simple linear search on a step-by-step basis...priorities as needed...

asmmac.c

Routines to store and execute macro constructs are located in this module.
The real macro processor is (as already mentioned) in as.c.

asmpars.c

Here we really go into the innards: This module stores the symbol ta-
bles (global and local) in two binary trees. Further more, there is a
quite large procedure EvalExpression which analyzes and evaluates a (for-
mula) expression. The procedure returns the result (integer, floating point,
or string) in a varaint record. However, to evaluate expressions during
code generation, one should better use the functions EvalIntExpression,

EvalFloatExpression, and EvalStringExpression. Modifications for tha
esake of adding new target processors are unnecessary in this modules and
should be done with extreme care, since you are touching something like
’AS’s roots’.

asmsub.c

This module collects a couple of commonly used subroutines which primarily
deal with error handling and ’advanced’ string processing.

bpemu.c

As already mentioned at the beginning, AS originally was a program written
in Borland Pascal. For some intrinsic functions of the compiler, it was simpler
to emulate those than to touch all places in the source code where they are
used. Well...

322 APPENDIX I. HINTS FOR THE AS SOURCE CODE

chunks.c

This module defines a data type to deal with a list of address ranges. This
functionality is needed by AS for allocation lists; furthermore, P2BIN and
P2HEX use such lists to warn about overlaps.

cmdarg.c

This module implements the overall mechanism of command line arguments.
It needs a specification of allowed arguments, splits the command line and
triggers the appropriate callbacks. In detail, the mechanism includes the
following:

• Processing of arguments located in an environment variable or a corre-
sponding file;

• Return of a set describing which command line arguments have not
been processed;

• A backdoor for situations when an overlaying IDE converts the passed
command line completely into upper or lower case.

codepseudo.c

You will find at this place pseudo instructions that are used by a subset of
code generators. On the one hand, this is the Intel group of DB..DT, and
on the other hand their counterparts for 8/16 bit CPUs from Motorola or
Rockwell. Someone who wants to extend AS by a processor fitting into one
of these groups can get the biggest part of the necessary pseudo instructions
with one call to this module.

codevars.c

For reasons of memory efficiency, some variables commonly used by diverse
code generators.

I.3. SYSTEM-INDEPENDENT FILES 323

endian.c

Yet another bit of machine dependence, however one you do not have to
spend attention on: This module automatically checks at startup whether
a host machine is little or big endian. Furthermore, checks are made if the
type definitions made for integer variables in sysdefs.h really result in the
correct lengths.

headids.c

At this place, all processor families supported by AS are collected with their
header IDs (see chapter 5.1) and the output format to be used by default
by P2HEX. The target of this table is to centralize the addition of a new
processor as most as possible, i.e. in contrast to earlier versions of AS, no
further modifications of tool sources are necessary.

ioerrs.c

The conversion from error numbers to clear text messages is located here.
I hope I’ll never hit a system that does not define the numbers as macros,
because I would have to rewrite this module completely...

nlmessages.c

The C version of AS reads all messages from files at runtime after the lan-
guage to be used is clear. The format of message files is not a simple one,
but instead a special compact and preindexed format that is generated at
runtime by a program called ’rescomp’ (we will talk about it later). This
module is the counterpart to rescomp that reads the correct language part
into a character field and offers functions to access the messages.

nls.c

This module checks which country-dependent settings (date and time for-
mat, country code) are present at runtime. Unfortunately, this is a highly
operating system-dependend task, and currently, there are only three meth-
ods defines: The MS-DOS method, the OS/2 method and the typical Unix
method via locale functions. For all other systems, there is unfortunately
currently only NO_NLS available...

324 APPENDIX I. HINTS FOR THE AS SOURCE CODE

stdhandl.c

On the one hand, here is a special open function located knowing the special
strings !0...!2 as file names and creating duplicates of the standard file
handles stdin, stdout, and stderr. On the other hand, investiagations are done
whether the standard output has been redirected to a device or a file. On no-
Unix systems, this unfortunately also incorporates some special operations.

stringlists.c

This is just a little ’hack’ that defines routines to deal with linear lists of
strings, which are needed e.g. in the macro processor of AS.

strutil.c

Some commonly needed string operations have found their home here.

version.c

The currently valid version is centrally stored here for AS and all other tools.

code????.c

These modules form the main part of AS: each module contains the code
generator for a specific processor family.

I.3.2 Additional Modules for the Tools

hex.c

A small module to convert integer numbers to hexadecimal strings. It’s not
absolutely needed in C any more (except for the conversion of long long
variables, which unfortunately not all printf()’s support), but it somehow
survived the porting from Pascal to C.

I.4. MODULES NEEDED DURING THE BUILD OF AS 325

p2bin.c

The sources of P2BIN.

p2hex.c

The sources of P2HEX.

pbind.c

The sources of BIND.

plist.c

The sources of PLIST.

toolutils.c

All subroutines needed by several tools are collected here, e.g. for reading of
code files.

I.4 Modules Needed During the Build of AS

a2k.c

This is a minimal filter converting ANSI C source files to Kernighan-Ritchie
style. To be exact: only function heads are converted, even this only when
they are roughly formatted like my programming style. Noone should there-
fore think this were a universal C parser!

326 APPENDIX I. HINTS FOR THE AS SOURCE CODE

addcr.c

A small filter needed during installation on DOS- or OS/2-systems. Since
DOS and OS/2 use a CR/LF for a newline, inc ontrast to the single LF of
Unix systems, all assembly include files provided with AS are sent through
this filter during assembly.

bincmp.c

For DOS and OS/2, this module takes the task of the cmp command, i.e. the
binary comparison of files during the test run. While this would principally
be possible with the comp command provided with the OS, bincmp does not
have any nasty interactive questions (which seem to be an adventure to get
rid of...)

findhyphen.c

This is the submodule in tex2doc providing hyphenation of words. The algo-
rithm used for this is shamelessly stolen from TeX.

grhyph.c

The definition of hyphenation rules for the german language.

rescomp.c

This is AS’s ’resource compiler’, i.e. the tool that converts a readable file
with string resources into a fast, indexed format.

tex2doc.c

A tool that converts the LaTeX documentation of AS into an ASCII format.

