The OMake user guide and reference manual
(version 0.10.3)

Jason Hickey, Aleksey Nogin, et. al.

November 4, 2017

Contents

I Gmuidd

2 OMake quickstart guide
K.l Description o e e e e e e e e e e
g.1.1 Automatic dependency analysi§
E.1.2 Content-based dependency analysig.
g.2 Por users already tamibiar with makq
g.o building a small O program
g.4 Larger projectyo oo

2o Subdirectoried

.6 Other things toconsidey]
k. buillding OCaml programs

| S I'he OMaketile and O NMakeroot filed

E.Y Multiple version support]

p___Additional build examples
bl OMakeroot vs QONMaketld

pb.Z2 An example U projectyo 0o e e

p.o An example OCaml projec
p.4 Handling new languaged
p.4.l Denning a detault compilation rulg
p.4.2 Denning a rule for linking
p.4.5 Dependency SCanning o o o o0
p.4.4 Pulling 1t all togethey

p.4.0 Fimishingup
b.o_ Collapsing the hierarchy, .SUBDIRS bodieq

p.o.l Using glob patterny
b.o.2 Simplined sub-conngurationy
p.o.o Computing the subdirectory fisgy
pb.o.4 lemporary directoried

17

19
19
19
19
20
20
22
22
26
26
28
29
29

4 CONTENTS

A OMake concepts and syntax 49
BT —Varabled e e 49
E2Z""Adding to a variable definifion 50
4 A S 50
E.4~ Special characters and quofing 50
da PFunction detimitiond L L L0 L L L L 000 e e e e 51

E.5.T Passing parameterized bodied 52
E5.2 Keyword argumentdo 52

do Curried functiond oL L L0 L e e e e e e e e e 54
B Commenfd 54
R FTe mesion . . . v v v v v v e e e e e e e e e e e e e e e e 54
B9 Scoping, SECTIONT - « « v v v v v e e e e e e e e e 59
ET0 Condifionald o 56
4 V o e 57
4 Ob = 58
ET3CTassed o e 58
A 14 Inheritancd L Lo e e e e e e e e 59
IS YT 7= T 60
EIoTSTATTOot e e e e e e e e e e e e 60
AIOTTNENTo oo e e e e e e e e e e e 62

T I5. 1.2 KeV]. . . . o o o o e e e e e 62

ET6 Consfanfd 63

b__Variables and Naming 67
D1 DIIvate] o o o e e e e e e e e e 67
S TS 69
3 globall 70
b4 D dl . . e 70
b DUDIIC] e 71
b6 Qualified blockd 71
B —declard 72

b6 Expressions and valueg 75
B Dynamic SCOPING .« - « « v« v v v v e e e e e e e e e 75
B2 _Funciionalevaluafion 7
b.3_ _Exporfing the environmenff 7

B3 T EXPOrt reg@iong . . . v v« v v e e e e e e e e e e e 79
p.0.2 Rheturning values from exported regiony 79
6.4 __OD S S 81
bo HMeld and method calld 0000000 82
b o Method overridd00 L e e e e e e e 82

b D = 83

CONTENTS 5

[Additional Tanguage exampleg 85
[[.I__Strings. arrays, and sequenced v v v v v v e 85
[[Z_ Quofed stringd 87

Viergimg e 88

I A g o e e e 88
Lo HMiles and directoried L L L L L L 000 e e e e e e e 89
(.6__Iterafion, mapping, and foreach 90
[T Lazy eXpressiond v v v v v v v e e e e e e e e e e e 91
[T T A Targer example of [azy expressiond 92

[[.8 Scoping and exportd 93
LY Shellaliased . 0 0 0 0 0 0 0L e e 94
/.10 Input/output redirection on the cheap 95

B—Ruled 97
Bl Tmplicifruled 98
B2 Bounded implicit rule 98
B3 sectionl o e e e e e e e e 99
B4 secfiontuld e 99
B.5 Special dependenciedo 99

