
Falagard skinning system for CEGUI

A tutorial and reference

The CEGUI Development Team

November 5, 2006

2

Copyright (c) 2006 The CEGUI Development Team

Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts. A copy of the license is included in
the section entitled “GNU Free Documentation License”.

Contents

I Tutorial Style Introduction 5

1 Introduction and overview 7

1.1 What is the Falagard Skinning System? 7

1.2 The Unified Co-ordinate System 8

1.2.1 UDim . 8

1.2.2 UVector2 . 10

1.2.3 URect . 11

1.3 New Window Alignments . 13

1.3.1 Vertical Alignments 13

1.3.2 Horizontal Alignments 14

1.4 Falagard in Schemes . 15

1.4.1 The CEGUIFalagardWRBase module 15

1.4.2 LookNFeel Elements 16

1.4.3 FalagardMapping Elements 16

1.5 Conclusion . 17

2 Introduction to Falagard ’looknfeel’ XML 19

2.1 Before we begin: An empty skin 19

2.2 Starting Simple: A Button . 20

3

4 CONTENTS

II Reference Material 35

3 Falagard XML Element Reference 37

3.1 Overview . 37

3.1.1 Purpose: . 37

3.1.2 Attributes: . 37

3.1.3 Usage: . 37

3.1.4 Examples: . 38

3.2 <AbsoluteDim> Element . 38

3.2.1 Purpose: . 38

3.2.2 Attributes: . 38

3.2.3 Usage: . 38

3.2.4 Examples: . 38

3.3 <Area> Element . 40

3.3.1 Purpose: . 40

3.3.2 Attributes: . 40

3.3.3 Usage: . 40

3.3.4 Examples: . 41

3.4 <AreaProperty> Element . 41

3.4.1 Purpose: . 41

3.4.2 Attributes: . 41

3.4.3 Usage: . 41

3.4.4 Examples: . 42

3.5 <Child> Element . 42

3.5.1 Purpose: . 42

3.5.2 Attributes: . 42

3.5.3 Usage: . 42

3.5.4 Examples: . 43

CONTENTS 5

3.6 <ColourProperty> Element 43

3.6.1 Purpose: . 43

3.6.2 Attributes: . 43

3.6.3 Usage: . 44

3.6.4 Examples: . 44

3.7 <ColourRectProperty> Element 45

3.7.1 Purpose: . 45

3.7.2 Attributes: . 45

3.7.3 Usage: . 45

3.7.4 Examples: . 46

3.8 <Colours> Element . 46

3.8.1 Purpose: . 46

3.8.2 Attributes: . 46

3.8.3 Usage: . 46

3.8.4 Examples: . 47

3.9 <Dim> Element . 48

3.9.1 Purpose: . 48

3.9.2 Attributes: . 48

3.9.3 Usage: . 48

3.9.4 Examples: . 48

3.10 <DimOperator> Element . 48

3.10.1 Purpose: . 48

3.10.2 Attributes: . 49

3.10.3 Usage: . 49

3.10.4 Examples: . 50

3.11 <Falagard> Element . 50

3.11.1 Purpose: . 50

3.11.2 Attributes: . 51

6 CONTENTS

3.11.3 Usage: . 51

3.11.4 Examples: . 51

3.12 <FontDim> Element . 51

3.12.1 Purpose: . 51

3.12.2 Attributes: . 52

3.12.3 Usage: . 52

3.12.4 Examples: . 52

3.13 <FontProperty> Element . 53

3.13.1 Attributes: . 53

3.13.2 Usage: . 53

3.13.3 Examples: . 53

3.14 <FrameComponent> Element 53

3.14.1 Purpose: . 53

3.14.2 Attributes: . 54

3.14.3 Usage: . 54

3.14.4 Examples: . 55

3.15 <HorzAlignment> Element 56

3.15.1 Purpose: . 56

3.15.2 Attributes: . 56

3.15.3 Usage: . 56

3.15.4 Examples: . 56

3.16 <HorzFormat> Element . 57

3.16.1 Purpose: . 57

3.16.2 Attributes: . 57

3.16.3 Usage: . 57

3.16.4 Examples: . 57

3.17 <HorzFormatProperty> Element 58

3.17.1 Purpose: . 58

CONTENTS 7

3.17.2 Attributes: . 58

3.17.3 Usage: . 59

3.17.4 Examples: . 59

3.18 <Image> Element . 59

3.18.1 Purpose: . 59

3.18.2 Attributes: . 59

3.18.3 Usage: . 60

3.18.4 Examples: . 60

3.19 <ImageDim> Element . 60

3.19.1 Purpose: . 60

3.19.2 Attributes: . 60

3.19.3 Usage: . 61

3.19.4 Examples: . 61

3.20 <ImageryComponent> Element 61

3.20.1 Purpose: . 61

3.20.2 Attributes: . 62

3.20.3 Usage: . 62

3.20.4 Examples: . 63

3.21 <ImageProperty> Element 63

3.21.1 Purpose: . 63

3.21.2 Attributes: . 63

3.21.3 Usage: . 64

3.21.4 Examples: . 64

3.22 <ImagerySection> Element 64

3.22.1 Purpose: . 64

3.22.2 Attributes: . 64

3.22.3 Usage: . 64

3.22.4 Examples: . 65

8 CONTENTS

3.23 <Layer> Element . 66

3.23.1 Purpose: . 66

3.23.2 Attributes: . 66

3.23.3 Usage: . 66

3.23.4 Examples: . 66

3.24 <NamedArea> Element . 66

3.24.1 Purpose: . 66

3.24.2 Attributes: . 67

3.24.3 Usage: . 67

3.24.4 Examples: . 67

3.25 <Property> Element . 68

3.25.1 Purpose: . 68

3.25.2 Attributes: . 68

3.25.3 Usage: . 68

3.25.4 Examples: . 68

3.26 <PropertyDefinition> Element 69

3.26.1 Purpose: . 69

3.26.2 Attributes: . 69

3.26.3 Usage: . 70

3.26.4 Examples: . 70

3.27 <PropertyLinkDefinition> Element 70

3.27.1 Purpose: . 70

3.27.2 Attributes: . 71

3.27.3 Usage: . 71

3.27.4 Examples: . 71

3.28 <PropertyDim> Element . 72

3.28.1 Purpose: . 72

3.28.2 Attributes: . 72

CONTENTS 9

3.28.3 Usage: . 72

3.28.4 Examples: . 73

3.29 <Section> Element . 73

3.29.1 Purpose: . 73

3.29.2 Attributes: . 73

3.29.3 Usage: . 74

3.29.4 Examples: . 74

3.30 <StateImagery> Element . 74

3.30.1 Purpose: . 74

3.30.2 Attributes: . 75

3.30.3 Usage: . 75

3.30.4 Examples: . 75

3.31 <Text> Element . 76

3.31.1 Purpose: . 76

3.31.2 Attributes: . 76

3.31.3 Usage: . 76

3.31.4 Examples: . 76

3.32 <TextComponent> Element 77

3.32.1 Purpose: . 77

3.32.2 Attributes: . 77

3.32.3 Usage: . 77

3.32.4 Examples: . 78

3.33 <TextProperty> Element . 79

3.33.1 Attributes: . 79

3.33.2 Usage: . 79

3.33.3 Examples: . 80

3.34 <UnifiedDim> Element . 80

3.34.1 Purpose: . 80

10 CONTENTS

3.35 Attributes: . 80

3.35.1 Usage: . 80

3.35.2 Examples: . 80

3.36 <VertAlignment> Element 81

3.36.1 Purpose: . 81

3.36.2 Attributes: . 81

3.36.3 Usage: . 81

3.36.4 Examples: . 81

3.37 <VertFormat> Element . 82

3.37.1 Purpose: . 82

3.37.2 Attributes: . 82

3.37.3 Usage: . 82

3.37.4 Examples: . 83

3.38 <VertFormatProperty> Element 83

3.38.1 Purpose: . 83

3.38.2 Attributes: . 84

3.38.3 Usage: . 84

3.38.4 Examples: . 84

3.39 <WidgetDim> Element . 84

3.39.1 Purpose: . 84

3.39.2 Attributes: . 84

3.39.3 Usage: . 85

3.39.4 Examples: . 85

3.40 <WidgetLook> Element . 86

3.40.1 Purpose: . 86

3.40.2 Attributes: . 86

3.40.3 Usage: . 86

3.40.4 Examples: . 87

CONTENTS 11

4 Falagard XML Enumeration Reference 89

4.1 DimensionOperator Enumeration 89

4.2 DimensionType Enumeration 89

4.3 FontMetricType Enumeration 90

4.4 FrameImageComponent Enumeration 90

4.5 HorizontalAlignment Enumeration 91

4.6 HorizontalFormat Enumeration 91

4.7 HorizontalTextFormat Enumeration 91

4.8 PropertyType Enumeration 92

4.9 VerticalAlignment Enumeration 92

4.10 VerticalFormat Enumeration 92

4.11 VerticalTextFormat Enumeration 92

5 CEGUI Widget Base Type Requirements 93

5.1 DefaultWindow . 93

5.2 CEGUI/Checkbox . 93

5.3 CEGUI/ComboDropList . 94

5.4 CEGUI/Combobox . 94

5.5 CEGUI/DragContainer . 94

5.6 CEGUI/Editbox . 95

5.7 CEGUI/FrameWindow . 95

5.8 CEGUI/ItemEntry . 95

5.9 CEGUI/ItemListbox . 96

5.10 CEGUI/ListHeader . 96

5.11 CEGUI/ListHeaderSegment 96

5.12 CEGUI/Listbox . 97

5.13 CEGUI/MenuItem . 97

5.14 CEGUI/Menubar . 97

12 CONTENTS

5.15 CEGUI/MultiColumnList . 98

5.16 CEGUI/MultiLineEditbox . 98

5.17 CEGUI/PopupMenu . 99

5.18 CEGUI/ProgressBar . 99

5.19 CEGUI/PushButton . 99

5.20 CEGUI/RadioButton . 99

5.21 CEGUI/ScrollablePane . 100

5.22 CEGUI/Scrollbar . 100

5.23 CEGUI/Slider . 100

5.24 CEGUI/Spinner . 101

5.25 CEGUI/TabButton . 101

5.26 CEGUI/TabControl . 101

5.27 CEGUI/Thumb . 102

5.28 CEGUI/Titlebar . 102

5.29 CEGUI/Tooltip . 103

6 Falagard Window Renderer Requirements 105

6.1 Falagard/Button . 105

6.2 Falagard/Default . 105

6.3 Falagard/Editbox . 106

6.4 Falagard/FrameWindow . 107

6.5 Falagard/ItemEntry . 108

6.6 Falagard/ItemListbox . 108

6.7 Falagard/Listbox . 109

6.8 Falagard/ListHeader . 110

6.9 Falagard/ListHeaderSegment 110

6.10 Falagard/Menubar . 111

6.11 Falagard/MenuItem . 111

CONTENTS 13

6.12 Falagard/MultiColumnList 112

6.13 Falagard/MultiLineEditbox 113

6.14 Falagard/PopupMenu . 114

6.15 Falagard/ProgressBar . 115

6.16 Falagard/ToggleButton . 115

6.17 Falagard/ScrollablePane . 116

6.18 Falagard/Scrollbar . 117

6.19 Falagard/Slider . 118

6.20 Falagard/Static . 118

6.21 Falagard/StaticImage . 119

6.22 Falagard/StaticText . 120

6.23 Falagard/SystemButton . 121

6.24 Falagard/TabButton . 122

6.25 Falagard/TabControl . 122

6.26 Falagard/Titlebar . 123

6.27 Falagard/Tooltip . 123

7 GNU Free Documentation License 125

1. APPLICABILITY AND DEFINITIONS 126

2. VERBATIM COPYING . 128

3. COPYING IN QUANTITY . 128

4. MODIFICATIONS . 129

5. COMBINING DOCUMENTS 131

6. COLLECTIONS OF DOCUMENTS 132

7. AGGREGATION WITH INDEPENDENT WORKS 132

8. TRANSLATION . 132

9. TERMINATION . 133

10. FUTURE REVISIONS OF THIS LICENSE 133

ADDENDUM: How to use this License for your documents 133

14 CONTENTS

Part I

Tutorial Style Introduction

15

Chapter 1

Introduction and overview

1.1 What is the Falagard Skinning System?

The Falagard skinning system for CEGUI consists partly of a set of enhance-
ments to the CEGUI base library, and partly of a new ’look’ module called
“CEGUIFalagardBase”. Combined, these elements are intended to make
it easier to create custom skins or ’looks’ for CEGUI window and widget
elements.

The Falagard system is designed to allow widget imagery specification, sub-
widget layout, and default property initialisers to be specified via XML files
rather than in C++ or scripted code (which, before now, was the only way
to do these things).

The system is named “Falagard” after the forum name of the person who
initially suggested the feature (as is the trend in all things CEGUI), although
it was designed and implemented by the core CEGUI team.

The Falagard extensions are not limited to the ’looknfeel’ XML files only;
there are supporting elements within the core library, as well as extensions
to the GUI scheme system to allow you to create what are essentially new
widget types. This is achieved by mapping a named widget ’look’ to a
base widget type taken from the CEGUIFalagardBase module (I know I’m
probably just about losing you now, don’t worry about all these details too
much for the time being!).

Once your new type has been defined in a scheme and loaded, you can specify
the name of that new type name when creating windows or widgets via the

17

18 CHAPTER 1. INTRODUCTION AND OVERVIEW

WindowManager singleton as you would for any other widget type. There
are no additional issues to be considered when using a ’skinned’ widget than
when using one of the old ’programmed’ widget types.

1.2 The Unified Co-ordinate System

As part of the Falagard system, CEGUI has effectively replaced the old
either/or approach to relative and absolute co-ordinates with a new ’unified’
co-ordinate system. Using this new system, each co-ordinate can specify
both a parent-relative and absolute-pixel component. Since most people
baulk at the idea of this, I’ll use examples to introduce these concepts.

1.2.1 UDim

UDim Definition

The basic building block of the unified system is the UDim. This type
represents a single dimension of some kind, and is defined as:

UDim(scale, offset)

where:

’scale’ represents some proportion of the parent element 1 and is usually
a value between 0 and 1.0. The scale value corresponds to relative
coordinates under the pre-unified system.

’offset’ represents an arbitrary number of pixels. For positional values,
offset represents a pixel offset, for size values, offset represents a num-
ber of additional pixels 2. The offset value corresponds to absolute
coordinates under the pre-unified system.

Still confused? On to the examples!

1The parent element is either some other Window or the total available display.
2Basically, like a padding value.

1.2. THE UNIFIED CO-ORDINATE SYSTEM 19

Simple UDim Examples

Example 1

UDim(0, 10)

Here we see a UDim with a scale of 0, and an offset of 10. This simply
represents an absolute value of 10, if you used such a UDim to set a window
width, then under the old system it’s the equivalent of:

myWindow->setWidth(Absolute, 10);

Example 2

UDim(0.25f, 0)

Here we see a UDim with a scale of 0.25 and an offset of 0. This represents
a simple relative co-ordinate. If you were to set the y position of a window
using this UDim, then the window would be a quarter of the way down it’s
parent, and it’s the same as the following under the old system:

myWindow->setYPosition(Relative, 0.25f);

Example 3

UDim(0.33f, -15)

Here we see the power of UDim. We have a scale of 0.33 and an offset of
-15. If we used this as the height of a window, you would get a height that
is approximately one third of the height of the window’s parent, minus 15
pixels. There is no simple equivalent for this under the old system.

UDim Property Format

The format of a UDim to be used in the window property strings is as
follows:

{s,o}

where:

20 CHAPTER 1. INTRODUCTION AND OVERVIEW

’s’ is the scale value

’o’ is the pixel offset.

1.2.2 UVector2

UVector2 Definition

There is a UVector2 type which consists of two UDim elements; one for the
x axis, and one for the y axis. Note that the UVector2 is used to specify
both positional points and also sizes 3.

The UVector2 is defined as:

UVector2(x udim, y udim)

where:

’x udim’ is a UDim value that specifies the x co-ordinate or width.

’y udim’ is a UDim value that specifies the y co-ordinate or height.

Simple UVector2 Examples

Example 1

UVector2(UDim(0, 25), UDim(0.2f, 12))

The above example specifies a point that is 25 pixels along the x-axis and
one fifth of the way down the parent window plus twelve pixels.

Example 2

UVector2(UDim(1.0f, -25), UDim(1.0f, -25))

This example, intended as a size for a window, would give the window the
same width as its parent, minus 25 pixels, and the same height as its parent,
minus 25 pixels.