I.5. GENERATION OF MESSAGE FILES 327

tex2html.c

A tool that converts the LaTeX documentation of AS into an HTML docu-
ment.

umlaut.c and unumlaut.c

These tiny programs convert national special characters between their coding
in ISO8859-1 (all AS files use this format upon delivery) and their system-
specific coding. Apart from a plain ASCII7 variant, there are currently the
IBM character sets 437 and 850.

ushyph.c

The definition of hyphenation rules for the english language.

I.5 Generation of Message Files

As already mentioned, the C source tree of AS uses a dynamic load principle
for all (error) messages. In contrast to the Pasacl sources where all messages
were bundled in an include file and compiled into the programs, this method
eliminates the need to provide AS in multiple language variants; there is only
one version which checks for the langugage to be used upon runtime and
loads the corresponding component from the message files. Just to remind:
Under DOS and OS/2, the COUNTRY setting is queried, while under Unix, the
environment variables LC MESSAGES, LC ALL, and LANG are checked.

I.5.1 Format of the Source Files

A source file for the message compiler rescomp usually has the suffix .res.
The message compiler generates one or two files from a source:

• a binary file which is read at runtime by AS resp. its tools

328 APPENDIX I. HINTS FOR THE AS SOURCE CODE

• optionally one further C header file assigning an index number to all
messages. These index numbers in combination with an index table in
the binary file allow a fast access to to individual messages at runtime.

The source file for the message compiler is a pure ASCII file and can therefore
be modified with any editor. It consists of a sequence of control commands
with parameters. Empty lines and lines beginning with a semicolon are
ignored. Inclusion of other files is possible via the Include statement:

Include <Datei>

The first two statements in every source file must be two statements describ-
ing the languages defined in the following. The more important one is Langs,
e.g.:

Langs DE(049) EN(001,061)

describes that two languages will be defined in the rest of the file. The
first one shall be used under Unix when the language has been set to DE

via environment variable. Similarly, It shall be used under DOS and OS/2
when the country code was set to 049. Similarly, the second set shall be used
for the settings DE resp. 061 or 001. While multiple ’telephone numbers’
may point to a single language, the assignment to a Unix language code is
a one-to-one correspondence. This is no problem in practice since the LANG

variables Unix uses describe subversions via appendices, e.g.:

de.de

de.ch

en.us

AS only compares the beginning of the strings and therefore still comes to
the right decision. The Default statement defines the language that shall
be used if either no language has been set at all or a language is used that is
not mentioned in the asrgument list of Langs. This is typically the english
language:

Default EN

These definitions are followed by an arbitrary number of Message statements,
i.e. definitions of messages:

I.6. CREATION OF DOCUMENTATION 329

Message ErrName

": Fehler "

": error "

In case n languages were announced via the Langs statement, the message
compiler takes exactly the following n as the strings to be stored. It is
therefore impossible to leave out certain languages for individual messages,
and an empty line following the strings should in no way be misunderstood
as an end marker for the list; inserted lines between statements only serve
purposes of better readability. It is however allowed to split individual mes-
sages across multiple lines in the source file; all lines except for the last one
have to be ended with a backslash as continuation character:

Message TestMessage2

"Dies ist eine" \

"zweizeilige Nachricht"

"This is a" \

"two-line message"

As already mentioned, source files are pure ASCII files; national special char-
acters may be placed in message texts (and the compiler will correctly pass
them to the resulting file), a big disadvantage however is that such a file is
not fully portable any more: in case it is ported to another system using a
different coding for national special characters, the user will probably be con-
fronted with funny characters at runtime...special characters should therefore
always be written via special sequences borrowed from HTML resp. SGML
(see table I.1). Linefeeds can be inserted into a line via \n, similar to C.

I.6 Creation of Documentation

A source distribution of AS contains this documentation in LaTeX format
only. Other formats are created from this one automatically via tools pro-
vided with AS. One reason is to reduce the size of the source distribution,
another reason is that changes in the documentation only have to be made
once, avoiding inconsistencies.

LaTex was chosen as the master format because...because...because it’s been
there all the time before. Additionally, TeX is almost arbitrarily portable

330 APPENDIX I. HINTS FOR THE AS SOURCE CODE

Sequence... results in...

ä ö ü ”a ”o ”u (Umlauts)
Ä Ö Ü ”A ”O ”U
ß ”s (sharp s)
à è ì ò á é ı́ ó
ù ú

À È Ì Ò Á É Í Ó

Ù Ú (Accent grave)
á é í ó à è ı̀ ò
ú ù

Á É Í Ó À È Ì Ò

Ú Ù (Accent agiu)
â ê î ô â ê ı̂ ô
û û

Â Ê Î Ô Â Ê Î Ô

Û Û (Accent circonflex)
ç Ç ç Ç(Cedilla)

ñ Ñ ñ Ñ
å Å åÅ
æ &Aelig; æÆ
¿ ¡ inverted ! or ?

Table I.1: Syntax for special character in rescomp

and fits quite well to the demands of AS. A standard distribution therefore
allows a nice printout on about any printer; for a conversion to an ASCII file
that used to be part of earlier distributions, the converter tex2doc is included,
additionally the converter tex2html allowing to put the manual into the Web.

Generation of the documentation is started via a simple

make docs

The two converters mentioned are be built first, then applied to the TeX
documentation and finally, LaTeX itself is called. All this of course for all
languages...