BoT —exastsi. 99
RO —effectsdo 100
RO3 —valuelo 100
RE _SCANNER Tuled it 101
B:6.T Named scanners, and the :scanner: dependencied 102
BE2Z Naofed e 103
R/ DEEAULI o0 0 o o o s 103
RRSUBDIBSot e e e e e e e e e e s e e 103
8 I AN 1 5 51 104
BT PHONYl ot e e e e e e e e e e e e e 104
BIT Rulescoping 105
BIIL.T Scoping of implicitruled 106
B.IT.2Z Scoping of .SCANNERTuled 106
B.IT.3 Scoping for .PHONY targeftd 107
B-12 Running OMake from a subdirectoryl 108
B.IZ.T Phony targets in a subdirectoryy. 108
B:IZ2.2 Hierarchy of .PHONY targetd 109
I3 Pathnamesinruled 109

P Base ITibraryj 111
O Bmlfm variabled 0 0 e e 111
P.2" Togic, Boolean funcfions, and confrol flow] 112

Y 113
D qual 113
23 and 113
i S v 113

CONTENTS

P26 switch, match 114
D [115
BE2ZRyaisd 116
20 —exafl 116
E2T0 defimed 116
Q211 defimed=eny L0 117
D OETEMV « « v v v e e e e e e e e e e e e e e e e 117
2T sefend 118
BEZTA T msefensd 118
21D PetTegistryl v . . o e e e e e 118
D b o [119
B A=Y 77 119
Arrays and sequences o u e e e e e e e 119
0.3. ATTAY] -« v v v e e e e e e e e e e e e e e e e e e e 119
D I 120
B33 concafl 120
0.3.2 othl 120
B35 il 120
p.3.6 replacentd 121
............................. 121
D 1 121
0.3.9 b od . e e 121
B30 Ted 122
.............................. 122
D Ol o 122
P33 I3 string-lengtHo oL 122
P31 string-escaped, ocaml-escaped, html-escaped, html-pre-escaped122
B.3.15 c-escaped, id-escaped. sql-escaped, uri-escaped 122
Pp.3.16 hexily, unhexify] 123
P.3.I7 decode-uri, encode-uri] 123
0 8 q d .. 124
B3T9 quote-argy v e e e e e e e e e e e e e 124
Pp320 htmlstringd oo 124
32T addsuffid 124
P322 mapsuffi 124
p3-23 addsuffixes, addprefixe§d 125
P324 removeprefiy Lo o oL Lo 125
HaoZd remOovesiilxX v v e e e e e e e e e e e e e 125
P.3.26 replacesuffixed 125
p.3.27 addprefix 126
P328 mapprefiy 126
P329 add-wrappedo oo 126
B30 sefl 126
B33 mem 127
OE337 mfersection 127

CONTENTS 7

B34 <ef=difll 127
B335 HlEed 128
............................ 128
B.3.37 capitalizdo 128
B.3.38 uncapitalizd oo 128
B339 Uppercasdo o e e e e e e e e e e e 128
O340 Jowercasdo e 129

O34T SVSTEII v v v o e e e e e e e e e e e 129
B3427shell 129

.32 DOTT . & v v v e o e e e e e e e e e 129
O3 whild e 130
B35 hreall L 131
P.3.46_random. random-inifl oL 131
DA Arfhmefid. 131
7 O 131
BE22Hoall 131
45 bBasicarithmetid e e e e e 131

B A4 Tomparisong« v v it e e e e e e e 132

o First-class TINetlong L L Lo e e e e e e e e e e e 133
BT Tud 133

y pRIM 133

D PDRIVA e e 133
B.5.4 create-map, create-lazy-mag 134

Pp.6 Tteration and mapping 134
BE6ET Taoreach 134

B/l bBoolean festd L L L L L e e e e e e e e e 135
B.7. 1 sequence-forall 135
B2 sequence-existd Lo o s 135
PIr3 SEeqUENnce-sorf e e 135

.72 DATE e e e e e e e e e e e e e 136

10 File, I/O and system operations 137
MOTFidemamedo i it d e 137
10 dil ... 137

10 phld 138
S 138
[TA hasenamd 138
MOT5o dmmamd e e 139
TG Toofmamd vt e e e e e e e 139
MOT7—dwoll 139
TR TaMmamd e s e e e 139
MOTY9 absnamd i 139