3That is, there is no such thing as USize to correspond to the old CEGUI::Size type
that used to be used for specifying a size.

1.2. THE UNIFIED CO-ORDINATE SYSTEM 21

UVector2 Property Format

The format of a UVector2 to be used in the window property strings is as
follows:

{{sx,ox},{sy,oy}}

where:

’sx’ is the scale value for the x-axis

’ox’ is the pixel offset for the x-axis.

’sy’ is the scale value for the y-axis

’oy’ is the pixel offset for the y-axis.

1.2.3 URect

URect Definition

The last of the Unified co-ordinate types is URect. The URect defines four
sides of a rectangle using UDim elements. You generally access the URect
as you would the normal ’Rect’ type, except that each edge of the rectangle
is represented by a UDim rather than a float 4:

URect(left udim, top udim, right udim, bottom udim)

where:

’left udim’ is a UDim defining the left edge.

’top udim’ is a UDim defining the top edge.

’right udim’ is a UDim defining the right edge.

’bottom udim’ is a UDim defining the bottom edge.

4Or any other type you may be used to seeing!

22 CHAPTER 1. INTRODUCTION AND OVERVIEW

It is also possible to define a URect with two UVector2 objects; the first
describes the top-left corner, and the second the bottom-right corner:

URect(tl uvec2, br uvec2)

where:

’tl uvec2’ is a UVector2 that describes the top-left point of the rect area.

’br uvec2’ is a UVector2 that describes the bottom-right point of the rect
area 5.

Simple URect Example

URect(UDim(0, 25),
UDim(0, 25),
UDim(1.0f, -25),
UDim(1.0f, -25)

)

If we used the URect defined here to specify the area for a window, we would
get a window that was 25 pixels smaller than its parent on each edge.

Property format

The format of a URect to be used in the window property strings is as
follows:

{{sl,ol},{st,ot},{sr,or},{sb,ob}}

where:

’sl’ is the scale value for the left edge.

’ol’ is the pixel offset for the left edge.

’st’ is the scale value for the top edge.

’ot’ is the pixel offset for the top edge.

5Don’t confuse this with the size of the area.

1.3. NEW WINDOW ALIGNMENTS 23

’sr’ is the scale value for the right edge.

’or’ is the pixel offset for the right edge.

’sb’ is the scale value for the bottom edge.

’ob’ is the pixel offset for the bottom edge.

1.3 New Window Alignments

The Falagard enhancements also include new settings to specify alignments
for windows. This gives the possibility to position child windows from the
right edge, bottom edge and centre positions of their parents, as well as the
previous left edge and top edge possibilities.

It is possible to set the alignment options in C++ code by using methods
in the Window class, and also via the properties system which is used by
XML layouts system.

1.3.1 Vertical Alignments

To set the vertical alignment use the Window class member function:

void setVerticalAlignment(const VerticalAlignment alignment);

This function takes one of the VerticalAlignment enumerated values as its
input. The VerticalAlignment enumeration is defined as:

enum VerticalAlignment
{

VA TOP,
VA CENTRE,
VA BOTTOM

};

Where:

VA TOP specifies that y-axis positions specify an offset for a window’s top
edge from the top edge of it’s parent window.

VA CENTRE specifies that y-axis positions specify an offset for a win-
dow’s centre point from the centre point of it’s parent window.

24 CHAPTER 1. INTRODUCTION AND OVERVIEW

VA BOTTOM specifies that y-axis positions specify an offset for a win-
dow’s bottom edge from the bottom edge of it’s parent window.

The window property to access the vertical alignment setting is:

"VerticalAlignment"

This property takes a simple string as its value, which should be one of the
following options:

"Top"
"Centre"
"Bottom"

Where these setting values correspond to the similar values in the Verti-
calAlignment enumeration.

1.3.2 Horizontal Alignments

To set the horizontal alignment use the Window class member function:

void setHorizontalAlignment(const HorizontalAlignment alignment);

This function takes one of the HorizontalAlignment enumerated values as
its input. The HorizontalAlignment enumeration is defined as:

enum HorizontalAlignment
{

HA LEFT,
HA CENTRE,
HA RIGHT

};

Where:

HA LEFT specifies that x-axis positions specify an offset for a window’s
left edge from the left edge of it’s parent window.

HA CENTRE specifies that x-axis positions specify an offset for a win-
dow’s centre point from the centre point of it’s parent window.

HA RIGHT specifies that x-axis positions specify an offset for a window’s
right edge from the right edge of it’s parent window.

1.4. FALAGARD IN SCHEMES 25

The window property to access the horizontal alignment setting is:

"HorizontalAlignment"

This property takes a simple string as its value, which should be one of the
following options:

"Left"
"Centre"
"Right"

Where these setting values correspond to the similar values in the Horizon-
talAlignment enumeration.

1.4 Falagard in Schemes

The CEGUI scheme system is the means by which you to specify how the
system is to load your XML skin definition files 6, and how these skins are
to be mapped to the Falagard widget base classes to create new concrete
widget types.

1.4.1 The CEGUIFalagardWRBase module

One of the main parts of the Falagard system is the window renderer module
known as CEGUIFalagardWRBase 7. This module is where actions are
taken to transform skinning data loaded from skin definition XML files into
the rendering operations and layout adjustments required to output the
widget visual representation to the display.

Before you can make use of the CEGUIFalagardWRBase module it must be
loaded into the system. To achieve this, you will usually specify it in one
of your scheme XML files so that it’s available to the system. This can be
done with a single line of XML in a scheme file, such as:

<WindowRendererSet Filename="CEGUIFalagardWRBase" />

Some users, having previously employed the WindowSet ’look’ modules, may

6known as ’looknfeel’ files
7which will be named libCEGUIFalagardWRBase.so on linux style systems and

CEGUIFalagardWRBase.dll on Win32 systems

26 CHAPTER 1. INTRODUCTION AND OVERVIEW

be used to specifying a list of widgets which are to be made available from
the module, this is not required when loading a WindowRenderer module 8;
by employing XML such as that shown above, the module will register all
widget types it has available.

The key thing about the CEGUIFalagardWRBase module is that for each
widget base type, it defines various required elements and states. These
required items need to be defined within the widget look definitions of your
looknfeel XML files; they enable the system to make use of your skin imagery
and related data in a logical fashion. All of the required elements for each
widget can be found in the Falagard Base Widgets Reference section.

1.4.2 LookNFeel Elements

The new <LookNFeel> XML element for schemes is the means by which you
will usually get CEGUI to load the XML ’looknfeel’ files containing your
widget skin definitions 9. The LookNFeel element should appear after any
Font or Imageset elements, but before any WindowSet elements.

The following is an example of how to use the LookNFeel element:

<LookNFeel Filename="FunkyWidgets.looknfeel" />

Here we can see a single ’Filename’ attribute which specifies the name the
file to be loaded.

It is acceptable to specify as many LookNFeel elements as is required. This
allows you to configure your XML files in the way that best suits your
application. This might mean that all skin definitions for all widget elements
will go into a single file, it might mean that you have multiple files with a
single widget skin definition in each, or it could be any place in between the
two extremes - it’s up to you.

1.4.3 FalagardMapping Elements

The CEGUI scheme system supports a <FalagardMapping> element that
creates a new concrete window or widget type within the system. This is

8actually, such lists of widgets are no longer needed for the old style ’look’ modules
either, as long as the module has been updated to provide the required entry point.

9It is possible to load these files manually via code, but it is expected that the majority
of users will be using the scheme system

1.5. CONCLUSION 27

achieved by creating a named alias that ties together a base widget type, a
window renderer type, and a named widget ’LookNFeel’ 10.The base widget
type will generally be one of the core system widgets provided by the CEGUI
library 11. The window renderer type will usually be the name of one of the
window renderers registered when the CEGUIFalagardWRBase module was
loaded. The named ’LookNFeel’ is what you specify in your XML looknfeel
files (via WidgetLook elements).

An example mapping:

<FalagardMapping
WindowType="FunkyLook/Button"
TargetType="CEGUI/PushButton"
Renderer="Falagard/Button"
LookNFeel="MyButtonSkin"

/>

In this example, a new widget type named “FunkyLook/Button” is being
created. The new widget is based upon the “CEGUI/PushButton” base
type, uses the window renderer named “Falagard/Button” and applies the
skin defined by the loaded WidgetLook named “MyButtonSkin”. Once the
scheme with this mapping has been loaded, you can then use the new type
within the system:

// Get access to the main window manager
CEGUI::WindowManager wMgr& = CEGUI::WindowManager::getSingleton();
// Create a new widget
Window* wnd = wMgr.createWindow("FunkyLook/Button",
"myFunkyButton");

Here we create an instance of the new widget, and name it “myFunkyBut-
ton”. The widget can now be attached to other windows and generally used
as you would any ’normal’ widget.

1.5 Conclusion

This concludes the overview of the new parts of the CEGUI system.

10Here, ’LookNFeel’ refers to an individual widget skin as opposed to an entire ’looknfeel’
XML file.

11Although any window type that has a concrete WindowFactory registered in the
system is a candidate, which allows the system to be extended with custom widgets.

28 CHAPTER 1. INTRODUCTION AND OVERVIEW

You have seen how the new unified coordinate system works, and how to
make use of the new window alignment options.

You have also learned the basics of how to set up your scheme files to ini-
tialise the Falagard window renderer module, and how to map skins defined
in XML files to the Falagard to create new widget types.

The next section of this document will introduce the XML format and ele-
ments used in the ’looknfeel’ files.

Chapter 2

Introduction to Falagard
’looknfeel’ XML

Before we get to the good stuff, I’d just like to point out that this section 1

is not intended to teach you anything about XML in general. It is assumed
the reader has some familiarity with XML and how to use it properly.

2.1 Before we begin: An empty skin

Before we can start adding widget skins, or WidgetLooks as they are known
in the system, to our XML file, we need the basic file outline initialised.
This is extremely trivial, and looks like this:

<?xml version="1.0" ?>
<Falagard>
</Falagard>

We will be placing our WidgetLook definitions between the <Falagard></Falagard>
pair. It is possible to specify as many sub-elements as we require within these
tags, so all of our definitions can go into a single file 2.

1or, indeed, the entire document
2in most cases this ends up being a very large file!

29

30CHAPTER 2. INTRODUCTION TO FALAGARD ’LOOKNFEEL’ XML

2.2 Starting Simple: A Button

Without a doubt, the humble push button is the most common widget we’re
ever likely to see; without this workhorse, any UI would be virtually useless.
So, this is where we will start.

To define any widget skin, you use the WidgetLook element and specify a
name for the widget type that you’re defining by using the name attribute.
So we’ll start off by adding the following empty WidgetLook to our initial
skin file:

<WidgetLook name="TaharezLook/Button">
</WidgetLook>

As you can see from the reference for the Falagard/Button window renderer,
we are required to specify imagery for numerous states, namely these are:

• Normal

• Hover

• Pushed

• Disabled

Since we now know what states are required for the widget, it’s a good idea
to add the framework for these first; this effectively makes the WidgetLook
complete and usable, although obviously nothing would be drawn for it
at this stage since we have not defined any imagery. So, we add empty
StateImagery elements for the required states, and we end up with this:

<WidgetLook name="TaharezLook/Button">
<StateImagery name="Normal">

</StateImagery>
<StateImagery name="Hover">

</StateImagery>
<StateImagery name="Pushed">

</StateImagery>
<StateImagery name="Disabled">

</StateImagery>
</WidgetLook>

To specify rendering to be used for a widget, we use the ImagerySection
element. Each imagery section is given a name; this name is used later

2.2. STARTING SIMPLE: A BUTTON 31

to ’include’ the imagery section within layers defined for each of the state
imagery definitions.

For our button, we will have an imagery section for each of the button
states. We can add the outline of these to our existing, work-in-progress,
widget-look:

<WidgetLook name="TaharezLook/Button">
<ImagerySection name="normal imagery">
</ImagerySection>
<ImagerySection name="hover imagery">
</ImagerySection>
<ImagerySection name="pushed imagery">
</ImagerySection>
<StateImagery name="Normal">
</StateImagery>
<StateImagery name="Hover">
</StateImagery>
<StateImagery name="Pushed">
</StateImagery>
<StateImagery name="Disabled">
</StateImagery>

</WidgetLook>

Now we can start to define the ImageyComponents for each section; this
will tell the system how we want our button to appear on screen.

The imagery for TaharezLook gives us three sections for each button state 3.
The available imagery sections give us a left end, a right end, and a middle
section.

There are various ways that we can approach applying these image sections
to the widget; although the intended use is to have the end pieces drawn
at their ’natural’ horizontal size and the middle section stretched to fill the
space in between the two ends. This all sounds simple enough, although
there is one issue; the actual pixel sizes of the imagery is not fixed. The
TaharezLook imageset uses the auto-scaling feature, which means that the
source images will have variable sizes dependant upon the display resolution.
All this needs to be taken into account when specifying the imagery; this
way we ensure the results will be what we expect - at all resolutions.

To specify an image to be drawn, we use the ImageryComponent element.

3except Disabled; for this we’ll just re-use the ’normal imagery’ and use some different
colours!

32CHAPTER 2. INTRODUCTION TO FALAGARD ’LOOKNFEEL’ XML

This should be added as a sub-element of ImagerySection. So we’ll start by
adding an empty imagery component to the definition for ’normal imagery’:

...
<ImagerySection name="normal imagery">
<ImageryComponent>
</ImageryComponent>

</ImagerySection>
...

The first thing we need to add to the ImageryComponent is an area defini-
tion telling the system where this image should be drawn:

<ImageryComponent>
<Area>
</Area>

</ImageryComponent>

We’ll start by placing the image for the left end of the button. This is the
simplest component to place, since its position is known as being (0, 0). To
specify these absolute values, we use the AbsoluteDim element.

We start defining the required dimensions for our image area by using the
Dim element, and using AbsoluteDim sub-element to indicate values to be
used:

<ImageryComponent>
<Area>
<Dim type="LeftEdge">
<AbsoluteDim value="0" />

</Dim>
<Dim type="TopEdge">
<AbsoluteDim value="0" />

</Dim>
</Area>

</ImageryComponent>

We have defined the left and top edges which gives our image its position.
Next we will specify dimensions to establish the area size.

We want the width of the area to come from the source image itself, to do
this we use the ImageDim element and tell it to access the image that we
will be using for this component:

2.2. STARTING SIMPLE: A BUTTON 33

<Dim type="Width">
<ImageDim
imageset="TaharezLook"
image="ButtonLeftNormal"
dimension="Width"

/>
</Dim>

This tells the system that for the width of the area being defined, use the
width of the image named ButtonLeftNormal from the TaharezLook image-
set.

The last part of our area is the height. This is another simple thing to
specify, since we want the height to be the same as the full height of the
widget being defined. We could use either the UnifiedDim element or the
WidgetDim element for this purpose; we’ll use the UnifiedDim here as it does
not need to look up the widget by name and so is likely more economical:

<Dim type="Height">
<UnifiedDim scale="1.0" type="Height" />

</Dim>

Here we use a scale value of 1.0 to indicate we want the full height of the
widget.

Now we have completed our area definition for this first image, and it looks
like this:

34CHAPTER 2. INTRODUCTION TO FALAGARD ’LOOKNFEEL’ XML

<ImageryComponent>
<Area>
<Dim type="LeftEdge">
<AbsoluteDim value="0" />

</Dim>
<Dim type="TopEdge">
<AbsoluteDim value="0" />

</Dim>
<Dim type="Width">
<ImageDim
imageset="TaharezLook"
image="ButtonLeftNormal"
dimension="Width"

/>
</Dim>
<Dim type="Height">
<UnifiedDim scale="1.0" type="Height" />

</Dim>
</Area>

</ImageryComponent>

The next thing we need to do here is tell the system which image it should
draw, this is done by using the Image element, and this should be placed
immediately after the area definition:

...
<Image imageset="TaharezLook" image="ButtonLeftNormal" />
...

The final element that we need to add to this ImageryComponent definition
is the VertFormat element. Using this we will tell the system to stretch the
image vertically so that it covers the full height of our defined area:

...
<VertFormat type="Stretched" />
...