I.7. TEST SUITE 331

I.7 Test Suite

Since AS deals with binary data of a precisely defined structure, it is nat-
urally sensitive for system and compiler dependencies. To reach at least a
minimum amount of secureness that everything went right during compila-
tion, a set of test sources is provided in the subdirectory tests that allows
to test the freshly built assembler. These programs are primarily trimmed
to find faults in the translation of the machine instruction set, which are
commonplace when integer lenghts vary. Target-independent features like
the macro processors or conditional assembly are only casually tested, since
I assume that they work everywhere when they work for me...

The test run is started via a simple make test. Each test program is assem-
bled, converted to a binary file, and compared to a reference image. A test
is considered to be passed if and only if the reference image and the newly
generated one are identical on a bit-by-bit basis. At the end of the test, the
assembly time for every test is printed (those who want may extend the file
BENCHES with these results), accompanied with a success or failure mes-
sage. Track down every error that occurs, even if it occurs in a processor
target you are never going to use! It is always possible that this points to an
error that may also come up for other targets, but by coincidence not in the
test cases.

I.8 Adding a New Target Processor

The probably most common reason to modify the source code of AS is to add
a new target processor. Apart from adding the new module to the Makefile,
there are few places in other modules that need a modification. The new
module will do the rest by registering itself in the list of code generators. I
will describe the needed steps in a cookbook style in the following sections:

Choosing the Processor’s Name

The name chosen for the new processor has to fulfill two criterias:

332 APPENDIX I. HINTS FOR THE AS SOURCE CODE

1. The name must not be already in use by another processor. If one
starts AS without any parameters, a list of the names already in use
will be printed.

2. If the name shall appear completely in the symbol MOMCPU, it may not
contain other letters than A..F (except right at the beginning). The
variable MOMCPUNAME however will always report the full name during
assembly. Special characters are generally disallowed, lowercase letters
will be converted by the CPU command to uppercase letters and are
therefore senseless in the processor name.

The first step for registration is making an entry for the new processor (fam-
ily) in the file headids.c. As already mentioned, this file is also used by the
tools and specifies the code ID assigned to a processor family, along with the
default hex file format to be used. I would like to have some coordination
before choosing the ID...

Definition of the Code Generator Module

The unit’s name that shall be responsible for the new processor should bear
at least some similarity to the processor’s name (just for the sake of unifor-
mity) and should be named in the style of code..... The head with include
statements is best taken from another existing code generator.

Except for an initialization function that has to be called at the begginning
of the main() function in module as.c, the new module neither has to export
variables nor functions as the complete communication is done at runtime
via indirect calls. They are simply done by a call to the function AddCPU for
each processor type that shall be treated by this unit:

CPUxxxx:=AddCPU(’XXXX’,SwitchTo_xxxx);

’XXXX’ is the name chosen for the processor which later must be used in
assembler programs to switch AS to this target processor. SwitchTo xxxx

(abbreviated as the ”switcher” in the following) is a procedure without pa-
rameters that is called by AS when the switch to the new processor actually
takes place. AddCPU delivers an integer value as result that serves as an in-
ternal ”handle” for the new processor. The global variable MomCPU always

I.8. ADDING A NEW TARGET PROCESSOR 333

contains the handle of the target processor that is currently set. The value
returned by AddCPU should be stored in a private variable of type CPUVar

(called CPUxxxx in the example above). In case a code generator module
implements more than one processor (e.g. several processors of a family),
the module can find out which instruction subset is currently allowed by
comparing MomCPU against the stored handles.

The switcher’s task is to ”reorganize” AS for the new target processor. This
is done by changing the values of several global variables:

• ValidSegs: Not all processors have all address spaces defined by AS.
This set defines which subset the SEGMENT instruction will enable for
the currently active target processor. At least the CODE segment has
to be enabled. The complete set of allowed segments can be looked up
the file fileformat.h (Seg.... constants).

• SegInits: This array stores the initial program counter values for the
individual segments (i.e. the values the program counters will initially
take when there is no ORG statement). There are only a few exceptions
(like logically separated address spaces that physically overlap) which
justify other initial values than 0.

• Grans: This array specifies the size of the smallest addressable element
in bytes for each segment, i.e. the size of an element that increases an
address by 1. Most processors need a value of 1, even if they are 16- or
32-bit processors, but the PICs and signal processors are cases where
higher values are required.

• ListGrans: This array specifies the size of byte groups that shall be
shown in the assembly listing. For example, instruction words of the
68000 are always 2 bytes long though the code segment’s granularity is
1. The ListGran entry therefore has to be set to 2.

• SegLimits: This array stores the highest possible address for each
segment, e.g. 65535 for a 16-bit address space. This array need not be
filled in case the code generator takes over the ChkPC method.

• ConstMode: This variable may take the values ConstModeIntel,
ConstModeMoto, or ConstModeC and rules which syntax has to be used
to specify the base of integer constants.

334 APPENDIX I. HINTS FOR THE AS SOURCE CODE

• PCSymbol: This variable contains the string an assembler program may
use to to get the current value of the program counter. Intel processors
for example usually use a dollar sign.

• TurnWords: If the target processor uses big-endian addressing and one
of the fields in ListGran is larger than one, set this flag to true to get
the correct byte order in the code output file.

• SetIsOccupied: Some processors have a SET machine instruction. AS
will allow SET instructions to pass through to the code generator and
instead use EVAL if this flag is set.

• HeaderID: This variable contains the ID that is used to mark the cur-
rent processor family in the the code output file (see the description of
the code format described by AS). I urge to contact me before select-
ing the value to avoid ambiguities. Values outside the range of $01..$7f
should be avoided as they are reserved for special purposes (like a fu-
ture extension to allow linkable code). Even though this value is still
hard-coded in most code generators, the preferred method is now to
fetch this value from headids.h via FindFamilyByName.

• NOPCode: There are some situations where AS has to fill unused code
areas with NOP statements. This variable contains the machine code
of the NOP statement.