MO TT0homenamd i .. 140
MOTITsaflBx e 140

M2 Pafhsearchl v v i e e e e e e e e e e e 140

CONTENTS

MO22wherd o e e e 140
MI23rehasH e 140
[0.2.4 exists-in-path 141
[0.2.5 digest. digest-optional, digest-sfring 141
0.2.6_find-in-path, find-in-path-opfional 141

0.2.7 digest-in-path. digest-in-path-optiona] 141

M3 Flestald e 142
[0.3.T Tfile-exists, target-exists, target-is-propeyg 142
M3 sfafresell e 142
[0.3.3 Tilter-exists. filter-targets, filter-proper-targetd 142
0.3.4 find-targets-in-path, find-targets-in-path-optional 143
[0.3.5 find-ocaml-fargefs-in-path-opfional 144
M3B6 Ale-sorfl o e 144
O30T sorfrald e 145

0o [nle-check=sorti 145
[0.4"Globbing and file fistingd 145
T0.4.T glol o o e e e e e e e 147
2 0 = P 148
1045 subdird ... 0L L L e 148

[0.5 Filesystem operafiond 149
MO5TmEdim o e e 149
.............................. 149
[0.5.3 stat. Istall 150
M52 mImR e 150
A Ah Tenamdo i 150
5 S 151
[05.7 symlink, symlink-raw. 151
[0.5.8 readlink, readlink-raw] 152
1059 chmod oo 152
[MOET0chowd e 152
MOLhTTufimed 152

MO T2Ermmeatd 153
MO5T3umask e 153

L I Yo T 153
MBI ~smomnfl 153
[0.6.2 _add-project-directoried 154
[0.6.3 remove-project-directoried 154
[0.7 File predicated 154
A == 154

L0 2 nnd e e e e 156

LOx 10 hunctiond 0 L L L e e e e e e e e e e 157
Lox 1 Standard channels 000000000000 157
[U¥Z open-in-string« oo 158
[0.8.3 open-out-string, out-confentd 158
TO.8. 4 TODEI . . v v v v e e e e e e e e e e e e e e e e 158

CONTENTS 9

[0.8.6 _read, input-lind 159
S A = 159
MORRTseel e 159
MRY vewind e 160
MORTOTEl e e 160
MORTITHGsH e e 160
L0 IZ2channel-namd 160
.............................. 160
TO8TZAdupd o o e e e e e 161
L0 s Toset-nonblock 00000 161
= —Qn- —modd .. L L L e 161

0.8 DIDE . v o e e e e e e e e e e e e 161
MORTIRmMEKEId o o e 161
MR T9selecl e 162
I) 0 Y 162
L N Yy 7.V ' 163
MIRZTHGSH e e e 163
[08Z3gethostbynamd o v v v v vt o 163
L0 x 24 Protacol 0L e 163
[0.8.25 getprotobynamd 163
............................. 164
[0.8.27getservbynamd 164
10 s 2x8sockefl . . o 0 0L 164
O x29bnd L. e e e e e e e 165
............................. 165
0.8 DO . . . 165
OR3ZZconmectlo 165
............................ 166
LIRS 05 7] 7 [166
10.5 S 1< S 166
[0.9 Prinfing funcfiond 166
[0.I0Value printing funcfiond 167
IO IO T Miscellaneons tuncfiond 167
IO I0 T Tsef-channel-lind 167
[0.ITHigher-level TO functiond 167
[0.IT.TRegular eXpressiong v v v v v v v v v v v oo o . 167
A 170
Iy, OTEH -« « v v e e e e e e e e e e e e 170
I =T 170
MOOITRawR e 172
MOIT6Isubsfl o 174
MOTT7IeX e 174
MOTTRIex=search 175
I N N 575 P 176
[0 ITT®Wmake lexer.Lexer matching 177