This completes the definition for the left end of the button, and the final
xml for this component looks like this:

2.2. STARTING SIMPLE: A BUTTON 35

<ImageryComponent>
<Area>
<Dim type="LeftEdge">
<AbsoluteDim value="0" />

</Dim>
<Dim type="TopEdge">
<AbsoluteDim value="0" />

</Dim>
<Dim type="Width">
<ImageDim
imageset="TaharezLook"
image="ButtonLeftNormal"
dimension="Width"

/>
</Dim>
<Dim type="Height">
<UnifiedDim scale="1.0" type="Height" />

</Dim>
</Area>
<Image imageset="TaharezLook" image="ButtonLeftNormal" />
<VertFormat type="Stretched" />

</ImageryComponent>

The next image we will set up is the right end. To show another approach
for image placement, rather than precisely defining the area where the im-
age will appear, here we will define the target area as covering the entire
widget and use the image alignment formatting to draw the image on the
right hand side of the widget.

The area definition that specifies the entire widget is something that you’ll
likely use a lot, and looks like this:

<Area>
<Dim type="LeftEdge"><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge"><AbsoluteDim value="0" /></Dim>
<Dim type="Width"><UnifiedDim scale="1" type="Width" /></Dim>
<Dim type="Height"><UnifiedDim scale="1" type="Height" /></Dim>

</Area>

Next comes comes the image specification:

<Image imageset="TaharezLook" image="ButtonRightNormal" />

Then the vertical formatting option:

<VertFormat type="Stretched" />

36CHAPTER 2. INTRODUCTION TO FALAGARD ’LOOKNFEEL’ XML

Finally, we add the horizontal formatting option which tells the system to
align this image on the right edge of the defined area:

<HorzFormat type="RightAligned" />

The completed definition for the right end image now looks like this:

<ImageryComponent>
<Area>
<Dim type="LeftEdge"><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge"><AbsoluteDim value="0" /></Dim>
<Dim type="Width"><UnifiedDim scale="1" type="Width" /></Dim>
<Dim type="Height"><UnifiedDim scale="1" type="Height" /></Dim>

</Area>
<Image imageset="TaharezLook" image="ButtonRightNormal" />
<VertFormat type="Stretched" />
<HorzFormat type="RightAligned" />

</ImageryComponent>

The last image we need to place for the “normal imagery” section is the
middle section. Remember that we want this image to occupy the space
between to two end pieces. The main part of achieving this is to correctly
define the destination area for the image.

The vertical aspects of the image definition for the middle section will be
the same as for the two ends, and as such these will not be discussed any
further.

The first thing we need is to tell the system where the left edge of the
middle section should appear. We know that the left edge of the image for
the middle section needs to join to the right edge of the image for the left
section. To achieve this we can make use of the ImageDim element to get
the width of the left end image, and use this as the co-ordinate for the left
edge of the middle section area:

<Area>
<Dim type="LeftEdge">
<ImageDim
imageset="TaharezLook"
image="ButtonLeftNormal"
dimension="Width"

/>
</Dim>
...

</Area>

2.2. STARTING SIMPLE: A BUTTON 37

Now comes the fun part. Due to the fact we want the skin to operate cor-
rectly without knowing ahead of time how large the images are, we must
use mathematical calculations in order to establish the required width of
the middle section. If we knew for sure the image sizes, this could all be
pre-calculated and we could simply use AbsoluteDim to tell the system the
width we require. Unfortunately we are not this lucky. We are lucky, how-
ever, in the fact that the system provides a means for us to specify, within
the XML, what calculations should be done to arrive at the final value for
a dimension. The DimOperator element is what provides this ability.

Before going further we should look at what we need to calculate. The
width of the middle section is basically the width of the widget, minus the
combined width of the two end sections:

middleWidth=widgetWidth-(leftEndWidth+rightEndWidth)

However, due to the fact that the area can accept either a width or right
edge co-ordinate, we can simplify this a little by specifying the right edge
co-ordinate instead of the width. The right edge location for this middle
image will be equal to the width of the widget, minus the width of the right
end image. So the final calculation we need to do is this:

rightEdge=widgetWidth-rightEndWidth

The result from both calculations is the same, so wherever possible we will
use the simpler option. To specify this calculation in XML we first start off
with our widget width:

<Dim type="RightEdge">
<UnifiedDim scale="1" type="Width">
</UnifiedDim>

</Dim>

Since we need to perform some calculation on this, we embed a DimOperator
element that specifies the mathematical operation that we need to perform:

<Dim type="RightEdge">
<UnifiedDim scale="1" type="Width">
<DimOperator op="Subtract">
</DimOperator>

</UnifiedDim>
</Dim>

To complete the dimension specification we just insert a second *Dim el-
ement to tell the system what to subtract. In this case it’s the width of

38CHAPTER 2. INTRODUCTION TO FALAGARD ’LOOKNFEEL’ XML

the image for the right end, so we will use the ImageDim element for this
purpose. The final specification for this dimension looks as follows:

<Dim type="RightEdge">
<UnifiedDim scale="1" type="Width">
<DimOperator op="Subtract">
<ImageDim
imageset="TaharezLook"
image="ButtonRightNormal"
dimension="Width"

/>
</DimOperator>

</UnifiedDim>
</Dim>

It is possible to chain further mathematical operations within the dimension
specification. It would have been possible to do our original width calcula-
tion using two DimOperator elements chained together, however this leads
us to two small oddities of the system:

1. pairs of dimension operands are taken in reverse order; working from
the innermost operation to the outermost operation.

2. there is no real operator precedence. All operations are performed
linearly starting at the innermost pair of values and working outwards.

To explain this further, the example from the reference section will be used.
Basically, in that example we want to take the height of the widget font,
add four pixels and multiply the result by two. This might lead us to write
the following, wrong, specification:
...
<FontDim type="LineSpacing">
<DimOperator op="Add">
<AbsoluteDim value="4">
<DimOperator op="Multiply">
<AbsoluteDim value="2" />

</DimOperator>
</AbsoluteDim>

</DimOperator>
</FontDim>
...

The operation that the above would perform is as follows:

2.2. STARTING SIMPLE: A BUTTON 39

(4 * 2) + LineSpacing

Obviously this is not what we were after. We need to switch the operands
around so that the pairs are reversed:

...
<AbsoluteDim value="2">
<DimOperator op="Multiply">
<AbsoluteDim value="4">
<DimOperator op="Add">
<FontDim type="LineSpacing" />

</DimOperator>
</AbsoluteDim>

</DimOperator>
</AbsoluteDim>
...

The operations this will perform, in order, are:

tmp = 4 + LineSpacing

Followed by:

2 * tmp

Giving us what we wanted which was:

(2 * (4 + LineSpacing))

Note also lack of ’normal’ operator precedence, you might have been sur-
prised to find the operation was not:

((2 * 4) + LineSpacing)

Anyway, I digress. Lets get back to our button imagery. We now have
enough information to define the middle section of the button, which looks
like this:

40CHAPTER 2. INTRODUCTION TO FALAGARD ’LOOKNFEEL’ XML

<ImageryComponent>
<Area>
<Dim type="LeftEdge">
<ImageDim
imageset="TaharezLook"
image="ButtonLeftNormal"
dimension="Width"

/>
</Dim>
<Dim type="TopEdge"><AbsoluteDim value="0" /></Dim>
<Dim type="RightEdge">
<UnifiedDim scale="1" type="Width">
<DimOperator op="Subtract">
<ImageDim
imageset="TaharezLook"
image="ButtonRightNormal"
dimension="Width"

/>
</DimOperator>

</UnifiedDim>
</Dim>
<Dim type="Height"><UnifiedDim scale="1" type="Height" /></Dim>

</Area>
<Image imageset="TaharezLook" image="ButtonMiddleNormal" />
<VertFormat type="Stretched" />
<HorzFormat type="Stretched" />

</ImageryComponent>

This completes the imagery within the normal imagery section. You can
now add in the other two sections in the same manner, just replacing the
image names used for the hover and pushed imagery as appropriate - ev-
erything else will be exactly the same as what you’ve done for the normal
imagery.

Now we can add references to the imagery sections within the elements that
define the various states. The imagery for state imagery elements must be
specified in layers. It is possible to specify multiple imagery sections to use
within each layer, though for most simple cases, you’ll only need one layer.

Here we’ve added the imagery specification for the Normal state:

<StateImagery name="Normal">
<Layer>
<Section section="normal imagery" />

</Layer>
</StateImagery>

2.2. STARTING SIMPLE: A BUTTON 41

The Hover and Pushed states are defined in a similar fashion; just replace the
name “normal imagery” with the name of the appropriate imagery section
for the state.

The Disabled state is somewhat different though; we do not have any specific
imagery for this state, so instead we will re-use the normal imagery but
specify some colours that will be applied to make the button appear darker.
This is done by embedding a Colours element within the Section element,
as demonstrated here:
<StateImagery name="Disabled">
<Layer>
<Section section="normal imagery">

<Colours
topLeft="FF7F7F7F"
topRight="FF7F7F7F"
bottomLeft="FF7F7F7F"
bottomRight="FF7F7F7F"

/>
</Section>

</Layer>
</StateImagery>

Now we have a nice button with imagery defined for all the required states.
There’s just one thing missing - we need to put some label text on the
button.

To specify text, you use the TextComponent element, which goes in an
ImagerySection the same as the ImageryComponent elements do. We could
have put a TextComponent in each of the imagery sections we defined to
display the label, however this is wasteful repetition. A better approach is
to define a imagery section what contains the label by itself, then we can
re-use that for all of the states.

So, start by defining the containing ImagerySection:
...
<ImagerySection name="label">
<TextComponent>
</TextComponent>

</ImagerySection>
...

The definition of the TextComponent is extremely similar to that of Im-
ageryComponent. We specify an area for the text and the formatting that

42CHAPTER 2. INTRODUCTION TO FALAGARD ’LOOKNFEEL’ XML

we require. We can also optionally specify a Text element which is used
to explicitly set the font and / or text string to be drawn. Without these
explicit settings, these items will be obtained from the base widget itself.

We want our label to be centred within the entire area of the widget, so we
need to use the area that defines the entire widget 4.

We also need to set the formatting options for the text. For the vertical
formatting we will use:

<VertFormat type="CentreAligned" />

And for the horizontal formatting:

<HorzFormat type="WordWrapCentreAligned" />

The final definition for our label imagery section looks like this:

<ImagerySection name="label">
<TextComponent>
<Area>
<Dim type="LeftEdge"><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge"><AbsoluteDim value="0" /></Dim>
<Dim type="Width"><UnifiedDim scale="1" type="Width" /></Dim>
<Dim type="Height"><UnifiedDim scale="1" type="Height"

/></Dim>
</Area>
<VertFormat type="CentreAligned" />
<HorzFormat type="WordWrapCentreAligned" />

</TextComponent>
</ImagerySection>

Now all that is left is to add this to the layer specification for the state
imagery. Normal state now looks like this 5:

<StateImagery name="Normal">
<Layer>
<Section section="normal imagery" />
<Section section="label" />

</Layer>
</StateImagery>

And for Disabled we again specify some additional colours:

4this was shown above, so will not be repeated here.
5with Hover and Pushed being very similar

2.2. STARTING SIMPLE: A BUTTON 43

<StateImagery name="Disabled">
<Layer>
<Section section="normal imagery">

<Colours
topLeft="FF7F7F7F"
topRight="FF7F7F7F"
bottomLeft="FF7F7F7F"
bottomRight="FF7F7F7F"

/>
</Section>
<Section section="label">
<Colours
topLeft="FF7F7F7F"
topRight="FF7F7F7F"
bottomLeft="FF7F7F7F"
bottomRight="FF7F7F7F"

/>
</Section>

</Layer>
</StateImagery>

This concludes the introduction tutorial. For full examples of this, and all
the other WidgetLook specifications, see the example ’looknfeel’ files in the
CEGUI distribution, in the directory: cegui mk2/Samples/datafiles/looknfeel/

44CHAPTER 2. INTRODUCTION TO FALAGARD ’LOOKNFEEL’ XML

Part II

Reference Material

45

Chapter 3

Falagard XML Element
Reference

The following pages contain reference material for the XML elements defined
for the Falagard skin definition files.

3.1 Overview

The reference for each element is arranged into sections, as described below:

3.1.1 Purpose:

This section describes what the elements general purpose is within the spec-
ifications.

3.1.2 Attributes:

This section describes available attributes for the elements, and whether
they are required or optional.

3.1.3 Usage:

Describes where the element may appear, whether the element may have
sub-elements, and other important usage information.

47

48 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.1.4 Examples:

For many elements, this section will contain brief examples showing the
element used in context.

3.2 <AbsoluteDim> Element

3.2.1 Purpose:

The <AbsoluteDim> element is used to define a component dimension for
an area rectangle. <AbsoluteDim> is used to specify absolute pixel values
for a dimension.

3.2.2 Attributes:

value specifies the a number of pixels. Required attribute.

3.2.3 Usage:

• The <AbsoluteDim> element may contain a single <DimOperator> el-
ement in order to form a dimension calculation.

• The <AbsoluteDim> element can appear as a sub-element in <Dim> to
form a dimension specification for an area.

• The <AbsoluteDim> element can appear as a sub-element of <DimOperator>
to specify the second operand for a dimension calculation.

3.2.4 Examples:

The following shows <AbsoluteDim> used to define an area rectangle. In the
example, all four component dimensions of the area rectangle are specified
using <AbsoluteDim>:

3.2. <ABSOLUTEDIM> ELEMENT 49

<Area>
<Dim type="LeftEdge" >
<AbsoluteDim value="10" />

</Dim>
<Dim type="TopEdge" >
<AbsoluteDim value="50" />

</Dim>
<Dim type="Width" >
<AbsoluteDim value="290" />

</Dim>
<Dim type="Height" >
<AbsoluteDim value="250" />

</Dim>
</Area>

The following shows <AbsoluteDim> in use as part of a dimension calcula-
tion sequence. In the example the left edge is being set to the width of the
child widget ’myWidget’ minus two pixels:

<Area>
<Dim type="LeftEdge" >
<WidgetDim widget="myWidget" dimension="Width" >
<DimOperator op="Subtract" >
<AbsoluteDim value="2" />

</DimOperator>
</WidgetDim>

</Dim>
...

</Area>

Finally, we see <AbsoluteDim> as the starting dimension for a dimension cal-
culation sequence. In the example, we are adding the value of some window
property to the starting absolute value of six:

<Area>
...
<Dim type="Height" >
<AbsoluteDim value="6">
<DimOperator op="Add" >
<PropertyDim name="someHeightProperty" />

</DimOperator>
</AbsoluteDim>

</Dim>
</Area>

50 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.3 <Area> Element

3.3.1 Purpose:

The <Area> element is a simple container element for the <Dim> dimension
elements, or a single <AreaProperty> element, in order to form a rectangular
area. <Area> is generally used to define target regions which are to be used
for rendering imagery, text, to place a component child widget, or to form
’named’ areas required by the base widget.

3.3.2 Attributes:

<Area> has no attributes.

3.3.3 Usage:

• The <Area> element must contain either:

– A single <AreaProperty> element that describes a URect type
property where the final area can be obtained.

– Four <Dim> elements:

∗ One <Dim> element must define the left edge or x position.
∗ One <Dim> element must define the top edge or y position.
∗ One <Dim> element must define either the right edge or width.
∗ One <Dim> element must define either the bottom edge or

height.

• The <Area> element may appear in any of the following elements:

– <Child> to define the target area to be occupied by a child widget.

– <ImageryComponent> to define the target rendering area of an
image.

– <NamedArea> to define an area which can be retrieved by name.

– <TextComponent> to define the target rendering area of some
text.

– <FrameComponent> to define the target rendering area for a frame.

3.4. <AREAPROPERTY> ELEMENT 51

3.3.4 Examples:

In this example we can see a named area being defined:

<NamedArea name="exampleArea" >
<Area>
<Dim type="LeftEdge"><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge"><AbsoluteDim value="0" /></Dim>
<Dim type="Width"><UnifiedDim scale="1.0" /></Dim>
<Dim type="Height"><UnifiedDim scale="1.0" /></Dim>

</Area>
</NamedArea>

3.4 <AreaProperty> Element

3.4.1 Purpose:

The <AreaProperty> element is intended to allow the system to access a
property on the target window to obtain the final target area of a component
being defined.

3.4.2 Attributes:

name specifies the name of the property to access. The named property
must access a URect value. Required attribute.

3.4.3 Usage:

• The <AreaProperty> element may not contain sub-elements.

• The <AreaProperty> element may appear as a sub-element only within
the main <Area> element.

52 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.4.4 Examples:

3.5 <Child> Element

3.5.1 Purpose:

The <Child> element defines a component widget that will be created and
added to each instance of any window using the <WidgetLook> being defined.
Some base widgets have requirements for <Child> element definition that
must be provided.