• DivideChars: This string contains the characters that are valid sepa-
ration characters for instruction parameters. Only extreme exotics like
the DSP56 require something else than a single comma in this string.

• HasAttrs: Some processors like the 68k series additionally split an
instruction into mnemonic and attribute. If the new processor also
does something like that, set this flag to true and AS will deliver the
instructions’ components readily split in the string variables OpPart

and AttrPart. If this flag is however set to false, no splitting will take
place and the instruction will be delivered as a single piece in OpPart.
AttrPart will stay empty in this case. One really should set this flag to
false if the target processor does not have attributes as one otherwise
looses the opportunity to use macros with a name containing dots (e.g.
to emulate other assemblers).

I.8. ADDING A NEW TARGET PROCESSOR 335

• AttrChars: In case HasAttrs is true, this string has to contain all
characters that can separate mnemonic and attribute. In most cases,
this string only contains a single dot.

Do not assume that any of these variables has a predefined value; set them
all!!

Apart from these variables, some function pointers have to be set that form
the link form AS to the ”active” parts of the code generator:

• MakeCode: This routine is called after a source line has been split into
mnemonic and parameters. The mnemonic is stored into the variable
OpPart, and the parameters can be looked up in the array ArgStr.
The number of arguments may be read from ArgCnt. The binary code
has to be stored into the array BAsmCode, its length into CodeLen. In
case the processor is word oriented like the 68000 (i.e. the ListGran

element corresponding to the currently active segment is 2), the field
may be addressed wordwise via WAsmCode. There is also DAsmCode for
extreme cases... The code length has to be given in units corresponding
to the current segment’s granularity.

• SwitchFrom: This parameter-less procedure enables the code generator
module to do ”cleanups” when AS switches to another target proces-
sor. This hook allows e.g. to free memory that has been allocated in
the generator and that is not needed as long as the generator is not
active. It may point to an empty procedure in the simplest case. One
example for the usage of this hook is the module CODE370 that builds
its instruction tables dynamically and frees them again after usage.

• IsDef: Some processors know additional instructions that impose a
special meaning on a label in the first row like EQU does. One example
is the BIT instruction found in an 8051 environment. This function has
to return TRUE if such a special instruction is present. In the simplest
case (no such instructions), the routine may return a constant FALSE.

Optionally, the code generator may additionally set the following function
pointers:

336 APPENDIX I. HINTS FOR THE AS SOURCE CODE

• ChkPC : Though AS internally treats all program counters as either 32
or 64 bits, most processors use an address space that is much smaller.
This function informs AS whether the current program counter has
exceeded its allowed range. This routine may of course be much more
complicated in case the target processor has more than one address
space. One example is in module code16c8x.c. In case everything is
fine, the function has to return TRUE, otherwise FALSE. The code
generator only has to implement this function if it did not set up the
array SegLimits. This may e.g. become necessary when the allowed
range of addresses in a segment is non-continuous.

• InternSymbol : Some processorcs, e.g. such with a register bank
in their internal RAM, predefine such ’registers’ as symbols, and it
wouldn’t make much sense to define them in a separate include file
with 256 or maybe more EQUs. This hook allows access to the code
generator of AS: It obtains an expression as an ASCII string and sets
up the passed structure of type TempResult accordingly when one of
these ’built-in’ symbols is detected. The element Typ has to be set to
TempNone in case the check failed. Errors messages from this routine
should be avoided as unidentified names could signify ordinary symbols
(the parser will check this afterwards). Be extreme careful with this
routine as it allows you to intervene into the parser’s heart!

By the way: People who want to become immortal may add a copyright
string. This is done by adding a call to the procedure AddCopyright in the
module’s initialization part (right next to the AddCPU calls):

AddCopyright(

"Intel 80986 code generator (C) 2010 Jim Bonehead");

The string passed to AddCopyright will be printed upon program start in
addition to the standard message.

If needed, the unit may also use its initialization part to hook into a list of
procedures that are called prior to each pass of assembly. Such a need for ex-
ample arises when the module’s code generation depends on certain flags that
can be modified via pseudo instructions. An example is a processor that can
operate in either user or supervisor mode. In user mode, some instructions
are disabled. The flag that tells AS whether the following code executes in

I.8. ADDING A NEW TARGET PROCESSOR 337

user or supervisor mode might be set via a special pseudo instruction. But
there must also be an initialization that assures that all passes start with
the same state. The hook offered via InitPassProc offers a chance to do
such initializations. The principle is similar to the redirection of an interrupt
vector: the unit saves the old value prior to pointing the procedure variable
to its own routine (the routine must be parameter-less and FAR coded). The
new routine first calls the old chain of procedures and afterwards does its
own operations.

The function chain built up via CleanUpProc works similar to InitPassProc:
It enables code generators to do clean-ups after assembly (e.g. freeing of
literal tables). This makes sense when multiple files are assembled with a
single call of AS. Otherwise, one would risk to have ’junk’ in tables from the
previous run. No module currently exploits this feature.

Writing the Code Generator itself

Now we finally reached the point where your creativity is challenged: It is
up to you how you manage to translate mnemonic and parameters into a
sequence of machine code. The symbol tables are of course accessible (via
the formula parser) just like everything exported from ASMSUB. Some general
rules (take them as advises and not as laws...):

• Try to split the instruction set into groups of instructions that have the
same operand syntax and that differ only in a few bits of their machine
code. For example, one can do all instructions without parameters in
a single table this way.

• Most processors have a fixed spectrum of addressing modes. Place the
parsing of an address expression in a separate routine so you an reuse
the code.

• The subroutine WrError defines a lot of possible error codes and can
be easily extended. Use this! It is no good to simply issue a ”syntax
error” on all error conditions!

Studying other existing code generators should also prove to be helpful.