[0.IT.TExtending lexer definifiond 177

10 CONTENTS

[0.IT.TZ'hreading the Texer objec 178

I ¢ T 178
[0IT T4 alling the parse] 180
[0.IT.T#arsing control 180
[O.IT.T6xfending parsery« o v v v v v v oo 180
[MOOITTPasswd ittt e 181
[0.ITT§etpwnam, gefpwuid 182
TU.IT.T%etpwenty oo Lo oL 182

10 @ O . . . 182
0.IT.2pefgrnam, getgrgid 182

10 Zoetsty 183
[O0.IT.2ZXterm-escape-begin, xterm-escape-end 183
[UOTTZETETI-€SCAPE - - - « v v« v v e e e e e e e e e e 183
[0.TT.2Zprompt-invisible-begin, prompt-invisible-end 183
[OITZ®rompt-invisibld 183

ILO. [1.2gettimeotday]o ..o 184

L . 184
[OIT2%mtime, JTocaltimd« .. oo 184
[0.IT.3tnkfime, normalize-timd 184
ITShell commandd 185
II.T Simple commandd 185
TT.2 GIobbing« v v o e e e e e 186
[I.3 Background jobd 186
[Tad Eleyedirecfion 186
1 Pip S o e e 186
M6 Condifionalexecufiond 187
1 DING| . . v . e e e e e e e e e 187
IR Whatisashellcommand?q 187
MU Basic builfin funefiond00 188
LT 91 echd e 188
MO cd e 188

UL 10Job control bimltin functiondo Lo oL 189
1.10 b 189
[TI02D0d 189
TT.T0.3Tg e e 189
[1.10.4 [189
MO hwanfl o 189

1 0 189
[I.ITCommand hisforyy 189

CONTENTS

L2 '1'he standard objectg
IL2.1 Pervasives objecty00 e e e e e e e
12.1.1 Object] e e e e e

Lo.1 buwltin .PHONY targety
Lo.2 Options and VErsioning o v v ot
Ls.2.1 OMakeFlagd
a2 2 ONMakeVersion

L5.2.0 cmp-versionyl e e e e e e e e e e
a2 4 DetneCommandVard

ILo.0 Examining the dependency graphf
ILo.o0.1 dependencies, dependencies-all, dependencies-propen . . .

11

191
191
191
192
193
193
193
194
195
195
195
195
196
196
197
197
197
197
198
198
198
198
199
199

12 CONTENTS

L[3.5.2 C and C+4 configuration variabled
B3 Generated C hled

Lo.9.0.1 CGeneratedliles, LocalCGeneratediileg
Lo.0.4 Building O programs and Libraried

Lo.0.4.1 StaticCLibrary, DynamicClLibrary
o.0.4.2 StaticCULibraryCo DynamicCLibraryCo

Lo.0.4.0 StaticCLibrarylnstall, DynamicClLibraryinstall .
L[3.5.4.4 StaticCUbject, StaticCObjectCopy, StaticCUDb{

jectinstalyo o000 0o

Lo.0.4.0 CFrogramy
Lo.0.4.0 CkFrogramCopy
Lo.0.4. 7 CProgramlnstall
Lo.0.4.8 CXXProgram, CXXProgramlinstal]

Lo.5.4.9 StaticCXXLibrary, StaticUX X LibraryUopy, Statd

cCX X Libraryinstall, DynamicOX X Library, Dyq

namicCXXLibraryCopy, DynamicOX X Librarylnd

lo.0 building OCaml codq
ILo.0.1 Autoconfiguration variables tor OCaml compilation

ILo.6.2 Connguration variables tor OCaml compilation

Lo.0.0 OCaml command flagg
ILo.06.4 labrary variabledo

ILo.0.0.1 OCamlGeneratediiles, LocalOCamlGenerated

L5.6.0.2 Automatic discovery of generated fhles during
dependency analysiy

[3.6.5.3 DeclareMLIOnly
[3.6.6 Using the Menhir parser generatog

IL5.0.6.1 OCamllibrary
L5.0.6.2 OCamllibraryCopy
IL5.0.6.0 OCamllibrarylnstaly
L5.0.6.4 OCamlProgram
L5.0.6.0 OCamlProgramCopy
L5.0.6.06 OCamlProgramlinstall
3.7 Building X nileg. o o oo oo