3.5.2 Attributes:

type specifies the widget type to create. Required attribute.

nameSuffix specifies a suffix which will be used when naming the widget.
The final name of the child widget will be that of the parent with this
suffix appended. Required attribute.

look specifies the name of a widget look to apply to the child widget. You
should only use this if ’type’ specifies a Falagard base widget type.
Optional attribute.

3.5.3 Usage:

Note: the sub-elements should appear in the order that they are defined
here.

• The <Child> element must contain an <Area> element that defines
the location of the child widget in relation to the component being
defined.

• You may optionally specify a single <VertAlignment> element to set
the vertical alignment for the child.

• You may optionally specify a single <HorzAlignment> element to set
the horizontal alignment for the child.

• You may specify any number of <Property> elements to set default
values for any property supported by the widget type being used for
the child.

3.6. <COLOURPROPERTY> ELEMENT 53

• The <Child> element may only appear within the <WidgetLook> ele-
ment.

3.5.4 Examples:

In this example, taken from TaharezLook.looknfeel, we see how the title bar
child widget required by the frame window type is defined:

<WidgetLook name="TaharezLook/FrameWindow">
...
<Child type="TaharezLook/Titlebar" nameSuffix=" auto titlebar ">
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><UnifiedDim scale="1" type="Width" /></Dim>
<Dim type="Height" >
<FontDim type="LineSpacing">
<DimOperator op="Multiply">
<AbsoluteDim value="1.5" />

</DimOperator>
</FontDim>

</Dim>
</Area>
<Property name="AlwaysOnTop" value="False" />

</Child>
...

</WidgetLook>

3.6 <ColourProperty> Element

3.6.1 Purpose:

The <ColourProperty> element is intended to allow the system to access
a property on the target window to obtain colour information to be used
when drawing some part of the component being defined.

3.6.2 Attributes:

name specifies the name of the property to access. The named property
must access a single colour value. Required attribute.

54 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.6.3 Usage:

• The <ColourProperty> element may not contain sub-elements.

• The <ColourProperty> element may appear as a sub-element within
any of the following elements:

– <ImageryComponent> to specify a modulating colour to be ap-
plied when rendering the image.

– <ImagerySection> to specify a modulating colour to be applied
to all imagery components within the imagery section as it is
rendered.

– <Section> to specify a modulating colour to be applied to all
imagery in the named section as it is rendered.

– <TextComponent> to specify a colour to use when rendering the
text component.

– <FrameComponent> to specify a colour to use when rendering the
text frame.

3.6.4 Examples:

The following example, listing imagery for a button in the ?Normal? state,
shows the <ColourProperty> element in use to specify a property where
colours to be used when rendering the ImagerySection named ’label’ can be
found:

<StateImagery name="Normal">
<Layer>
<Section section="normal" />
<Section section="label">
<ColourProperty name="NormalTextColour" />

</Section>
</Layer>

</StateImagery>

3.7. <COLOURRECTPROPERTY> ELEMENT 55

3.7 <ColourRectProperty> Element

3.7.1 Purpose:

The <ColourRectProperty > element is intended to allow the system to
access a property on the target window to obtain colour information to be
used when drawing some part of the component being defined.

3.7.2 Attributes:

name specifies the name of the property to access. The named property
must access a ColourRect value. Required attribute.

3.7.3 Usage:

• The <ColourRectProperty> element may not contain sub-elements.

• The <ColourRectProperty> element may appear as a sub-element
within any of the following elements:

– <ImageryComponent> to specify a modulating ColourRect to be
applied when rendering the image.

– <ImagerySection> to specify a modulating ColourRect to be ap-
plied to all imagery components within the imagery section as it
is rendered.

– <Section> to specify a modulating ColourRect to be applied to
all imagery in the named section as it is rendered.

– <TextComponent> to specify a ColourRect to use when rendering
the text component.

– <FrameComponent> to specify a colour to use when rendering the
text frame.

56 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.7.4 Examples:

...
<StateImagery name="SpecialState">
<Layer>
<Section section="special main">
<ColourRectProperty name="SpecialColours" />

</Section>
</Layer>

</StateImagery>
...

3.8 <Colours> Element

3.8.1 Purpose:

The <Colours> element is used to explicitly specify values for a ColourRect
that should be used when rendering some part of the component being
defined.

3.8.2 Attributes:

topLeft specifies a hex colour value, of the form ?AARRGGBB?, to be
used for the top-left corner of the ColourRect. Required attribute.

topRight specifies a hex colour value, of the form ?AARRGGBB?, to be
used for the top-right corner of the ColourRect. Required attribute.

bottomLeft specifies a hex colour value, of the form ?AARRGGBB?, to be
used for the bottom-left corner of the ColourRect. Required attribute.

bottomRight specifies a hex colour value of the form ?AARRGGBB?, to
be used for the bottom-right corner of the ColourRect. Required at-
tribute.

3.8.3 Usage:

• The <Colours> element may not contain sub-elements.

3.8. <COLOURS> ELEMENT 57

• The <Colours> element may appear as a sub-element within any of
the following elements:

– <ImageryComponent> to specify a modulating ColourRect to be
applied when rendering the image.

– <ImagerySection> to specify a modulating ColourRect to be ap-
plied to all imagery components within the imagery section as it
is rendered.

– <Section> to specify a modulating ColourRect to be applied to
all imagery in the named section as it is rendered.

– <TextComponent> to specify a ColourRect to use when rendering
the text component.

– <FrameComponent> to specify a colour to use when rendering the
text frame.

3.8.4 Examples:

In this example, we see the <Colours> element used to specify the value
’FFFFFF00’ as the colour for all four corners of the colour rect to be used
when rendering the image being defined:
...
<ImageryComponent>
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><AbsoluteDim value="12" /></Dim>
<Dim type="Height" ><AbsoluteDim value="24" /></Dim>

</Area>
<Image imageset="newImageset" image="FunkyComponent" />
<Colours
topLeft="FFFFFF00"
topRight="FFFFFF00"
bottomLeft="FFFFFF00"
bottomRight="FFFFFF00"

/>
<VertFormat type="Stretched" />
<HorzFormat type="Stretched" />

</ImageryComponent>
...

58 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.9 <Dim> Element

3.9.1 Purpose:

The <Dim> element is intended as a container element for a single dimension
of an area rectangle.

3.9.2 Attributes:

type specifies what the dimension being defined represents. This attribute
should be set to one of the values defined for the DimensionType
enumeration (see below). Required attribute.

3.9.3 Usage:

• The <Dim> element may only appear within the <Area> element.

• The <Dim> element may contain any of the following specialised di-
mension elements:

– <AbsoluteDim>

– <FontDim>

– <ImageDim>

– <PropertyDim>

– <UnifiedDim>

– <WidgetDim>

3.9.4 Examples:

3.10 <DimOperator> Element

3.10.1 Purpose:

The <DimOperator> element allows you to combine two of the specialised
dimension specifier elements via a simple mathematical operator. Since the
dimension used as the second operand may also contain a <DimOperator>
it is possible to create quite complex operations.

3.10. <DIMOPERATOR> ELEMENT 59

Of important note is the fact that in a large chain of operations, the calcu-
lations are done in reverse order. Also, there is no operator precedence as
such, all operations are applied linearly.

3.10.2 Attributes:

op specifies one of the vales from the DimensionOperator enumeration in-
dicating the mathematical operation to be performed. Required at-
tribute.

3.10.3 Usage:

• A single <DimOperator> element may appear as a sub-element within
any of the following specialised dimension elements:

– <AbsoluteDim>

– <FontDim>

– <ImageDim>

– <PropertyDim>

– <UnifiedDim>

– <WidgetDim>

• The <DimOperator> element may contain any of the following spe-
cialised dimension elements:

– <AbsoluteDim>

– <FontDim>

– <ImageDim>

– <PropertyDim>

– <UnifiedDim>

– <WidgetDim>

60 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.10.4 Examples:

The following multiplies two simple AbsoluteDim dimensions:
...
<AbsoluteDim value="10">
<DimOperator op="Multiply">
<AbsoluteDim value="4" />

</DimOperator>
</AbsoluteDim>
...

The next example takes the height of the font used for the target window,
adds four pixels and multiplies the result by two.

Note the effectively reversed order and lack of ’normal’ operator precedence,
the operation performed will be:

(2 * (4 + LineSpacing))

and not:

((2 * 4) + LineSpacing)

...
<AbsoluteDim value="2">
<DimOperator op="Multiply">
<AbsoluteDim value="4">
<DimOperator op="Add">
<FontDim type="LineSpacing" />

</DimOperator>
</AbsoluteDim>

</DimOperator>
</AbsoluteDim>
...

3.11 <Falagard> Element

3.11.1 Purpose:

The <Falagard> element is the root element in Falagard XML skin definition
files. The element serves mainly as a container for <WidgetLook> elements

3.12. <FONTDIM> ELEMENT 61

3.11.2 Attributes:

Element <Falagard> has no attributes.

3.11.3 Usage:

• The <Falagard> element is the root element for Falagard skin files.

• The <Falagard> element may contain any number of <WidgetLook>
elements.

• No element may contain <Falagard> elements as a sub-element.

3.11.4 Examples:

Here we just see the general structure of a Falagard XML file, notice that the
<Falagard> element just serves as a container for multiple <WidgetLook>
elements:

<?xml version="1.0" ?>
<Falagard>
<WidgetLook name="TaharezLook/Button">
...
</WidgetLook>
<WidgetLook ... >
...
</WidgetLook>
...

</Falagard>

3.12 <FontDim> Element

3.12.1 Purpose:

The <FontDim> element is used to take some measurement of a Font, and
use it as a dimension component of an area rectangle.

62 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.12.2 Attributes:

widget specifies the name suffix of a child window to access when auto-
matically obtaining the font or text string to be used when calculating
the dimension’s value. The final name used to access the widget will
be that of the target window with this suffix appended. If this suffix
is not specified, the target window itself is used. Optional attribute.

type specifies the type of font metric / measurement to use for this dimen-
sion. This should be set to one of the values from the FontMetricType
enumeration. Required attribute.

font specifies the name of a font. If no font is given, the font will be taken
from the target window at the time the dimension’s value is taken.
Optional attribute.

string For horizontal extents measurement, specifies the string to be mea-
sured. If no explicit string is given, the window text for the target
window at the time the dimension’s value is taken will be used in-
stead. Optional attribute.

padding an absolute pixel ’padding’ value to be added to the font metric
value. Optional attribute.

3.12.3 Usage:

• The <FontDim> element may contain a single <DimOperator> element
in order to form a dimension calculation.

• The <FontDim> element can appear as a sub-element in <Dim> to form
a dimension specification for an area.

• The <FontDim> element can appear as a sub-element of <DimOperator>
to specify the second operand for a dimension calculation.

3.12.4 Examples:

This first example just gets the line spacing for the window’s current font:

<Dim type="Height">
<FontDim type="LineSpacing" />

</Dim>

3.13. <FONTPROPERTY> ELEMENT 63

Now we take an extents measurement of the windows current text, using a
specified font, and pad the result by ten pixels:

<Dim type="Width">
<FontDim type="HorzExtent" font="Roman-14" padding="10" />

</Dim>

3.13 <FontProperty> Element

The <FontProperty> element is intended to allow the system to access a
property on the target window to obtain the font to be used when rendering
the TextComponent being defined.

3.13.1 Attributes:

name specifies the name of the property to access. Required attribute. The
value of the named property is taken as being the name of a Font.

3.13.2 Usage:

• The <FontProperty> element may not contain sub-elements.

• The <FontProperty> element may appear as a sub-element only within
the <TextComponent> element.

3.13.3 Examples:

3.14 <FrameComponent> Element

3.14.1 Purpose:

The <FrameComponent> element is used to define an imagery frame using a
maximum of eight images for the corners and edges, and a single, formatted,
image for the background. Any of the images may be omitted if not required.

64 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.14.2 Attributes:

No attributes are currently defined for the <FrameComponent> element.

3.14.3 Usage:

Note: the sub-elements should appear in the order that they are defined
here.

• <Area> defining the target area for this frame.

• Up to nine <Image> elements specifying the images to be drawn and
in what positions.

• Optionally specifying the colours for the entire frame, one of the colour
elements:

– <Colours>

– <ColourProperty>

– <ColourRectProperty>

• Optionally, to specify the vertical formatting to use for the frame back-
ground, either of:

– <VertFormat>

– <VertFormatProperty>

• Optionally, to specify the horizontal formatting to use for the frame
background, either of:

– <HorzFormat>

– <HorzFormatProperty>

• The <FrameComponent> element may only appear as a sub-element of
the element <ImagerySection>.

3.14. <FRAMECOMPONENT> ELEMENT 65

3.14.4 Examples:

The following defines a full frame and background. It is taken from the
TaharezLook skin specification for the Listbox widget:

<FrameComponent>
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><UnifiedDim scale="1" type="Width" /></Dim>
<Dim type="Height" ><UnifiedDim scale="1" type="Height" /></Dim>

</Area>
<Image type="TopLeftCorner"
imageset="TaharezLook" image="ListboxTopLeft"

/>
<Image type="TopRightCorner"
imageset="TaharezLook" image="ListboxTopRight"

/>
<Image type="BottomLeftCorner"
imageset="TaharezLook" image="ListboxBottomLeft"

/>
<Image type="BottomRightCorner"
imageset="TaharezLook" image="ListboxBottomRight"

/>
<Image type="LeftEdge"
imageset="TaharezLook" image="ListboxLeft"

/>
<Image type="RightEdge"
imageset="TaharezLook" image="ListboxRight"

/>
<Image type="TopEdge"
imageset="TaharezLook" image="ListboxTop"

/>
<Image type="BottomEdge"
imageset="TaharezLook" image="ListboxBottom"

/>
<Image type="Background"
imageset="TaharezLook" image="ListboxBackdrop"

/>
</FrameComponent>

66 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.15 <HorzAlignment> Element

3.15.1 Purpose:

The <HorzAlignment> element is used to specify the horizontal alignment
option required for a child window element.

3.15.2 Attributes:

type specifies one of the values from the HorizontalAlignment enumeration
indicating the desired horizontal alignment.

3.15.3 Usage:

• The <HorzAlignment> element may only appear as a sub-element of
the <Child> element.

• The <HorzAlignment> element may not contain any sub-elements.

3.15.4 Examples:

This example defines a scrollbar type child widget. We have used the
<HorzAlignment> element to specify that the scrollbar appear on the far
right edge of the component being defined:
...
<Child type="MyLook/VertScrollbar" nameSuffix=" auto vscrollbar ">
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><AbsoluteDim value="15" /></Dim>
<Dim type="Height" ><UnifiedDim scale="1" type="Height" /></Dim>

</Area>
<HorzAlignment type="RightAligned" />

</Child>
...

3.16. <HORZFORMAT> ELEMENT 67

3.16 <HorzFormat> Element

3.16.1 Purpose:

The <HorzFormat> element is used to specify the required horizontal for-
matting for an image, frame, or text component.

3.16.2 Attributes:

type specifies the required horizontal formatting option.

• For use in ImageryComponents or FrameComponents, this will be one
of the values from the HorizontalFormat enumeration.

• For use in TextComponents, this will one of the values form the Hori-
zontalTextFormat enumeration.

3.16.3 Usage:

• The <HorzFormat> element may only appear as a sub-element of the
following elements:

– <ImageryComponent>

– <FrameComponent>

– <TextComponent>

• The <HorzFormat> element may not contain any sub-elements.

3.16.4 Examples:

This first example shows an ImageryComponent definition. We use <HorzFormat>
to specify that we want the image stretched to cover the entire width of the
designated target area:

68 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

...
<ImageryComponent>
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><AbsoluteDim value="25" /></Dim>
<Dim type="Height" ><AbsoluteDim value="25" /></Dim>

</Area>
<Image imageset="myImageset" image="coolImage" />
<VertFormat type="Stretched" />
<HorzFormat type="Stretched" />

</ImageryComponent>
...

This second example is for a TextComponent. You can see <HorzFormat>
used here to specify that we want the text centred within the target area,
and word-wrapped where required:

<TextComponent>
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="RightEdge" ><UnifiedDim scale="1" type="Width"

/></Dim>
<Dim type="Height" ><UnifiedDim scale="1" type="Height" /></Dim>

</Area>
<HorzFormat type="WordWrapLeftAligned" />

</TextComponent>

3.17 <HorzFormatProperty> Element

3.17.1 Purpose:

The <HorzFormatProperty> element is intended to allow the system to
access a property on the target window to obtain the horizontal formatting
to be used when drawing the component being defined.

3.17.2 Attributes:

name specifies the name of the property to access. The named property
must access a string value that will be set to one of the enumera-

3.18. <IMAGE> ELEMENT 69

tion values appropriate for the component being defined 1. Required
attribute.