338 APPENDIX I. HINTS FOR THE AS SOURCE CODE

Modifications of Tools

A microscopic change to the tolls’ sources is still necessary, namely to the
routine Granularity() in toolutils.c: in case one of the processor’s ad-
dress spaces has a granularity different to 1, the swich statement in this place
has to be adapted accordingly, otherwise PLIST, P2BIN, and P2HEX start
counting wrong...

I.9 Localization to a New Language

You are interested in this topic? Wonderful! This is an issue that is often
neglected by other programmers, especially when they come from the country
on the other side of the big lake...

The localization to a new language can be split into two parts: the adaption
of program messages and the translation of the manual. The latter one is
definitely a work of gigantic size, however, the adaption of program messages
should be a work doable on two or three weekends, given that one knows
both the new and one of the already present messages. Unfortunately, this
translation cannot be done on a step-by-step basis because the resource com-
piler currently cannot deal with a variable amount of languages for different
messages, so the slogan is ’all or nothing’.

The first oeration is to add the new language to header.res. The two-
letter-abbreviation used for this language is best fetched from the nearest
Unix system (in case you don’t work on one anyway...), the international
telephone prefix from a DOS manual.

When this is complete, one can rebuild all necessary parts with a simple
make and obtains an assembler that supports one more language. Do not
forget to forward the results to me. This way, all users will benefit from this
with the next release :-)

Bibliography

[1] Steve Williams:
68030 Assembly Language Reference.
Addison-Wesley, Reading, Massachusetts, 1989

[2] Advanced Micro Devices:
AM29240, AM29245, and AM29243 RISC Microcontrollers.
1993

[3] Atmel Corp.:
AVR Enhanced RISC Microcontroller Data Book.
May 1996

[4] Atmel Corp.:
8-Bit AVR Assembler and Simulator Object File Formats (Preliminary).
(part of the AVR tools documentation)

[5] CMD Microcircuits:
G65SC802/G65SC816 CMOS 8/16-Bit Microprocessor.
Family Data Sheet.

[6] National Semiconductor:
COP410L/COP411L/COP310L/COP311L Single-Chip N-Channel Mi-
crocontrollers. RRD-B30M105, March 1992

[7] National Semiconductor:
COPS Family User’s Guide.

[8] Digital Research:
CP/M 68K Operating System User’s Guide.
1983

339

340 BIBLIOGRAPHY

[9] Cyrix Corp.:
FasMath 83D87 User’s Manual.
1990

[10] Dallas Semiconductor:
DS80C320 High-Speed Micro User’s Guide.
Version 1.30, 1/94

[11] Fairchild Semiconductor:
ACE1101 Data Sheet.
Preliminary, May 1999

[12] Fairchild Semiconductor:
ACE1202 Data Sheet.
Preliminary, May 1999

[13] Fairchild Semiconductor:
ACEx Guide to Developer Tools. AN-8004, Version 1.3 September 1998

[14] Freescale Semiconductor:
S12XCPUV1 Reference Manual. S12XCPUV1, v01.01, 03/2005

[15] Freescale Semiconductor:
RS08 Core Reference Manual. RS08RM, Rev. 1.0, 04/2006

[16] Freescale Semiconductor:
MC9S12XDP512 Data Sheet. MC9S12XDP512, Rev. 2.11, 5/2005

[17] Fujitsu Limited:
June 1998 Semiconductor Data Book.
CD00-00981-1E

[18] Fujitsu Semiconductor:
F2MC16LX 16-Bit Microcontroller MB90500 Series Programming Man-
ual.
CM44-00201-1E, 1998

[19] Hitachi Ltd.:
8-/16-Bit Microprocessor Data Book.
1986

BIBLIOGRAPHY 341

[20] Trevor J.Terrel & Robert J. Simpson:
Understanding HD6301X/03X CMOS Microprocessor Systems.
published by Hitachi

[21] Hitachi Microcomputer:
H8/300H Series Programming Manual.
(21-032, no year of release given)

[22] Hitachi Semiconductor Design & Development Center:
SH Microcomputer Hardware Manual (Preliminary).

[23] Hitachi Semiconductor and IC Div.:
SH7700 Series Programming Manual.
1st Edition, September 1995

[24] Hitachi Semiconductor and IC Div.:
H8/500 Series Programming Manual.
(21-20, 1st Edition Feb. 1989)

[25] Hitachi Ltd.:
H8/532 Hardware Manual.
(21-30, no year of release given)

[26] Hitachi Ltd.:
H8/534,H8/536 Hardware Manual.
(21-19A, no year of release given)

[27] IBM Corp.:
PPC403GA Embedded Controller User’s Manual.
First Edition, September 1994

[28] Intel Corp.:
Embedded Controller Handbook.
1987

[29] Intel Corp.:
Microprocessor and Peripheral Handbook, Volume I Microprocessor.
1988

[30] Intel Corp. :
80960SA/SB Reference Manual.
1991

342 BIBLIOGRAPHY

[31] Intel Corp.:
8XC196NT Microcontroller User’s Manual.
June 1995

[32] Intel Corp.:
8XC251SB High Performance CHMOS Single-Chip Microcontroller.
Sept. 1995, Order Number 272616-003

[33] Intel Corp.:
80296SA Microcontroller User’s Manual.
Sept. 1996

[34] Intel Corp.:
4040: Single-Chip 4-Bit P-Channel Microprocessor.
(no year of release given)

[35] Intersil:
CDP1802A, CDP1802AC, CDP1802BC CMOS 8-Bit Microprocessors.
March 1997

[36] Intersil:
CDP1805AC, CDP1806AC CMOS 8-Bit Microprocessor with On-Chip
RAM and Counter/Timer.
March 1997

[37] Hirotsugu Kakugawa:
A memo on the secret features of 6309.
(available via World Wide Web:
http://www.cs.umd.edu/users/fms/comp/CPUs/6309.txt)