Lo.7.1 Confguration variables
Lo.7.2 building I#IpX documenty

Lo /21 LaleXDaocumentl

Lo.7.2.2 "lTeXGeneratedFiles, LocalleX(Generatedlbiley . .
Lo.7.2.3 LaleXDocumentCopy

o 24 laleXDocimentinstall

212

CONTENTS

14 Autoconniguration functions and variablesg
4.1 (eneral-purpose autoconfiguration functiony.
L4.1.1 ConiMsgChecking, ContMsghesult
L4.1.2 ConitMsgWarn, ContMsgkrroy
L4.1.56 ContMsgYesNo, ContMsgkound
14.1.4 TryCompileC. IryLinkC, Irykun(Q
L4.1.0 kunCFrog.o oo
14.1.6 CheckCHeader, VerboseCheckCHeaded
L4.1.7 CheckClab, VerboseCheckClaly oo
g4.1.8 CheckFrog
4.2 Iranslating autoconf scripty
4.5 Predefined configuration testy
L4.5.1 INCurses library configuration
L4.5.2 ReadLine library configuration
L4.5.0 oSnprinti configuration Lo oo ...
15 The OSH shell
10.T Starftugd o
Mo ATased o e e
Lo.o Interactive syntaxo 000w e e e e
A DS1S
A.Ll General usagdo o Lo
A.Z Output controf Lo
BT =3 e
A T =S e e e e
N S
A2 4 ——Progress « v v i i e e e e e e e e e e e e
A.2.0 —-print-statuso
A.2.0 —-print-exify00
A2 ([==verbosd e
A.2.8 --output-nmormall 000
A.2.Y --output-postpong
A.2.10 ——output-only-errorsg
A.2.11 ——output-at-end
BZT2=d
A.o Bulldoptionyo Lo e
D S =
R S
NS 0 <
N 7 = =
A 32 =R e
N 5 S
N A=
AD.8 ——dependo e e e e e e e e e e

A.0.Y ——configureg

13

225
225
225
226
226
226
226
227
227
227
227
228
228
228
229

231
231
232
232

14

CONTENTS

A.0.14 ——show-dependencies oo
A.o.15 ——all-dependencieg

IA.o.10 ——verbose-dependencies
A 31l ——1nstalll

A.4 Additional optiongo

AL __Environment variabled

b OMake grammar

B __ONMake lexical conventiond

Bl 1 Commentd

b.1.2 oSpecial charactery oo
B._1.3 ldentifierd

B 14 Command identiferd

B_1 5 Variable referenced

b.1.6 String constantyo Lo

B.2 1he OMake grammay
B.2.1 HEXPressiony o . e e e e e
.2.1.1 Inline applicationy

B.2.2 Statements and programs
B.2.2.1 Specialtormyo 0000

b3 Daollar modibherd

5.4 FProgramming syntaxo
b.4.1 EBExample§o

CONTENTS

16

CONTENTS

Chapter 1

Guide

If you are new to OMake, you the bmake-quickstart presents a short introduc-
tion that describes how to set up a project. The pmake-build-exampled gives
larger examples of build projects, and pmake-language-examples presents pro-
gramming examples.

Quickstart 2 A quickstart guide to using omake.
Build examples B Advanced build examples.

The OMake language @ The omake language, including a description of ob-
jects, expressions, and values.

Variables and naming B Variables, names, and environments.

Language discussion B Further discussion on the language, including scop-
ing, evaluation, and objects.

Language examples [@ Additional language examples.
Build rules B Defining and using rules to build programs.

Base builtin functions @ Functions and variables in the core standard li-
brary.

System functions M0 Functions on files, input/output, and system commands.
Shell commands I Using the omake shell for command-line interpretation.
The standard objects T2 Pervasives defines the built-in objects.

Standard build definitions T3 The build specifications for programming lan-
guages in the OMake standard library.