3.17.3 Usage:

• The <HorzFormatProperty> element may not contain sub-elements.

• The <HorzFormatProperty> element may appear as a sub-element
within any of the following elements:

– <ImageryComponent> to specify a horizontal formatting to be
used the the image.

– <FrameComponent> to specify a horizontal formatting to be used
for the frame background.

– <TextComponent> to specify a horizontal formatting to be used
for the text.

3.17.4 Examples:

3.18 <Image> Element

3.18.1 Purpose:

The <Image> element is used to specify an Imageset and Image pair, and
for FrameComponent images, how the image is to be used.

3.18.2 Attributes:

imageset specifies the name of an Imageset which contains the image to
be used. Required attribute.

image specifies the name of the image from the specified Imageset to be
used. Required attribute.

type Only for FrameComponent. Specifies the part of the frame that this
image is to be used for. One of the values from the FrameImageCom-
ponent enumeration. Required attribute.

1HorizontalTextFormat for TextComponent, and HorizontalFormat for either Frame-
Component or ImageryComponent

70 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.18.3 Usage:

• The <Image> element may only appear as a sub-element of the <ImageryComponent>
or <FrameComponent> elements.

• The <Image> element may not contain any sub-elements.

3.18.4 Examples:

Here you can see the <Image> element used to specify the image to render
for an ImageryComponent being defined:
...
<ImageryComponent>
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><AbsoluteDim value="15" /></Dim>
<Dim type="Height" ><UnifiedDim scale="1.0" type="Height"

/></Dim>
</Area>
<Image imageset="FunkyLook" image="ButtonIcon" />
<VertFormat type="CentreAligned" />
<HorzFormat type="CentreAligned" />

</ImageryComponent>
...

3.19 <ImageDim> Element

3.19.1 Purpose:

The <ImageDim> element is used to define a component dimension for an
area rectangle. <ImageDim> is used to specify some dimension of an image
for use as an area dimension.

3.19.2 Attributes:

imageset specifies the name of an Imageset which contains the image to
be used. Required attribute.

3.20. <IMAGERYCOMPONENT> ELEMENT 71

image specifies the name of the image from the specified Imageset to be
used. Required attribute.

dimension specifies the image dimension to be used. This should be set to
one of the values defined in the DimensionType enumeration. Required
attribute.

3.19.3 Usage:

• The <ImageDim> element may contain a single <DimOperator> element
in order to form a dimension calculation.

• The <ImageDim> element can appear as a sub-element in <Dim> to
form a dimension specification for an area.

• The <ImageDim> element can appear as a sub-element of <DimOperator>
to specify the second operand for a dimension calculation.

3.19.4 Examples:

This example shows a dimension that uses <ImageDim> to fetch the width
of a specified image for use as the dimensions value:
...
<Area>
<Dim type="LeftEdge">
<ImageDim imageset="myImages" image="leftImage"

dimension="width" />
</Dim>
...

</Area>
...

3.20 <ImageryComponent> Element

3.20.1 Purpose:

The <ImageryComponent> element defines a single image to be drawn within
a given ImagerySection. The ImageryComponent contains all information
about which image is to be drawn, where it should be drawn, which colours
are to be used and how the image should be formatted.

72 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.20.2 Attributes:

No attributes are defined for the <ImageryComponent> element.

3.20.3 Usage:

Note: the sub-elements should appear in the order that they are defined
here.

• <Area> defining the target area for this image.

• Either one of:

– <Image> element specifying the image to be drawn.

– <ImageProperty> element specifying a property defining the im-
age to be drawn.

• Optionally specifying the colours for this single image, one of the colour
elements:

– <Colours>

– <ColourProperty>

– <ColourRectProperty>

• Optionally, to specify the vertical formatting to use, either of:

– <VertFormat>

– <VertFormatProperty>

• Optionally, to specify the horizontal formatting to use, either of:

– <HorzFormat>

– <HorzFormatProperty>

• The <ImageryComponent> element may only appear as a sub-element
of the element <ImagerySection>.

3.21. <IMAGEPROPERTY> ELEMENT 73

3.20.4 Examples:

The following was taken from TaharezLook.looknfeel and shows a full Im-
ageryComponent definition:

<ImageryComponent>
<Area>
<Dim type="LeftEdge" ><UnifiedDim scale="0" type="LeftEdge"

/></Dim>
<Dim type="TopEdge" ><UnifiedDim scale="0.2" type="TopEdge"

/></Dim>
<Dim type="Width" ><UnifiedDim scale="1" type="Width" /></Dim>
<Dim type="Height" ><UnifiedDim scale="0.3" type="Height"

/></Dim>
</Area>
<Image imageset="TaharezLook" image="TextSelectionBrush" />
<Colours
topLeft="FFFFFF00"
topRight="FFFFFF00"
bottomLeft="FFFFFF00"
bottomRight="FFFFFF00"

/>
<VertFormat type="Tiled" />
<HorzFormat type="Stretched" />

</ImageryComponent>

3.21 <ImageProperty> Element

3.21.1 Purpose:

The <ImageProperty> element is intended to allow the system to access a
property on the target window to obtain the final image to be used when
rendering the ImageryComponent being defined.

3.21.2 Attributes:

name specifies the name of the property to access. Required attribute.
The named property must access a imageset & image value pair of the
form:

74 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

"set:<imageset name> image:<image name>"

3.21.3 Usage:

• The <ImageProperty> element may not contain sub-elements.

• The <ImageProperty> element may appear as a sub-element only
within the <ImageryComponent> elements.

3.21.4 Examples:

3.22 <ImagerySection> Element

3.22.1 Purpose:

The <ImagerySection> element is used to group multiple <ImageryComponent>
and <TextComponent> definitions into named sections which can then be
specified for use as imagery in state definitions.

3.22.2 Attributes:

name specifies the name to be given to this ImagerySection. Names are
per-WidgetLook, and specifying the same name more than once will
replace the previous definition. Required attribute.

3.22.3 Usage:

Note: the sub-elements should appear in the order that they are defined
here.

• To optionally specify colours to be modulated with the individual com-
ponent’s colours, the <ImagerySection> may contain one of the colour
definition elements:

– <Colours>

3.22. <IMAGERYSECTION> ELEMENT 75

– <ColourProperty>

– <ColourRectProperty>

• Any number of <FrameComponent> elements may then follow.

• Followed by any number of <ImageryComponent> elements.

• Finally, any number of <TextComponent> elements may be given

• The <ImagerySection> element may only appear as a sub-element of
the <WidgetLook> element.

3.22.4 Examples:

<ImagerySection name="example">
<ImageryComponent>
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><AbsoluteDim value="15" /></Dim>
<Dim type="Height" ><UnifiedDim scale="1.0" type="Height"

/></Dim>
</Area>
<Image imageset="sillyImages" image="anotherImage" />
<VertFormat type="Stretched" />
<HorzFormat type="Stretched" />

</ImageryComponent>
<TextComponent>
<Area>

<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><UnifiedDim scale="1" type="Width" /></Dim>
<Dim type="Height" ><UnifiedDim scale="1" type="Height"

/></Dim>
</Area>

</TextComponent>
</ImagerySection>

76 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.23 <Layer> Element

3.23.1 Purpose:

The <Layer> element is used to define layers of imagery within the definition
of a StateImagery section.

3.23.2 Attributes:

priority specifies the priority for the layer. Higher priorities appear in front
of lower priorities. Default priority is 0. Optional attribute.

3.23.3 Usage:

• The <Layer> element may only appear as a sub-element of the <StateImagery>
element.

• The <Layer> element may contain any number of <Section> sub-
elements.

3.23.4 Examples:

Here we see a single layer with multiple sections included. This example was
taken from the TaharezLook skin XML file (ListHeaderSegment widget):

<StateImagery name="Normal">
<Layer>
<Section section="segment normal" />
<Section section="splitter normal" />
<Section section="label" />

</Layer>
</StateImagery>

3.24 <NamedArea> Element

3.24.1 Purpose:

Defines an area that can be accessed via it’s name. Generally this this used
by base widgets to obtain skin supplied areas for use in rendering or other

3.24. <NAMEDAREA> ELEMENT 77

widget specific operations.

3.24.2 Attributes:

name specifies a name for the area being defined. Required attribute.

3.24.3 Usage:

• The <NamedArea> element must contain only an <Area> sub-element
defining the area rectangle for the named area.

• The <NamedArea> element may only appear as a sub-element within
<WidgetLook> elements.

3.24.4 Examples:

This example defines a named area called ’TextArea’. It is defined as being
an area seven pixels inside the total area of the widget being defined:

<NamedArea name="TextArea">
<Area>
<Dim type="LeftEdge" >
<AbsoluteDim value="7" />

</Dim>
<Dim type="TopEdge" >
<AbsoluteDim value="7" />

</Dim>
<Dim type="RightEdge" >
<UnifiedDim scale="1.0" offset="-7" type="RightEdge" />

</Dim>
<Dim type="BottomEdge" >
<UnifiedDim scale="1.0" offset="-7" type="BottomEdge" />

</Dim>
</Area>

</NamedArea>

78 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.25 <Property> Element

3.25.1 Purpose:

The <Property> element is used to initialise a property on a window or
widget being defined.

3.25.2 Attributes:

name specifies the name of the property to be initialised. Required at-
tribute.

value specifies the value string to be used when initialising the property.
Required attribute.

3.25.3 Usage:

• The <Property> element may not contain any sub-elements.

• The <Property> element may appear as a sub-element in <WidgetLook>
elements to define property initialisers for the type being defined.

• The <Property> element may appear as a sub-element in <Child> ele-
ments to define property initialisers for the child widget being defined.

3.25.4 Examples:

In this extract from the definition for TaharezLook/Titlebar, we can see the
<Property> element used to set the ’CaptionColour’ property; this estab-
lishes a default for all instances of this widget:

3.26. <PROPERTYDEFINITION> ELEMENT 79

<WidgetLook name="TaharezLook/Titlebar">
<Property name="CaptionColour" value="FFFFFFFF" />
<ImagerySection name="main">
<ImageryComponent>
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
...

</Area>
...

</ImageryComponent>
</ImagerySection>
...

</WidgetLook>

3.26 <PropertyDefinition> Element

3.26.1 Purpose:

The <PropertyDefinition> element creates a new named property for the
widget being defined. The defined property may be accessed via any means
that a ’normal’ property may.

3.26.2 Attributes:

name specifies the name to use for the new property. Required attribute.

initialValue specifies the initial value to be assigned to the property. Op-
tional attribute.

type specifies the data type of the property. This should be one of the
values defined for the PropertyType enumeration. Optional attribute.

redrawOnWrite boolean setting specifies whether writing a new value to
this property should cause the widget being defined to redraw itself.
Optional attribute.

layoutOnWrite boolean setting specifies whether writing a new value to
this property should cause the widget being defined to re-layout it’s
defined child widgets. Optional attribute.

80 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.26.3 Usage:

• The <PropertyDefinition> element may not contain sub-elements.

• The <PropertyDefinition> element must appear as a sub-element
within <WidgetLook> elements.

3.26.4 Examples:

In this example, within the WidgetLook we create a new property named
’ScrollbarWidth’. We then use this property to control the width of a com-
ponent child widget. This effectively gives the user control over the width
of the child scrollbar via the property:

<WidgetLook name="PropertyDefExample">
<PropertyDefinition
name="ScrollbarWidth"
initialValue="12"
layoutOnWrite="true"

/>
...
<Child type="MyVertScrollbar" nameSuffix=" auto vscrollbar ">
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><PropertyDim name="ScrollbarWidth" /></Dim>
<Dim type="Height" ><UnifiedDim scale="1" type="Height"

/></Dim>
</Area>
<HorzAlignment type="RightAligned" />

</Child>
...

</WidgetLook>

3.27 <PropertyLinkDefinition> Element

3.27.1 Purpose:

The <PropertyLinkDefinition> element creates a new named property for
the widget being defined, and links this property to a specified property on a

3.27. <PROPERTYLINKDEFINITION> ELEMENT 81

child widget, allowing properties on a child widget to be directly exposed to
clients of this widget. The defined property may be accessed via any means
that a ’normal’ property may.

3.27.2 Attributes:

name specifies the name to use for the new property. Required attribute.

widget specifies the name suffix of the child widget containing the property
that is to be linked to the property being defined. Required attribute.

targetProperty specifies the name of the property on the child widget
that is to be linked to the property being defined. If this is omitted,
it will be assumed that the target property has the same name as the
property being defined. Optional attribute.

initialValue specifies the initial value to be assigned to the property. Op-
tional attribute.

type specifies the data type of the property. This should be one of the
values defined for the PropertyType enumeration. Optional attribute.

redrawOnWrite boolean setting specifies whether writing a new value to
this property should cause the widget being defined to redraw itself.
Optional attribute.

layoutOnWrite boolean setting specifies whether writing a new value to
this property should cause the widget being defined to re-layout it’s
defined child widgets. Optional attribute.

3.27.3 Usage:

• The <PropertyLinkDefinition> element may not contain sub-elements.

• The <PropertyLinkDefinition> element must appear as a sub-element
within <WidgetLook> elements.

3.27.4 Examples:

In this example we create a new property named ’CaptionTextColour’. This
is linked to a property named ’CaptionColour’ on the child widget with name

82 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

suffix ’ auto titlebar ’. Any access of the ’CaptionTextColour’ property on
the widget will actually access the ’CaptionColour’ property on the specified
child widget:

<WidgetLook name="PropertyLinkExample">
<PropertyLinkDefinition
name="CaptionTextColour"
widget=" auto titlebar "
targetProperty="CaptionColour"
initialValue="FFFF3333"
layoutOnWrite="true"

/>
...

</WidgetLook>

3.28 <PropertyDim> Element

3.28.1 Purpose:

The <PropertyDim> element is used to define a component dimension for
an area rectangle. <PropertyDim> is used to specify a floating point value,
accessed via a window property, for use as an area dimension.

3.28.2 Attributes:

widget specifies the name suffix of a child window to access the property
for. The final name used to access the widget will be that of the target
window with this suffix appended. If this suffix is not specified, the
target window itself is used. Optional attribute.

name specifies the name of the property that will provide the value for
this dimension. The property named should access a simple numerical
value.

3.28.3 Usage:

• The <PropertyDim> element may contain a single <DimOperator> el-
ement in order to form a dimension calculation.

3.29. <SECTION> ELEMENT 83

• The <PropertyDim> element can appear as a sub-element in <Dim> to
form a dimension specification for an area.

• The <PropertyDim> element can appear as a sub-element of <DimOperator>
to specify the second operand for a dimension calculation.

3.28.4 Examples:

This example shows a dimension that uses <PropertyDim> to fetch a prop-
erty value to use as the dimensions value. We are accessing the ’Abso-
luteWidth’ property from an attached widget with the name suffix ’ auto button ’:
...
<Area>
<Dim type="LeftEdge">
<PropertyDim widget=" auto button " name="AbsoluteWidth" />

</Dim>
...

</Area>
...

3.29 <Section> Element

3.29.1 Purpose:

The <Section> element is used to name an ImagerySection to be included
for rendering within a StateImagery Layer definition.

3.29.2 Attributes:

look specifies the name of a WidgetLook that contains the ImagerySection
to be referenced. If this is omitted, the WidgetLook currently being
defined is used. Optional attribute.

section specifies the name of an ImagerySection from the chosen Widget-
Look to be referenced. Required attribute.

controlProperty specifies the name of a boolean property that will be
accessed to determine whether or not to render this section. Optional
attribute.

84 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.29.3 Usage:

• The <Section> element may only appear as a sub-element within the
<Layer> element.

• The <Section> element may specify colours to be modulated with
any current colours used for each component within the named Im-
agerySection, by optionally specifying one of the colour elements as a
sub-element:

– <Colours>

– <ColourProperty>

– <ColourRectProperty>

3.29.4 Examples:

Here we see a state definition from a button widget. The state specifies to
use the ’normal’ imagery section, and also the ’label’ imagery section. The
’label’ section is only drawn if the ’DrawText’ property of the target window
is ’True’. Colours for ’label’ will be modulated with the colour obtained from
the ’NormalTextColour’ property of the target window:
...
<StateImagery name="Normal">
<Layer>
<Section section="normal" />
<Section section="label" controlProperty="DrawText">
<ColourProperty name="NormalTextColour" />

</Section>
</Layer>

</StateImagery>
...

3.30 <StateImagery> Element

3.30.1 Purpose:

The <StateImagery> element defines imagery to be used when rendering a
named state. The base widget type intended as a target for the WidgetLook
being defined will specify which states are required to be defined.