[38] Lattice Semiconductor Corporation:
LatticeMico8 Microcontroller Users Guide.
Reference Design RD1026, February 2008

[39] Microchip Technology Inc.:
Microchip Data Book.
1993 Edition

[40] Mitsubishi Electric:
Single-Chip 8-Bit Microcomputers.
Vol.2, 1987

BIBLIOGRAPHY 343

[41] Mitsubishi Electric:
Single-Chip 16-Bit Microcomputers.
Enlarged edition, 1991

[42] Mitsubishi Electric:
Single-Chip 8 Bit Microcomputers.
Vol.2, 1992

[43] Mitsubishi Electric:
M34550Mx-XXXFP Users’s Manual.
Jan. 1994

[44] Mitsubishi Electric:
M16 Family Software Manual.
First Edition, Sept. 1994

[45] Mitsubishi Electric:
M16C Software Manual.
First Edition, Rev. C, 1996

[46] Mitsubishi Electric:
M30600-XXXFP Data Sheet.
First Edition, April 1996

[47] documentation about the M16/M32-developer’s package from Green
Hills Software

[48] Motorola Inc.:
Microprocessor, Microcontroller and Peripheral Data.
Vol. I+II, 1988

[49] Motorola Inc.:
MC68881/882 Floating Point Coprocessor User’s Manual.
Second Edition, Prentice-Hall, Englewood Cliffs 1989

[50] Motorola Inc.:
MC68851 Paged Memory Management Unit User’s Manual.
Second Edition, Prentice-Hall, Englewood Cliffs 1989,1988

[51] Motorola Inc.:
CPU32 Reference Manual.
Rev. 1, 1990

344 BIBLIOGRAPHY

[52] Motorola Inc.:
DSP56000/DSP56001 Digital Signal Processor User’s Manual.
Rev. 2, 1990

[53] Motorola Inc.:
MC68340 Technical Summary.
Rev. 2, 1991

[54] Motorola Inc.:
CPU16 Reference Manual.
Rev. 1, 1991

[55] Motorola Inc.:
Motorola M68000 Family Programmer’s Reference Manual.
1992

[56] Motorola Inc.:
MC68332 Technical Summary.
Rev. 2, 1993

[57] Motorola Inc.:
PowerPC 601 RISC Microprocessor User’s Manual.
1993

[58] Motorola Inc.:
PowerPC(tm) MPC505 RISC Microcontroller Technical Summary.
1994

[59] Motorola Inc.:
CPU12 Reference Manual.
1st edition, 1996

[60] Motorola Inc.:
CPU08 Reference Manual.
Rev. 1 (no year of release given im PDF-File)

[61] Motorola Inc.:
MC68360 User’s Manual.

[62] Motorola Inc.:
MCF 5200 ColdFire Family Programmer’s Reference Manual.
1995

BIBLIOGRAPHY 345

[63] Motorola Inc.:
M*Core Programmer’s Reference Manual.
1997

[64] Motorola Inc.:
DSP56300 24-Bit Digital Signal Processor Family Manual.
Rev. 0 (no year of release given im PDF-File)

[65] Motorola Inc.:
MC68HC11K4 Technical Data. 1992

[66] National Semiconductor:
SC/MP Programmier- und Assembler-Handbuch.
Publication Number 4200094A, Aug. 1976

[67] National Semiconductor:
COP800 Assembler/Linker/Librarian User’s Manual.
Customer Order Number COP8-ASMLNK-MAN
NSC Publication Number 424421632-001B
August 1993

[68] National Semiconductor:
COP87L84BC microCMOS One-Time-Programmable (OTP) Microcon-
troller.
Preliminary, March 1996

[69] National Semiconductor:
SC14xxx DIP commands Reference guide.
Application Note AN-D-031, Version 0.4, 12-28-1998

[70] National Semiconductor:
INS8070-Series Microprocessor Family. October 1980

[71] NEC Corp.:
µpD70108/µpD70116/µpD70208/µpD70216/µpD72091 Data Book.
(no year of release given)

[72] NEC Electronics Europe GmbH:
User’s Manual µCOM-87 AD Family.
(no year of release given)

346 BIBLIOGRAPHY

[73] NEC Corp.:
µCOM-75x Family 4-bit CMOS Microcomputer User’s Manual.
Vol. I+II (no year of release given)

[74] NEC Corp.:
78K/II Series 8-Bit Single-Chip Microcontroller User’s Manual - In-
structions.
Document No. U10228EJ6V0UM00 (6th edition), December 1995

[75] NEC Corp.:
Digital Signal Processor Product Description.
PDDSP.....067V20 (no year of release given)

[76] NEC Corp.:
µPD78070A, 78070AY 8-Bit Single-Chip Microcontroller User’s Man-
ual.
Document No. U10200EJ1V0UM00 (1st edition), August 1995

[77] NEC Corp.:
Data Sheet µPD78014.

[78] Philips Semiconductor:
16-bit 80C51XA Microcontrollers (eXtended Architecture).
Data Handbook IC25, 1996

[79] SGS-Thomson Microelectronics:
8 Bit MCU Families EF6801/04/05 Databook.
1st edition, 1989

[80] SGS-Thomson Microelectronics:
ST6210/ST6215/ST6220/ST6225 Databook.
1st edition, 1991

[81] SGS-Thomson Microelectronics:
ST7 Family Programming Manual.
June 1995

[82] SGS-Thomson Microelectronics:
ST9 Programming Manual.
3rd edition, 1993

BIBLIOGRAPHY 347

[83] Siemens AG:
SAB80C166/83C166 User’s Manual.
Edition 6.90

[84] Siemens AG:
SAB C167 Preliminary User’s Manual.
Revision 1.0, July 1992

[85] Siemens AG:
SAB-C502 8-Bit Single-Chip Microcontroller User’s Manual.
Edition 8.94