Standard autoconfiguration functions and variables @ The utilities provoded

by the OMake standard library to simplify programming of autoconfigu-
ration tests.

17

omake-quickstart.html
omake-build-examples.html
omake-language-examples.html

18 CHAPTER 1. GUIDE

The interactive command interpreter I3 The osh command-line interpreter.

Appendices OMake command-line options B Command-line options for
omake.
The OMake language grammar B A more precise specification of the
OMake language.

All the documentation on a single page All the OMake documentation in
a single page.

omake-doc.html

Chapter 2

OMake quickstart guide

2.1 Description

omake is designed for building projects that might have source files in several
directories. Projects are normally specified using an OMakefile in each of the
project directories, and an OMakeroot file in the root directory of the project.
The OMakeroot file specifies general build rules, and the OMakefiles specify the
build parameters specific to each of the subdirectories. When omake runs, it
walks the configuration tree, evaluating rules from all of the OMakefiles. The
project is then built from the entire collection of build rules.

2.1.1 Automatic dependency analysis

Dependency analysis has always been problematic with the make(1) program.
omake addresses this by adding the . SCANNER target, which specifies a command
to produce dependencies. For example, the following rule

.SCANNER: %.0: %.c
$(CC) $(INCLUDE) -MM $<

is the standard way to generate dependencies for .c files. omake will auto-
matically run the scanner when it needs to determine dependencies for a file.

2.1.2 Content-based dependency analysis

Dependency analysis in omake uses MD5 digests to determine whether files
have changed. After each run, omake stores the dependency information in a
file called .omakedb in the project root directory. When a rule is considered
for execution, the command is not executed if the target, dependencies, and
command sequence are unchanged since the last run of omake. As an opti-
mization, omake does not recompute the digest for a file that has an unchanged
modification time, size, and inode number.

19

20 CHAPTER 2. OMAKE QUICKSTART GUIDE

2.2 For users already familiar with make

For users already familiar with the make(1) command, here is a list of differences
to keep in mind when using omake.

e In omake, you are much less likely to define build rules of your own.
The system provides many standard functions (like BEaticCLibrary and
CProgram), described in Chapter 3, to specify these builds more simply.

e Implicit rules using .SUFFIXES and the .sufl.suf2: are not supported.
You should use wildcard patterns instead %.suf2: %.sufl.

e Scoping is significant: you should define variables and .PHONY targets (see
Section BM) before they are used.

e Subdirectories are incorporated into a project using the .SUBDIRS: target
(see Section ER).

2.3 Building a small C program

To start a new project, the easiest method is to change directories to the project
root and use the command omake --install to install default OMakefiles.

$ cd “/newproject

$ omake --install

*** omake: creating OMakeroot

*xx omake: creating OMakefile

*xx omake: project files OMakefile and OMakeroot have been installed
*** omake: you should edit these files before continuing

The default OMakefile contains sections for building C and OCaml pro-
grams. For now, we’ll build a simple C project.
Suppose we have a C file called hello_code.c containing the following code:

#include <stdio.h>

int main(int argc, char **argv)
{
printf ("Hello world\n");
return 0;

}

To build the program a program hello from this file, we can use the
Eoncfion. The OMakefile contains just one line that specifies that the program
hello is to be built from the source code in the hello_code.c file (note that
file suffixes are not passed to these functions).

CProgram(hello, hello_code)

2.3. BUILDING A SMALL C PROGRAM 21

Now we can run omake to build the project. Note that the first time we run
omake, it both scans the hello_code.c file for dependencies, and compiles it
using the cc compiler. The status line printed at the end indicates how many
files were scanned, how many were built, and how many MD5 digests were
computed.