3.30. <STATEIMAGERY> ELEMENT 85

3.30.2 Attributes:

name specifies the name of the state being defined. Required attribute.

clipped boolean setting that states whether imagery defined within this
state should be clipped to the target window’s defined area. If this is
specified and set to false, the state imagery will only be clipped to the
display area. Optional attribute.

3.30.3 Usage:

• The <StateImagery>element may contain any number of <Layer>
sub-elements.

• The <StateImagery> element may only appear as a sub-element of
the <WidgetLook> element.

3.30.4 Examples:

The following is an extract of the MenuItem definition from TaharezLook.looknfeel.
The except defines some of the states required for that widget. Note that,
although not shown here, a required state can be empty if no rendering is
needed for that state:
...
<StateImagery name="EnabledNormal">
<Layer>
<Section section="label" />

</Layer>
</StateImagery>
<StateImagery name="EnabledHover">
<Layer>
<Section section="frame" />
<Section section="label" />

</Layer>
</StateImagery>
<StateImagery name="EnabledPushed">
<Layer>
<Section section="frame" />
<Section section="label" />

</Layer>
</StateImagery>
...

86 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.31 <Text> Element

3.31.1 Purpose:

The <Text> element is used to define font and text string information within
a TextComponent.

3.31.2 Attributes:

font specifies the name of a font to use for this text. If this is omitted,
the current font of the target window will be used instead. Optional
attribute.

string specifies a text string to be rendered. If this is omitted, the current
window text for the target window will be used instead. Optional
attribute.

3.31.3 Usage:

• The <Text> element may not contain any sub-elements.

• The <Text> element should only appear as a sub-element within <TextComponent>
elements.

3.31.4 Examples:

In this simple example, we define a TextComponent that renders some static
text. The <Text> element is used to specify the font and string to be used:

3.32. <TEXTCOMPONENT> ELEMENT 87

...
<TextComponent>
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><UnifiedDim scale="1" type="Width" /></Dim>
<Dim type="Height" ><UnifiedDim scale="1" type="Height" /></Dim>

</Area>
<Text font="Roman-18" string="Render this text!" />

</TextComponent>
...

3.32 <TextComponent> Element

3.32.1 Purpose:

The <TextComponent> element defines a single item of text to be drawn
within a given ImagerySection. The TextComponent contains all informa-
tion about the text that is to be drawn, where it should be drawn, which
colours are to be used and how the text should be formatted within its area.

Note that if the <Text> element appears in addition to either of the <TextProperty>
or <FontProperty> elements, the string and font specified within the <Text>
element will act as default values if the properties referenced in <TextProperty>
or <FontProperty> evaluate to empty strings.

3.32.2 Attributes:

The <TextComponent> element has no attributes defined.

3.32.3 Usage:

Note: the sub-elements should appear in the order that they are defined
here.

• <Area> defining the target area for the text.

• <Text> optional element specifying the font to be used and text string
to be drawn.

88 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

• <TextProperty> optional element specifying the name of a property
that contains the text to be drawn.

• <FontProperty> optional element specifying the name of a property
that contains the name of the font to use when drawing the text.

• Optionally specifying the colours for this text, one of the colour ele-
ments:

– <Colours>

– <ColourProperty>

– <ColourRectProperty>

• Optionally, to specify the vertical formatting to use, either of:

– <VertFormat>

– <VertFormatProperty>

• Optionally, to specify the horizontal formatting to use, either of:

– <HorzFormat>

– <HorzFormatProperty>

• The <TextComponent> element may only appear as a sub-element of
the element <ImagerySection>.

3.32.4 Examples:

The following example could be used to specify the caption text to appear
within a Titlebar style widget:

3.33. <TEXTPROPERTY> ELEMENT 89

...
<ImagerySection name="caption">
<TextComponent>
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="10" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="2" /></Dim>
<Dim type="Width" ><UnifiedDim scale="1" type="Width" /></Dim>
<Dim type="Height" ><UnifiedDim scale="1" type="Height"

/></Dim>
</Area>
<ColourProperty name="CaptionColour" />
<VertFormat type="CentreAligned" />
<HorzFormat type="WordWrapLeftAligned" />

</TextComponent>
</ImagerySection>
...

3.33 <TextProperty> Element

The <TextProperty> element is intended to allow the system to access a
property on the target window to obtain the text to be used when rendering
the TextComponent being defined.

3.33.1 Attributes:

name specifies the name of the property to access. Required attribute. The
value of the named property is taken as a string to be rendered.

3.33.2 Usage:

• The <TextProperty> element may not contain sub-elements.

• The <TextProperty> element may appear as a sub-element only within
the <TextComponent> element.

90 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.33.3 Examples:

3.34 <UnifiedDim> Element

3.34.1 Purpose:

The <UnifiedDim> element is used to define a component dimension for an
area rectangle. <UnifiedDim> is used to specify a value using the ’unified’
co-ordinate system.

3.35 Attributes:

scale specifies the relative scale component of the UDim. Optional at-
tribute.

offset specifies the absolute pixel component of the UDim. Optional at-
tribute.

type specifies what the dimension represents. This is needed so that the
system knows how to interpret the ’scale’ component. Required at-
tribute.

3.35.1 Usage:

• The <UnifiedDim> element may contain a single <DimOperator> ele-
ment in order to form a dimension calculation.

• The <UnifiedDim> element can appear as a sub-element in <Dim> to
form a dimension specification for an area.

• The <UnifiedDim> element can appear as a sub-element of <DimOperator>
to specify the second operand for a dimension calculation.

3.35.2 Examples:

This example shows a dimension that uses <UnifiedDim> to specify a UDim
value to use as the dimension’s value:

3.36. <VERTALIGNMENT> ELEMENT 91

...
<Area>
<Dim type="LeftEdge">
<UnfiedDim scale="0.5" offset="-8" type="LeftEdge" />

</Dim>
...

</Area>
...

3.36 <VertAlignment> Element

3.36.1 Purpose:

The <VertAlignment> element is used to specify the vertical alignment op-
tion required for a child window element.

3.36.2 Attributes:

type specifies one of the values from the VerticalAlignment enumeration
indicating the desired vertical alignment.

3.36.3 Usage:

• The <VertAlignment> element may only appear as a sub-element of
the <Child> element.

• The <VertAlignment> element may not contain any sub-elements.

3.36.4 Examples:

This example defines a scrollbar type child widget. We have used the
<VertAlignment> element to specify that the scrollbar appear on the bot-
tom edge of the component being defined:

92 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

...
<Child type="MyLook/HorzScrollbar" nameSuffix=" auto hscrollbar ">
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><UnifiedDim scale="1" type="Width? /></Dim>
<Dim type="Height" ><AbsoluteDim value="15" /></Dim>

</Area>
<VertAlignment type="BottomAligned" />

</Child>
...

3.37 <VertFormat> Element

3.37.1 Purpose:

The <VertFormat> element is used to specify the required vertical format-
ting for an image, frame, or text component.

3.37.2 Attributes:

type specifies the required vertical formatting option.

• For use in ImageryComponents and FrameComponents, this will be
one of the values from the VerticalFormat enumeration.

• For use in TextComponents, this will one of the values form the Ver-
ticalTextFormat enumeration.

3.37.3 Usage:

• The <VertFormat> element may only appear as a sub-element of the
elements:

– <ImageryComponent>

– <FrameComponent>

– <TextComponent>

• The <VertFormat> element may not contain any sub-elements.

3.38. <VERTFORMATPROPERTY> ELEMENT 93

3.37.4 Examples:

This first example shows an ImageryComponent definition. We use <VertFormat>
to specify that we want the image tiled to cover the entire width of the des-
ignated target area:
...
<ImageryComponent>
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="Width" ><AbsoluteDim value="25" /></Dim>
<Dim type="Height" ><AbsoluteDim value="25" /></Dim>

</Area>
<Image imageset="myImageset" image="coolImage" />
<VertFormat type="Tiled" />
<HorzFormat type="Stretched" />

</ImageryComponent>
...

This second example is for a TextComponent. You can see <VertFormat>
used here to specify that we want the text centred within the target area:
...
<TextComponent>
<Area>
<Dim type="LeftEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="TopEdge" ><AbsoluteDim value="0" /></Dim>
<Dim type="RightEdge" ><UnifiedDim scale="1" type="Width"

/></Dim>
<Dim type="Height" ><UnifiedDim scale="1" type="Height" /></Dim>

</Area>
<VertFormat type="CentreAligned" />

</TextComponent>
...

3.38 <VertFormatProperty> Element

3.38.1 Purpose:

The <VertFormatProperty> element is intended to allow the system to
access a property on the target window to obtain the vertical formatting to
be used when drawing the component being defined.

94 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.38.2 Attributes:

name specifies the name of the property to access. The named property
must access a string value that will be set to one of the enumera-
tion values appropriate for the component being defined 2. Required
attribute.

3.38.3 Usage:

• The <VertFormatProperty> element may not contain sub-elements.

• The <VertFormatProperty> element may appear as a sub-element
within any of the following elements:

– <ImageryComponent> to specify a vertical formatting to be used
the the image.

– <FrameComponent> to specify a vertical formatting to be used for
the frame background.

– <TextComponent> to specify a vertical formatting to be used for
the text.

3.38.4 Examples:

3.39 <WidgetDim> Element

3.39.1 Purpose:

The <WidgetDim> element is used to define a component dimension for an
area rectangle. <WidgetDim> is used to specify some dimension of an at-
tached child widget for use as an area dimension.

3.39.2 Attributes:

widget specifies a suffix which will be used when building the name of the
widget to access. The final name of the child widget will be that of
the parent with this suffix appended. If this is not specified, the target
window itself is used. Optional attribute.

2VerticalTextFormat for TextComponent, and VerticalFormat for FrameComponent
and ImageryComponent

3.39. <WIDGETDIM> ELEMENT 95

dimension specifies the widget dimension to be used. This should be set to
one of the values defined in the DimensionType enumeration. Required
attribute.

3.39.3 Usage:

• The <WidgetDim> element may contain a single <DimOperator> ele-
ment in order to form a dimension calculation.

• The <WidgetDim> element can appear as a sub-element in <Dim> to
form a dimension specification for an area.

• The <WidgetDim> element can appear as a sub-element of <DimOperator>
to specify the second operand for a dimension calculation.

3.39.4 Examples:

This example shows using <WidgetDim> to obtain dimensions from an at-
tached child widget ’ auto titlebar ’, and also from the target window itself:

...
<Area>
<Dim type="LeftEdge" >
<AbsoluteDim value="0" />

</Dim>
<Dim type="TopEdge" >
<WidgetDim widget=" auto titlebar " dimension="BottomEdge" />

</Dim>
<Dim type="Width" >
<UnifiedDim scale="1" type="Width" />

</Dim>
<Dim type="BottomEdge" >
<WidgetDim dimension="BottomEdge" />

</Dim>
</Area>
...

96 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

3.40 <WidgetLook> Element

3.40.1 Purpose:

The <WidgetLook> element is the most important element within the sys-
tem. It defines a complete widget ’look’ which can be assigned to one of the
Falagard base widget classes to create what is essentially a new widget type.

3.40.2 Attributes:

name specifies the name of the WidgetLook being defined. If a WidgetLook
with this name already exists within the system, it will be replaced
with the new definition. Required attribute.

3.40.3 Usage:

Note: the sub-elements should appear in the order that they are defined
here.

• The <WidgetLook> element can contain the following sub-elements:

– Any number of <PropertyDefinition> sub-elements defining
new properties.

– Any number of <PropertyLinkDefinition> sub-elements defin-
ing new linked properties.

– Any number of <Property> sub-elements specifying default prop-
erty values.

– Any number of <NamedArea> sub-elements defining areas within
the widget.

– Any number of <Child> sub-elements defining component child
widgets.

– Any number of <ImagerySection> sub-elements defining imagery
for the widget.

– Any number of <StateImagery> sub-elements defining what to
draw for widget states.

• The <WidgetLook> element may only appear as sub-elements of the
root <Falagard> element.

3.40. <WIDGETLOOK> ELEMENT 97

3.40.4 Examples:

The following example is the complete definition for ’TaharezLook/ListHeader’.
This is a trivial example that actually does no rendering, it just specifies a
required property:

<WidgetLook name="TaharezLook/ListHeader">
<Property
name="SegmentWidgetType"
value="TaharezLook/ListHeaderSegment"

/>
<StateImagery name="Enabled" />
<StateImagery name="Disabled" />

</WidgetLook>

98 CHAPTER 3. FALAGARD XML ELEMENT REFERENCE

Chapter 4

Falagard XML Enumeration
Reference

4.1 DimensionOperator Enumeration

”Noop” does nothing.

”Add” Adds two dimensions.

”Subtract” Subtracts two dimensions.

”Multiply” Multiplies two dimensions.

”Divide” Divides two dimensions.

4.2 DimensionType Enumeration

”LeftEdge” specifies the left edge of the target item.

”TopEdge” specifies the top edge of the target item.

”RightEdge” specifies the right edge of the target item.

”BottomEdge” specifies the bottom edge of the target item.

”XPosition” specifies the x position co-ordinate of the target item (same
as ?LeftEdge?).

99

100 CHAPTER 4. FALAGARD XML ENUMERATION REFERENCE

”YPosition” specifies the y position co-ordinate of the target item (same
as ?TopEdge?).

”Width” specifies the width of the target item.

”Height” specifies the height of the target item.

”XOffset” specifies the x offset of the target item (only applies to Images).

”YOffset” specifies the y offset of the target item (only applies to Images).

4.3 FontMetricType Enumeration

”LineSpacing” gets the vertical line spacing value of the font.

”Baseline” get the vertical baseline value of the font.

”HorzExtent” gets the horizontal extent of a string of text.

4.4 FrameImageComponent Enumeration

”TopLeftCorner” specifies the image be used for the frame’s top-left cor-
ner.

”TopRightCorner” specifies the image be used for the frame’s top-right
corner.

”BottomLeftCorner” specifies the image be used for the frame’s bottom-
left corner.

”BottomRightCorner” specifies the image be used for the frame’s bottom-
right corner.

”LeftEdge” specifies the image be used for the frame’ left edge.

”RightEdge” specifies the image be used for the frame’s right edge.

”TopEdge” specifies the image be used for the frame’s top edge.

”BottomEdge” specifies the image be used for the frame bottom edge.

”Background” specifies the image be used for the frame’s background
(area formed within all edges).

4.5. HORIZONTALALIGNMENT ENUMERATION 101

4.5 HorizontalAlignment Enumeration

”LeftAligned” x position is an offset of element’s left edges.

”CentreAligned” x position is an offset of element’s horizontal centre
points.

”RightAligned” x position is an offset of element’s right edges.

4.6 HorizontalFormat Enumeration

”LeftAligned” Image is left aligned within the prescribed area.

”CentreAligned” Image is horizontally centred within the prescribed area.

”RightAligned” Image is right aligned within the prescribed area.

”Stretched” Image is horizontally stretched to fill the prescribed area.

”Tiled” Image is horizontally tiled to fill the prescribed area.

4.7 HorizontalTextFormat Enumeration

”LeftAligned” lines of text are left aligned within the prescribed area.

”CentreAligned” lines of text are horizontally centred within the pre-
scribed area.

”RightAligned” lines of text are right aligned within the prescribed area.

”Justified” lines of text are justified to the prescribed area.

”WordWrapLeftAligned” text wraps, with lines left aligned within the
prescribed area.

”WordWrapCentreAligned” text wraps, with lines horizontally centred
in the prescribed area.

”WordWrapRightAligned” text wraps, with lines right aligned within
the prescribed area.

”WordWrapJustified” text wraps, within lines justified to the prescribed
area.

102 CHAPTER 4. FALAGARD XML ENUMERATION REFERENCE

4.8 PropertyType Enumeration

”Generic” specifies a general purpose property.

4.9 VerticalAlignment Enumeration

”TopAligned” y position is an offset of element’s top edges.

”CentreAligned” y position is an offset of element’s vertical centre points.

”BottomAligned” y position is an offset of element’s bottom edges.

4.10 VerticalFormat Enumeration

”TopAligned” Image is aligned with the top of the prescribed area.

”CentreAligned” Image is vertically centred within the prescribed area.

”BottomAligned” Image is aligned with the bottom of the prescribed
area.

”Stretched” Image is vertically stretched to fill the prescribed area.

”Tiled” Image is vertically tiled to fill the prescribed area.

4.11 VerticalTextFormat Enumeration

”TopAligned” Text line block is aligned with the top of the prescribed
area.