[86] Siemens AG:
SAB-C501 8-Bit Single-Chip Microcontroller User’s Manual.
Edition 2.96

[87] Siemens AG:
C504 8-Bit CMOS Microcontroller User’s Manual.
Edition 5.96

[88] C.Vieillefond:
Programmierung des 68000.
Sybex-Verlag Düsseldorf, 1985

[89] Symbios Logic Inc:
Symbios Logic PCI-SCSI-I/O Processors Programming Guide.
Version 2.0, 1995/96

[90] Texas Instruments:
Model 990 Computer/TMS9900 Microprocessor Assembly Language
Programmer’s Guide.
1977, Manual No. 943441-9701

[91] Texas Instruments:
TMS9995 16-Bit Microcomputer.
Preliminary Data Manual 1981

[92] Texas Instruments:
First-Generation TMS320 User’s Guide.
1988, ISBN 2-86886-024-9

348 BIBLIOGRAPHY

[93] Texas Instruments:
TMS7000 family Data Manual.
1991, DB103

[94] Texas Instruments:
TMS320C3x User’s Guide.
Revision E, 1991

[95] Texas Instruments:
TMS320C2x User’s Guide.
Revision C, Jan. 1993

[96] Texas Instruments:
TMS370 Family Data Manual.
1994, SPNS014B

[97] Texas Instruments:
MSP430 Family Software User’s Guide.
1994, SLAUE11

[98] Texas Instruments:
MSP430 Metering Application.
1996, SLAAE10A

[99] Texas Instruments:
MSP430 Family Architecture User’s Guide.
1995, SLAUE10A

[100] Texas Instruments:
TMS320C62xx CPU and Instruction Set Reference Manual.
Jan. 1997, SPRU189A

[101] Texas Instruments:
TMS320C20x User’s Guide.
April 1999, SPRU127C

[102] Texas Instruments:
TMS320C54x DSP Reference Set; Volume 1: CPU and Peripherals.
March 2001, SPRU172C

BIBLIOGRAPHY 349

[103] Texas Instruments:
TMS320C54x DSP; Volume 2: Mnemonic Instruction Set.
March 2001, SPRU172C

[104] Toshiba Corp.:
8-Bit Microcontroller TLCS-90 Development System Manual.
1990

[105] Toshiba Corp.:
8-Bit Microcontroller TLCS-870 Series Data Book.
1992

[106] Toshiba Corp.:
16-Bit Microcontroller TLCS-900 Series Users Manual.
1992

[107] Toshiba Corp.:
16-Bit Microcontroller TLCS-900 Series Data Book: TMP93CM40F/
TMP93CM41F.
1993

[108] Toshiba Corp.:
4-Bit Microcontroller TLCS-47E/47/470/470A Development System
Manual.
1993

[109] Toshiba Corp.:
TLCS-9000/16 Instruction Set Manual Version 2.2.
10. Feb 1994

[110] Valvo GmbH:
Bipolare Mikroprozessoren und bipolare LSI-Schaltungen.
Datenbuch, 1985, ISBN 3-87095-186-9

[111] Ken Chapman (Xilinx Inc.):
PicoBlaze 8-Bit Microcontroller for Virtex-E and Spartan-II/IIE De-
vices.
Application Note XAPP213, Version 2.1, February 2003

[112] Xilinx Inc.:
PicoBlaze 8-bit Embedded Microcontroller User Guide for Spartan-3,

350 BIBLIOGRAPHY

Virtex-II, and Virtex-II Pro FPGAs.
UG129 (v1.1) June 10, 2004

[113] data sheets from Zilog about the Z80 family

[114] Zilog Inc.:
Z8 Microcontrollers Databook.
1992

[115] Zilog Inc.:
Discrete Z8 Microcontrollers Databook.
(no year of release given)

[116] Zilog Inc.:
Z380 CPU Central Processing Unit User’s Manual.
(no year of release given)

[117] Zilog Inc.:
eZ8 CPU User Manual.
UM01285-0503

Index

ADR, 113
ALIGN, 119
ASCII, 117
ASCIZ, 117
ASSUME, 100

BFLOAT, 115
BIGENDIAN, 95
BINCLUDE, 151
BIT, 68
BLOCK, 118
BRANCHEXT, 108
BSS, 118
BYT, 113
BYTE, 113

CASE, 136
CHARSET, 71
CODEPAGE, 72
CONSTANT, 65
CPU, 79

DATA, 116
DB, 111
DBIT, 69
DC, 109
DC8, 113
DD, 111
DEPHASE, 98
DFS, 117
DOTTEDSTRUCTS, 131

DOUBLE, 114, 115
DQ, 111
DS, 110, 112
DS16, 119
DS8, 112
DSB, 118
DSW, 118
DT, 111
DW, 111
DW16, 114

EFLOAT, 115
ELSE, 134
ELSECASE, 136
ELSEIF, 134
END, 154
ENDCASE, 136
ENDIF, 134
ENDM, 120
ENDS, 131
ENDSECTION, 143
ENDSTRUCT, 131
ENUM, 73
EQU, 65
ERROR, 152
EXITM, 128
EXTENDED, 114
EXTMODE, 95

FATAL, 152
FB, 116

351

352 INDEX

FCB, 113
FCC, 117
FDB, 113
FLOAT, 115
FORWARD, 148
FPU, 92
FULLPMMU, 93
FUNCTION, 129
FW, 116

GLOBAL, 147

IF, 134
IFB, 135
IFDEF, 135
IFEXIST, 135
IFNB, 135
IFNDEF, 135
IFNEXIST, 135
IFNUSED, 135
IFUSED, 135
INCLUDE, 150
IRP, 126
IRPC, 126

LABEL, 68
LISTING, 139
LIV, 70
LONG, 114
LQxx, 115
LTORG, 119
LWORDMODE, 95

MACEXP, 139
MACRO, 120
MAXMODE, 94
MAXNEST, 129
MESSAGE, 152

NAMEREG, 70

NEWPAGE, 138

ORG, 74
OUTRADIX, 141

PACKING, 94
PADDING, 93
PAGE, 137
PHASE, 98
PMMU, 92
POPV, 73
PORT, 70
PRTEXIT, 140
PRTINIT, 140
PUBLIC, 147
PUSHV, 73

Qxx, 115

RADIX, 141
READ, 153
REG, 70
register symbols, 61
RELAXED, 154
REPT, 127
RES, 118
RESTORE, 99
RIV, 70
RMB, 117
RSTRING, 117

SAVE, 99
SECTION, 143
SEGMENT, 96
SET, 65
SFR, 67
SFRB, 67
SHARED, 30, 62, 150
SHIFT, 128

INDEX 353

SINGLE, 114
SPACE, 118
SRCMDE, 95
STRING, 117
STRUC, 131
STRUCT, 131
SUPMODE, 92
SWITCH, 136

TFLOAT, 115
TITLE, 141

UNION, 131

WARNING, 152
WHILE, 127
WORD, 114
WRAPMODE, 96

XSFR, 67

YSFR, 67

ZERO, 116

	Introduction
	License Agreement
	General Capabilities of the Assembler
	Supported Platforms

	Assembler Usage
	Hardware Requirements
	Delivery
	Installation
	Start-Up Command, Parameters
	Format of the Input Files
	Format of the Listing
	Symbol Conventions
	Temporary Symbols
	Named Temporary Symbols
	Nameless Temporary Symbols
	Composed Temporary Symbols

	Formula Expressions
	Integer Constants
	Floating Point Constants
	String Constants
	Evaluation
	Operators
	Functions

	Forward References and Other Disasters
	Register Symbols
	Sharefile
	Processor Aliases

	Pseudo Instructions
	Definitions
	SET, EQU, and CONSTANT
	SFR and SFRB
	XSFR and YSFR
	LABEL
	BIT
	DBIT
	PORT
	REG and NAMEREG
	LIV and RIV
	CHARSET
	CODEPAGE
	ENUM
	PUSHV and POPV

	Code Modification
	ORG
	CPU
	SUPMODE, FPU, PMMU
	FULLPMMU
	PADDING
	PACKING
	MAXMODE
	EXTMODE and LWORDMODE
	SRCMODE
	BIGENDIAN
	WRAPMODE
	SEGMENT
	PHASE and DEPHASE
	SAVE and RESTORE
	ASSUME
	EMULATED
	BRANCHEXT

	Data Definitions
	DC[.Size]
	DS[.Size]
	DB,DW,DD,DQ, and DT
	DS, DS8
	BYT or FCB
	BYTE
	DC8
	ADR or FDB
	WORD
	DW16
	LONG
	SINGLE, DOUBLE, and EXTENDED
	FLOAT and DOUBLE
	EFLOAT, BFLOAT, and TFLOAT
	Qxx and LQxx
	DATA
	ZERO
	FB and FW
	ASCII and ASCIZ
	STRING and RSTRING
	FCC
	DFS or RMB
	BLOCK
	SPACE
	RES
	BSS
	DSB and DSW
	DS16
	ALIGN
	LTORG

	Macro Instructions
	MACRO
	IRP
	IRPC
	REPT
	WHILE
	EXITM
	SHIFT
	MAXNEST
	FUNCTION

	Structures
	Definition
	Usage
	Nested Structures
	Unions
	Structures and Sections

	Conditional Assembly
	IF / ELSEIF / ENDIF
	SWITCH / CASE / ELSECASE / ENDCASE

	Listing Control
	PAGE
	NEWPAGE
	MACEXP
	LISTING
	PRTINIT and PRTEXIT
	TITLE
	RADIX
	OUTRADIX

	Local Symbols
	Basic Definition (SECTION/ENDSECTION)
	Nesting and Scope Rules
	PUBLIC and GLOBAL
	FORWARD
	Performance Aspects

	Miscellaneous
	SHARED
	INCLUDE
	BINCLUDE
	MESSAGE, WARNING, ERROR, and FATAL
	READ
	RELAXED
	END

	Processor-specific Hints
	6811
	PowerPC
	DSP56xxx
	H8/300
	SH7000/7600/7700
	MELPS-4500
	6502UNDOC
	MELPS-740
	MELPS-7700/65816
	M16
	4004/4040
	MCS-48
	MCS-51
	MCS-251
	8085UNDOC
	8086..V35
	8X30x
	XA
	AVR
	Z80UNDOC
	Z380
	TLCS-900(L)
	TLCS-90
	TLCS-870
	TLCS-47
	TLCS-9000
	29xxx
	80C16x
	PIC16C5x/16C8x
	PIC 17C4x
	ST6
	ST7
	ST9
	6804
	TMS3201x
	TMS320C2x
	TMS320C3x
	TMS9900
	TMS70Cxx
	TMS370xxx
	MSP430
	COP8 & SC/MP
	SC144xxx
	75K0
	78K0
	78K2
	uPD772x
	F2MC16L

	File Formats
	Code Files
	Debug Files

	Utility Programs
	PLIST
	BIND
	P2HEX
	P2BIN
	AS2MSG

	Error Messages of AS
	I/O Error Messages
	Frequently Asked Questions
	Pseudo-Instructions Collected
	Predefined Symbols
	Shipped Include Files
	BITFUNCS.INC
	CTYPE.INC

	Acknowledgments
	Changes since Version 1.3
	Hints for the AS Source Code
	Language Preliminaries
	Capsuling System dependencies
	System-Independent Files
	Modules Used by AS
	Additional Modules for the Tools

	Modules Needed During the Build of AS
	Generation of Message Files
	Format of the Source Files

	Creation of Documentation
	Test Suite
	Adding a New Target Processor
	Localization to a New Language