”CentreAligned” Text line block is vertically centred within the pre-
scribed area.

”BottomAligned” Text line block is aligned with the bottom of the pre-
scribed area.

Chapter 5

CEGUI Widget Base Type
Requirements

The following is a reference to the required elements in a WidgetLook as
dictated by the widget base classes available within CEGUI. We also state
the recommended window renderer to be mapped from the FalagardWRBase
module, though you are free to use a custom window renderer as your needs
dictate.

5.1 DefaultWindow

Base class intended to be used as a simple, generic container window. The
logic for this class does nothing.

You should use a “Falagard/Default” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.2 CEGUI/Checkbox

Base class providing logic for Checkbox / toggle button widgets.

You should use a “Falagard/ToggleButton” window renderer for this widget.

Assigned WidgetLook should provide the following:

103

104 CHAPTER 5. CEGUI WIDGET BASE TYPE REQUIREMENTS

• This class currently has no WidgetLook requirements.

5.3 CEGUI/ComboDropList

Base class providing logic for the combo box drop down list sub-widget.
This is a specialisation of the “CEGUI/Listbox” class.

You should use a “Falagard/Listbox” window renderer for this widget.

Assigned WidgetLook should provide the following:

• Child widget definitions:

– Scrollbar based widget with name suffix “ auto vscrollbar ”.
This widget will be used to control vertical scroll position.

– Scrollbar based widget with name suffix “ auto hscrollbar ”.
This widget will be used to control horizontal scroll position.

5.4 CEGUI/Combobox

Base class providing logic for the combo box widget.

You should use a “Falagard/Default” window renderer for this widget.

Assigned WidgetLook should provide the following:

• Child widget definitions:

– Editbox based widget with name suffix “ auto editbox ”
– ComboDropList based widget with name suffix “ auto droplist ”
– PushButton based widget with name suffix “ auto button ”

5.5 CEGUI/DragContainer

Base class providing logic for a generic container that supports drag and
drop.

You should use a “Falagard/Default” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.6. CEGUI/EDITBOX 105

5.6 CEGUI/Editbox

Base class providing logic for a basic, single line, editbox / textbox widget.

You should use a “Falagard/Editbox” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.7 CEGUI/FrameWindow

Base class providing logic for a window that is movable, sizable, and has a
title-bar, frame, and a close button.

You should use a “Falagard/FrameWindow” window renderer for this wid-
get.

Assigned WidgetLook should provide the following:

• Child widget definitions:

– Titlebar based widget with name suffix “ auto titlebar ”. This
widget will be used as the title bar for the frame window.

– SystemButton based widget with name suffix “ auto closebutton ”.
This widget will be used as the close button for the frame window.

5.8 CEGUI/ItemEntry

Base class providing logic for entries in supporting list widgets such as Item-
Listbox.

You should use a “Falagard/ItemEntry” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

106 CHAPTER 5. CEGUI WIDGET BASE TYPE REQUIREMENTS

5.9 CEGUI/ItemListbox

Base class providing logic for a listbox widget that is able to use ItemEntry
based windows as items in the list.

You should use a “Falagard/ItemListbox” window renderer for this widget.

Assigned WidgetLook should provide the following:

• Child widget definitions:

– Scrollbar based widget with name suffix “ auto vscrollbar ”.
This widget will be used to control vertical scroll position.

– Scrollbar based widget with name suffix “ auto hscrollbar ”.
This widget will be used to control horizontal scroll position.

5.10 CEGUI/ListHeader

Base class providing logic for a multi columned header widget - intended for
use on the multi column list.

You should use a “Falagard/ListHeader” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.11 CEGUI/ListHeaderSegment

Base class providing logic for a widget representing single segment / column
of the ListHeader widget.

You should use a “Falagard/ListHeaderSegment” window renderer for this
widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.12. CEGUI/LISTBOX 107

5.12 CEGUI/Listbox

Base class providing logic for a simple single column list widget.

You should use a “Falagard/Listbox” window renderer for this widget.

Assigned WidgetLook should provide the following:

• Child widget definitions:

– Scrollbar based widget with name suffix “ auto vscrollbar ”.
This widget will be used to control vertical scroll position.

– Scrollbar based widget with name suffix “ auto hscrollbar ”.
This widget will be used to control horizontal scroll position.

5.13 CEGUI/MenuItem

Base class providing logic for a MenuItem - intended for attaching to Menubar
and PopupMenu based widgets.

You should use a “Falagard/MenuItem” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.14 CEGUI/Menubar

Base class providing logic for a menu bar.

You should use a “Falagard/Menubar” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

108 CHAPTER 5. CEGUI WIDGET BASE TYPE REQUIREMENTS

5.15 CEGUI/MultiColumnList

Base class providing logic for a multi-column list / grid widget supporting
simple items based on non-window class ListboxItem.

You should use a “Falagard/MultiColumnList” window renderer for this
widget.

Assigned WidgetLook should provide the following:

• Child widget definitions:

– Scrollbar based widget with name suffix “ auto vscrollbar ”.
This widget will be used to control vertical scroll position.

– Scrollbar based widget with name suffix “ auto hscrollbar ”.
This widget will be used to control horizontal scroll position.

– ListHeader based widget with name suffix “ auto listheader ”.
This widget will be used for the header (though technically, you
can place it anywhere).

5.16 CEGUI/MultiLineEditbox

Base class providing logic for a more advanced editbox / text box with
support for multiple lines of text, word-wrapping, and so on.

You should use a “Falagard/MultiLineEditbox” window renderer for this
widget.

Assigned WidgetLook should provide the following:

• Child widget definitions:

– Scrollbar based widget with name suffix “ auto vscrollbar ”.
This widget will be used to control vertical scroll position.

– Scrollbar based widget with name suffix “ auto hscrollbar ”.
This widget will be used to control horizontal scroll position.

• Property initialiser definitions:

– SelectionBrushImage - defines name of image that will be painted
for the text selection (this is applied on a per-line basis).

5.17. CEGUI/POPUPMENU 109

5.17 CEGUI/PopupMenu

Base class providing logic for a pop-up menu.

You should use a “Falagard/PopupMenu” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.18 CEGUI/ProgressBar

Base class providing logic for progress bar widgets.

You should use a “Falagard/ProgressBar” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.19 CEGUI/PushButton

Base class providing logic for a simple push button type widget.

You should use a “Falagard/Button” or “Falagard/SystemButton” window
renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.20 CEGUI/RadioButton

Base class providing logic for radio button style widgets.

You should use a “Falagard/ToggleButton” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

110 CHAPTER 5. CEGUI WIDGET BASE TYPE REQUIREMENTS

5.21 CEGUI/ScrollablePane

Base class providing logic for a widget that can scroll the content attached
to it - which may cover an area much larger than the viewable area.

You should use a “Falagard/ScrollablePane” window renderer for this wid-
get.

Assigned WidgetLook should provide the following:

• Child widget definitions:

– Scrollbar based widget with name suffix “ auto vscrollbar ”.
This widget will be used to control vertical scroll position.

– Scrollbar based widget with name suffix “ auto hscrollbar ”.
This widget will be used to control horizontal scroll position.

5.22 CEGUI/Scrollbar

Base class providing logic for a scrollbar type widget with a movable thumb
and increase / decrease buttons.

You should use a “Falagard/Scrollbar” window renderer for this widget.

Assigned WidgetLook should provide the following:

• Child widget definitions:

– Thumb based widget with name suffix “ auto thumb ”. This
widget will be used for the scrollbar thumb.

– PushButton based widget with name suffix “ auto incbtn ”.
This widget will be used as the increase button.

– PushButton based widget with name suffix “ auto decbtn ”.
This widget will be used as the decrease button.

5.23 CEGUI/Slider

Base class providing logic for a simple slider widget with a movable thumb.

You should use a “Falagard/Slider” window renderer for this widget.

Assigned WidgetLook should provide the following:

5.24. CEGUI/SPINNER 111

• Child widget definitions:

– Thumb based widget with name suffix “ auto thumb ”. This
widget will be used for the slider thumb.

5.24 CEGUI/Spinner

Base class providing logic for a numerical spinner widget, with a text entry
box and increase / decrease buttons.

You should use a “Falagard/Default” window renderer for this widget.

Assigned WidgetLook should provide the following:

• Child widget definitions:

– Editbox based widget with name suffix “ auto editbox ”. This
widget will be used as the text box / display portion of the widget.

– PushButton based widget with name suffix “ auto incbtn ”.
This widget will be used as the increase button.

– PushButton based widget with name suffix “ auto decbtn ”.
This widget will be used as the decrease button.

5.25 CEGUI/TabButton

Base class providing logic for the tabs within a TabControl widget.

You should use a “Falagard/TabButton” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.26 CEGUI/TabControl

Base class providing logic for a widget supporting multiple tabbed content
pages.

You should use a “Falagard/TabControl” window renderer for this widget.

Assigned WidgetLook should provide the following:

112 CHAPTER 5. CEGUI WIDGET BASE TYPE REQUIREMENTS

• Child widget definitions:

– TabPane based widget with name suffix “ auto TabPane ”. This
widget will be used as the content viewing pane.

– DefaultWindow based widget with name suffix “ auto TabPane Buttons”.
This widget will be used as a container for the tab buttons. Op-
tional.

– PushButton based widget with name suffix “ auto TabPane ScrollLeft”.
This widget is used to scroll the tab bar buttons left. Optional.

– PushButton based widget with name suffix “ auto TabPane ScrollRight”.
This widget is used to scroll the tab bar buttons right. Optional.

5.27 CEGUI/Thumb

Base class providing logic for a movable ’tumb’ button; for use as a compo-
nent in other widgets such as scrollbars and sliders.

You should use a “Falagard/Button” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.28 CEGUI/Titlebar

Base class providing logic for a title / caption bar. This should only be used
as a component of the FrameWindow widget.

You should use a “Falagard/Titlebar” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

5.29. CEGUI/TOOLTIP 113

5.29 CEGUI/Tooltip

Base class providing logic for a simple tooltip type widget.

You should use a “Falagard/Tooltip” window renderer for this widget.

Assigned WidgetLook should provide the following:

• This class currently has no WidgetLook requirements.

114 CHAPTER 5. CEGUI WIDGET BASE TYPE REQUIREMENTS

Chapter 6

Falagard Window Renderer
Requirements

6.1 Falagard/Button

General purpose push button widget class.

Assigned WidgetLook should provide the following:

• StateImagery definitions (missing states will default to ’Normal’):

– Normal - Imagery used when the widget is neither pushed nor
has the mouse hovering over it.

– Hover - Imagery used when the widget is not pushed and has the
mouse hovering over it.

– Pushed - Imagery used when the widget is pushed and the mouse
is over the widget.

– PushedOff - Imagery used when the widget is pushed and the
mouse is not over the widget.

– Disabled - Imagery used when the widget is disabled.

6.2 Falagard/Default

Generic window which can be used as a container window, amongst other
uses.

115

116CHAPTER 6. FALAGARD WINDOW RENDERER REQUIREMENTS

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.
– Disabled - General imagery for when the widget is disabled.

6.3 Falagard/Editbox

General purpose single-line text box widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - Imagery used when widget is enabled.
– Disabled - Imagery used when widget is disabled.
– ReadOnly - Imagery used when widget is in ’Read Only’ state.
– ActiveSelection - Additional imagery used when a text selection

is defined and the widget is active. The imagery for this state
will be rendered within the selection area.

– InactiveSelection - Additional imagery used when a text selection
is defined and the widget is not active. The imagery for this state
will be rendered within the selection area.

• NamedArea definitions:

– TextArea - Defines the area where the text, carat, and any selec-
tion imagery will appear.

• PropertyDefinition specifications (optional, defaults will be black):

– NormalTextColour - property that accesses a colour value to be
used to render normal unselected text.

– SelectedTextColour - property that accesses a colour value to be
used to render selected text.

• ImagerySection definitions:

– Carat - Additional imagery used to display the insertion position
carat.

6.4. FALAGARD/FRAMEWINDOW 117

6.4 Falagard/FrameWindow

General purpose window type which can be sized and moved.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– ActiveWithTitleWithFrame - Imagery used when the widget has
its title bar enabled, has its frame enabled, and is active.

– InactiveWithTitleWithFrame - Imagery used when the widget
has its title bar enabled, has its frame enabled, and is inactive.

– DisabledWithTitleWithFrame - Imagery used when the widget
has its title bar enabled, has its frame enabled, and is disabled.

– ActiveWithTitleNoFrame - Imagery used when the widget has its
title bar enabled, has its frame disabled, and is active.

– InactiveWithTitleNoFrame - Imagery used when the widget has
its title bar enabled, has its frame disabled, and is inactive.

– DisabledWithTitleNoFrame - Imagery used when the widget has
its title bar enabled, has its frame disabled, and is disabled.

– ActiveNoTitleWithFrame - Imagery used when the widget has its
title bar disabled, has its frame enabled, and is active.

– InactiveNoTitleWithFrame - Imagery used when the widget has
its title bar disabled, has its frame enabled, and is inactive.

– DisabledNoTitleWithFrame - Imagery used when the widget has
its title bar disabled, has its frame enabled, and is disabled.

– ActiveNoTitleNoFrame - Imagery used when the widget has its
title bar disabled, has its frame disabled, and is active.

– InactiveNoTitleNoFrame - Imagery used when the widget has its
title bar disabled, has its frame disabled, and is inactive.

– DisabledNoTitleNoFrame - Imagery used when the widget has its
title bar disabled, has its frame disabled, and is disabled.

• NamedArea definitions:

– ClientWithTitleWithFrame - Area that defines the clipping re-
gion for the client area when the widget has its title bar enabled,
and has its frame enabled.

118CHAPTER 6. FALAGARD WINDOW RENDERER REQUIREMENTS

– ClientWithTitleNoFrame - Area that defines the clipping region
for the client area when the widget has its title bar enabled, and
has its frame disabled.

– ClientNoTitleWithFrame - Area that defines the clipping region
for the client area when the widget has its title bar disabled, and
has its frame enabled.

– ClientNoTitleNoFrame - Area that defines the clipping region for
the client area when the widget has its title bar disabled, and has
its frame disabled.

6.5 Falagard/ItemEntry

Basic class that may be added to any of the ItemListBase base classes.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

• NamedArea definitions:

– ContentSize - Area defining the size of the item content. Re-
quired.

6.6 Falagard/ItemListbox

Improved single column list widget that is able to make use of ItemEntry
based windows for listbox items.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

6.7. FALAGARD/LISTBOX 119

• NamedArea definitions:

– ItemRenderingArea - Target area where list items will appear
when no scrollbars are visible (also acts as default area). Re-
quired.

– ItemRenderingAreaHScroll - Target area where list items will ap-
pear when the horizontal scrollbar is visible. Optional.

– ItemRenderingAreaVScroll - Target area where list items will ap-
pear when the vertical scrollbar is visible. Optional.

– ItemRenderingAreaHVScroll - Target area where list items will
appear when both the horizontal and vertical scrollbars are visi-
ble. Optional.

6.7 Falagard/Listbox

General purpose single column list widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

• NamedArea definitions:

– ItemRenderingArea - Target area where list items will appear
when no scrollbars are visible (also acts as default area). Re-
quired.

– ItemRenderingAreaHScroll - Target area where list items will ap-
pear when the horizontal scrollbar is visible. Optional.

– ItemRenderingAreaVScroll - Target area where list items will ap-
pear when the vertical scrollbar is visible. Optional.

– ItemRenderingAreaHVScroll - Target area where list items will
appear when both the horizontal and vertical scrollbars are visi-
ble. Optional.

120CHAPTER 6. FALAGARD WINDOW RENDERER REQUIREMENTS

6.8 Falagard/ListHeader

List header widget. Acts as a container for ListHeaderSegment based wid-
gets. Usually used as a component part widget for multi-column list widgets.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

• Property initialiser definitions:

– SegmentWidgetType - specifies the name of a ?ListHeaderSeg-
ment? based widget type; an instance of which will be created
for each column within the header. (Required)

6.9 Falagard/ListHeaderSegment

Widget type intended for use as a single column header within a list header
widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Disabled - Imagery to use when the widget is disabled.

– Normal - Imagery to use when the widget is enabled and the
mouse is not within any part of the segment widget.

– Hover - Imagery to use when the widget is enabled and the mouse
is within the main area of the widget (not the drag-sizing ’splitter’
area).

– SplitterHover - Imagery to use when the widget is enabled and
the mouse is within the drag-sizing ’splitter’ area.

– DragGhost - Imagery to use for the drag-moving ’ghost’ of the
segment. This state should specify that its imagery be render
unclipped.

6.10. FALAGARD/MENUBAR 121

– AscendingSortIcon - Additional imagery used when the segment
has the ascending sort direction set.

– DescendingSortDown - Additional imagery used when the seg-
ment has the descending sort direction set.

– GhostAscendingSortIcon - Additional imagery used for the drag-
moving ’ghost’ when the segment has the ascending sort direction
set.

– GhostDescendingSortDown - Additional imagery used for the drag-
moving ’ghost’ when the segment has the descending sort direc-
tion set.

• Property initialiser definitions:

– MovingCursorImage - Property to define a mouse cursor image
to use when drag-moving the widget. (Optional).

– SizingCursorImage - Property to define a mouse cursor image to
use when drag-sizing the widget. (Optional).

6.10 Falagard/Menubar

General purpose horizontal menu bar widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

• NamedArea definitions:

– ItemRenderArea - Target area where menu items will appear.

6.11 Falagard/MenuItem

General purpose textual menu item widget.

Assigned WidgetLook should provide the following:

122CHAPTER 6. FALAGARD WINDOW RENDERER REQUIREMENTS

• StateImagery definitions:

– EnabledNormal - Imagery used when the item is enabled and the
mouse is not within its area.

– EnabledHover - Imagery used when the item is enabled and the
mouse is within its area.

– EnabledPushed - Imagery used when the item is enabled and user
has pushed the mouse button over it.

– EnabledPopupOpen - Imagery used when the item is enabled and
attached popup menu is opened.

– DisabledNormal - Imagery used when the item is disabled and
the mouse is not within its area.

– DisabledHover - Imagery used when the item is disabled and the
mouse is within its area.

– DisabledPushed - Imagery used when the item is disabled and
user has pushed the mouse button over it.

– DisabledPopupOpen - Imagery used when the item is disabled
and attached popup menu is opened.

– PopupClosedIcon - Additional imagery used when the item is
attached to a popup menu widget and has a a ’sub’ popup menu
attached to itself, and that popup is closed.

– PopupOpenIcon - Additional imagery used when the item is at-
tached to a popup menu widget and has a a ’sub’ popup menu
attached to itself, and that popup is open.

• NamedArea definitions:

– ContentSize - Area defining the size of this item’s content. Re-
quired.

– HasPopupContentSize - Area defining the size of this item’s con-
tent if the item has an attached popup menu and is not attached
to a Menubar (basically the content size with allowance for the
’popup icon’. Optional.

6.12 Falagard/MultiColumnList

General purpose multi-column list / grid widget.

6.13. FALAGARD/MULTILINEEDITBOX 123

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

• NamedArea definitions:

– ItemRenderingArea - Target area where list items will appear
when no scrollbars are visible (also acts as default area). Re-
quired.

– ItemRenderingAreaHScroll - Target area where list items will ap-
pear when the horizontal scrollbar is visible. Optional.

– ItemRenderingAreaVScroll - Target area where list items will ap-
pear when the vertical scrollbar is visible. Optional.

– ItemRenderingAreaHVScroll - Target area where list items will
appear when both the horizontal and vertical scrollbars are visi-
ble. Optional.

6.13 Falagard/MultiLineEditbox

General purpose multi-line text box widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - Imagery used when widget is enabled.

– Disabled - Imagery used when widget is disabled.

– ReadOnly - Imagery used when widget is in ’Read Only’ state.

• NamedArea definitions:

– TextArea - Target area where text lines will appear when no
scrollbars are visible (also acts as default area). Required.

– TextAreaHScroll - Target area where text lines will appear when
the horizontal scrollbar is visible. Optional.

124CHAPTER 6. FALAGARD WINDOW RENDERER REQUIREMENTS

– TextAreaVScroll - Target area where text lines will appear when
the vertical scrollbar is visible. Optional.

– TextAreaHVScroll - Target area where text lines will appear when
both the horizontal and vertical scrollbars are visible. Optional.

• ImagerySection definitions:

– Carat - Additional imagery used to display the insertion position
carat.

• PropertyDefinition specifications (optional, defaults will be black):

– NormalTextColour - property that accesses a colour value to be
used to render normal unselected text.

– SelectedTextColour - property that accesses a colour value to be
used to render selected text.

– ActiveSelectionColour - property that accesses a colour value to
be used to render active selection highlight.

– InactiveSelectionColour - property that accesses a colour value to
be used to render inactive selection highlight.

6.14 Falagard/PopupMenu

General purpose popup menu widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

• NamedArea definitions:

– ItemRenderArea - Target area where menu items will appear.

6.15. FALAGARD/PROGRESSBAR 125

6.15 Falagard/ProgressBar

General purpose progress widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery used when widget is enabled.

– Disabled - General imagery used when widget is disabled.

– EnabledProgress - imagery for 100 progress used when widget is
enabled. The drawn imagery will appear in named area “Pro-
gressArea” and will be clipped appropriately according to widget
settings and the current progress value.

– DisabledProgress - imagery for 100 progress used when widget is
disabled. The drawn imagery will appear in named area “Pro-
gressArea” and will be clipped appropriately according to widget
settings and the current progress value.

• NamedArea definitions:

– ProgressArea - Target area where progress imagery will appear.

• Property initialiser definitions:

– VerticalProgress - boolean property. Determines whether the
progress widget is horizontal or vertical. Default is horizontal.
Optional.

– ReversedProgress - boolean property. Determines whether the
progress grows in the opposite direction to what is considered
’usual’. Set to “True” to have progress grow towards the left or
bottom of the progress area. Optional.

6.16 Falagard/ToggleButton

General purpose radio button style widget.

Assigned WidgetLook should provide the following:

126CHAPTER 6. FALAGARD WINDOW RENDERER REQUIREMENTS

• StateImagery definitions (missing states will default to ’Normal’ or
’SelectedNormal’):

– Normal - Imagery used when the widget is in the deselected / off
state, and is neither pushed nor has the mouse hovering over it.

– Hover - Imagery used when the widget is in the deselected / off
state, and has the mouse hovering over it.

– Pushed - Imagery used when the widget is in the deselected / off
state, is pushed and has mouse over the widget.

– PushedOff - Imagery used when the widget is in the deselected /
off state, is pushed and does not have the mouse over the widget.

– Disabled - Imagery used when the widget is in the deselected /
off state, and is disabled.

– SelectedNormal - Imagery used when the widget is in the selected
/ on state, and is neither pushed nor has the mouse hovering over
it.

– SelectedHover - Imagery used when the widget is in the selected
/ on state, and has the mouse hovering over it.

– SelectedPushed - Imagery used when the widget is in the selected
/ on state, is pushed and has the mouse over the widget.

– SelectedPushedOff - Imagery used when the widget is in the se-
lected / on state, is pushed and does not have the mouse over the
widget.

– SelectedDisabled - Imagery used when the widget is in the se-
lected / on state, and is disabled.

6.17 Falagard/ScrollablePane

General purpose scrollable pane widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

6.18. FALAGARD/SCROLLBAR 127

• NamedArea definitions:

– ViewableArea - Target area where visible content will appear
when no scrollbars are visible (also acts as default area). Re-
quired.

– ViewableAreaHScroll - Target area where visible content will ap-
pear when the horizontal scrollbar is visible. Optional.

– ViewableAreaVScroll - Target area where visible content will ap-
pear when the vertical scrollbar is visible. Optional.

– ViewableAreaHVScroll - Target area where visible content will
appear when both the horizontal and vertical scrollbars are visi-
ble. Optional.

6.18 Falagard/Scrollbar

General purpose scrollbar widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

• NamedArea definitions:

– ThumbTrackArea - Target area in which thumb may be moved.

• Property initialiser definitions:

– VerticalScrollbar - boolean property. Indicates whether this scroll-
bar will operate in the vertical or horizontal direction. Default is
for horizontal. Optional.

128CHAPTER 6. FALAGARD WINDOW RENDERER REQUIREMENTS

6.19 Falagard/Slider

General purpose slider widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

• NamedArea definitions:

– ThumbTrackArea - Target area in which thumb may be moved.

• Property initialiser definitions:

– VerticalSlider - boolean property. Indicates whether this slider
will operate in the vertical or horizontal direction. Default is for
horizontal. Optional.

6.20 Falagard/Static

Generic non-interactive ’static’ widget. Used as a base class for Falagard/StaticImage
and Falagard/StaticText.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

– EnabledFrame - Additional imagery used when the widget is en-
abled and the widget frame is enabled.

– DisabledFrame - Additional imagery used when the widget is dis-
abled and the widget frame is enabled.

– WithFrameEnabledBackground - Additional imagery used when
the widget is enabled, the widget frame is enabled, and the widget
background is enabled.

6.21. FALAGARD/STATICIMAGE 129

– WithFrameDisabledBackground - Additional imagery used when
the widget is disabled, the widget frame is enabled, and the wid-
get background is enabled.

– NoFrameEnabledBackground - Additional imagery used when the
widget is enabled, the widget frame is disabled, and the widget
background is enabled.

– NoFrameDisabledBackground - Additional imagery used when
the widget is disabled, the widget frame is disabled, and the wid-
get background is enabled.

6.21 Falagard/StaticImage

Static widget that displays a configurable image.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.
– Disabled - General imagery for when the widget is disabled.
– EnabledFrame - Additional imagery used when the widget is en-

abled and the widget frame is enabled.
– DisabledFrame - Additional imagery used when the widget is dis-

abled and the widget frame is enabled.
– WithFrameEnabledBackground - Additional imagery used when

the widget is enabled, the widget frame is enabled, and the widget
background is enabled.

– WithFrameDisabledBackground - Additional imagery used when
the widget is disabled, the widget frame is enabled, and the wid-
get background is enabled.

– NoFrameEnabledBackground - Additional imagery used when the
widget is enabled, the widget frame is disabled, and the widget
background is enabled.

– NoFrameDisabledBackground - Additional imagery used when
the widget is disabled, the widget frame is disabled, and the wid-
get background is enabled.

– WithFrameImage - Image rendering when the frame is enabled.
– NoFrameImage - Image rendering when the frame is disabled.

130CHAPTER 6. FALAGARD WINDOW RENDERER REQUIREMENTS

6.22 Falagard/StaticText

Static widget that displays configurable text.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

– EnabledFrame - Additional imagery used when the widget is en-
abled and the widget frame is enabled.

– DisabledFrame - Additional imagery used when the widget is dis-
abled and the widget frame is enabled.

– WithFrameEnabledBackground - Additional imagery used when
the widget is enabled, the widget frame is enabled, and the widget
background is enabled.

– WithFrameDisabledBackground - Additional imagery used when
the widget is disabled, the widget frame is enabled, and the wid-
get background is enabled.

– NoFrameEnabledBackground - Additional imagery used when the
widget is enabled, the widget frame is disabled, and the widget
background is enabled.

– NoFrameDisabledBackground - Additional imagery used when
the widget is disabled, the widget frame is disabled, and the wid-
get background is enabled.

• NamedArea definitions (missing areas will default to WithFrameTex-
tRenderArea):

– WithFrameTextRenderArea - Target area where text will appear
when the frame is enabled and no scrollbars are visible (also acts
as default area). Required.

– WithFrameTextRenderAreaHScroll - Target area where text will
appear when the frame is enabled and the horizontal scrollbar is
visible. Optional.

– WithFrameTextRenderAreaVScroll - Target area where text will
appear when the frame is enabled and the vertical scrollbar is
visible. Optional.

6.23. FALAGARD/SYSTEMBUTTON 131

– WithFrameTextRenderAreaHVScroll - Target area where text
will appear when the frame is enabled and both the horizontal
and vertical scrollbars are visible. Optional.

– NoFrameTextRenderArea - Target area where text will appear
when the frame is disabled and no scrollbars are visible (also acts
as default area). Optional.

– NoFrameTextRenderAreaHScroll - Target area where text will
appear when the frame is disabled and the horizontal scrollbar is
visible. Optional.

– NoFrameTextRenderAreaVScroll - Target area where text will
appear when the frame is disabled and the vertical scrollbar is
visible. Optional.

– NoFrameTextRenderAreaHVScroll - Target area where text will
appear when the frame is disabled and both the horizontal and
vertical scrollbars are visible. Optional.

• Child widget definitions:

– Scrollbar based widget with name suffix “ auto vscrollbar ”.
This widget will be used to control vertical scroll position.

– Scrollbar based widget with name suffix “ auto hscrollbar ”.
This widget will be used to control horizontal scroll position.

6.23 Falagard/SystemButton

Specialised push button widget intended to be used for ’system’ buttons
appearing outside of the client area of a frame window style widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions (missing states will default to ’Normal’):

– Normal - Imagery used when the widget is neither pushed nor
has the mouse hovering over it.

– Hover - Imagery used when the widget is not pushed and has the
mouse hovering over it.

– Pushed - Imagery used when the widget is pushed and the mouse
is over the widget.

132CHAPTER 6. FALAGARD WINDOW RENDERER REQUIREMENTS

– PushedOff - Imagery used when the widget is pushed and the
mouse is not over the widget.

– Disabled - Imagery used when the widget is disabled.

6.24 Falagard/TabButton

Special widget type used for tab buttons within a tab control based widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions (missing states will default to ’Normal’):

– Normal - Imagery used when the widget is neither selected nor
has the mouse hovering over it.

– Hover - Imagery used when the widget has the mouse hovering
over it.

– Selected - Imagery used when the widget is the active / selected
tab.

– Disabled - Imagery used when the widget is disabled.

6.25 Falagard/TabControl

General purpose tab control widget.

The current TabControl base class enforces a fairly strict layout, so while
imagery can be customised as desired, the general layout of the component
widgets is, at least for the time being, mostly fixed.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

• Property initialiser definitions:

– TabButtonType - specifies a TabButton based widget type to be
created each time a new tab button is required.

6.26. FALAGARD/TITLEBAR 133

6.26 Falagard/Titlebar

Title bar widget intended for use as the title bar of a frame window widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions (missing states will default to ’Normal’):

– Active - Imagery used when the widget is active.

– Inactive - Imagery used when the widget is inactive.

– Disabled - Imagery used when the widget is disabled.

6.27 Falagard/Tooltip

General purpose tool-tip widget.

Assigned WidgetLook should provide the following:

• StateImagery definitions:

– Enabled - General imagery for when the widget is enabled.

– Disabled - General imagery for when the widget is disabled.

• NamedArea definitions:

– TextArea - Typically this would be the same area as the TextCom-
ponent you define to receive the tool-tip text. This named area is
used when deciding how to dynamically size the tool-tip so that
text is not clipped.

134CHAPTER 6. FALAGARD WINDOW RENDERER REQUIREMENTS

Chapter 7

GNU Free Documentation
License

Version 1.2, November 2002

Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document ”free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works of
the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for
free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come

135

136 CHAPTER 7. GNU FREE DOCUMENTATION LICENSE

with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The ”Document”, below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as ”you”.
You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

137

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic
text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, ”Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as ”Acknowledgements”, ”Dedi-
cations”, ”Endorsements”, or ”History”.) To ”Preserve the Title”
of such a section when you modify the Document means that it remains a
section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Dis-
claimers are considered to be included by reference in this License, but only
as regards disclaiming warranties: any other implication that these War-
ranty Disclaimers may have is void and has no effect on the meaning of this

138 CHAPTER 7. GNU FREE DOCUMENTATION LICENSE

License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are re-
produced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the
front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying
in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the

139

latter option, you must take reasonably prudent steps, when you begin dis-
tribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year af-
ter the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the Docu-
ment). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent
to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

140 CHAPTER 7. GNU FREE DOCUMENTATION LICENSE

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled ”History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for pub-
lic access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the ”History” section. You may
omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not
be included in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or
to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in

141

the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled ”Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties–for ex-
ample, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements
made by) any one entity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the
various original documents, forming one section Entitled ”History”; likewise
combine any sections Entitled ”Acknowledgements”, and any sections Enti-
tled ”Dedications”. You must delete all sections Entitled ”Endorsements”.

142 CHAPTER 7. GNU FREE DOCUMENTATION LICENSE

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of
each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distri-
bution medium, is called an ”aggregate” if the copyright resulting from the
compilation is not used to limit the legal rights of the compilation’s users be-
yond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Doc-
ument, and any Warranty Disclaimers, provided that you also include the

143

original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedica-
tions”, or ”History”, the requirement (section 4) to Preserve its Title (sec-
tion 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License ”or
any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

144 CHAPTER 7. GNU FREE DOCUMENTATION LICENSE

Copyright c©YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled
”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the ”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover
Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