$ omake hello

*xx omake: reading OMakefiles

*** omake: finished reading OMakefiles (0.0 sec)

- scan . hello_code.o

+ cc -I. -MM hello_code.c

- build . hello_code.o

+ cc -I. -c -o hello_code.o hello_code.c

- build . hello

+ cc -o hello hello_code.o

x omake: done (0.5 sec, 1/6 scans, 2/6 rules, 5/22 digests)
$ omake

*xx omake: reading OMakefiles

*x*x omake: finished reading OMakefiles (0.1 sec)

x omake: done (0.1 sec, 0/4 scans, 0/4 rules, 0/9 digests)

If we want to change the compile options, we can redefine the CC and CFLAGS
variables before the CProgram line. In this example, we will use the gcc compiler
with the -g option. In addition, we will specify a .DEFAULT target to be built by
default. The EXE variable is defined to be .exe on Win32 systems; it is empty
otherwise.

CC = gcc

CFLAGS += -g
CProgram(hello, hello_code)
.DEFAULT: hello$(EXE)

Here is the corresponding run for omake.

$ omake

*** omake: reading OMakefiles

x% omake: finished reading OMakefiles (0.0 sec)

- scan . hello_code.o

+ gcc -g -I. -MM hello_code.c

- build . hello_code.o

+ gcc -g -I. -c -o hello_code.o hello_code.c

- build . hello

+ gcc -g -o hello hello_code.o

*** omake: done (0.4 sec, 1/7 scans, 2/7 rules, 3/22 digests)

We can, of course, include multiple files in the program. Suppose we write
a new file hello_helper.c. We would include this in the project as follows.

22 CHAPTER 2. OMAKE QUICKSTART GUIDE

CC = gcc

CFLAGS += -g

CProgram(hello, hello_code hello_helper)
.DEFAULT: hello$(EXE)

2.4 Larger projects

As the project grows it is likely that we will want to build libraries of code.
Libraries can be built using the StaticCLibrary function. Here is an example
of an OMakefile with two libraries.

CC = gcc
CFLAGS += -g

FOO_FILES = foo_a foo_b
BAR_FILES = bar_a bar_b bar_c

StaticCLibrary(libfoo, $(FOO_FILES))
StaticCLibrary(libbar, $(BAR_FILES))

The hello program is linked with both libraries
LIBS = libfoo libbar
CProgram(hello, hello_code hello_helper)

.DEFAULT: hello$(EXE)

2.5 Subdirectories

As the project grows even further, it is a good idea to split it into several
directories. Suppose we place the libfoo and libbar into subdirectories.

In each subdirectory, we define an OMakefile for that directory. For exam-
ple, here is an example OMakefile for the foo subdirectory.

INCLUDES +=/bar

FOO_FILES = foo_a foo_b
StaticCLibrary(libfoo, $(FOO_FILES))

Note the the INCLUDES variable is defined to include the other directories in
the project.

Now, the next step is to link the subdirectories into the main project. The
project OMakefile should be modified to include a .SUBDIRS: target.

Project configuration
CC = gcc

2.5. SUBDIRECTORIES 23

CFLAGS += -g

Subdirectories
.SUBDIRS: foo bar

The libraries are now in subdirectories
LIBS = foo/libfoo bar/libbar

CProgram(hello, hello_code hello_helper)

.DEFAULT: hello$(EXE)

Note that the variables CC and CFLAGS are defined before the .SUBDIRS
target. These variables remain defined in the subdirectories, so that libfoo
and libbar use gcc -g.

If the two directories are to be configured differently, we have two choices.
The OMakefile in each subdirectory can be modified with its configuration (this
is how it would normally be done). Alternatively, we can also place the change
in the root OMakefile.

Default project configuration
CC = gcc
CFLAGS += -g

libfoo uses the default configuration
.SUBDIRS: foo

libbar uses the optimizing compiler
CFLAGS += -03
.SUBDIRS: bar

Main program
LIBS = foo/libfoo bar/libbar
CProgram(hello, hello_code hello_helper)

.DEFAULT: hello$(EXE)

Note that the way we have specified it, the CFLAGS variable also contains
the -03 option for the CProgram, and hello_code.c and hello_helper.c file
will both be compiled with the -03 option. If we want to make the change truly
local to libbar, we can put the bar subdirectory in its own scope using the
section form.

Default project configuration
CC = gcc
CFLAGS += -g

24 CHAPTER 2. OMAKE QUICKSTART GUIDE

libfoo uses the default configuration
.SUBDIRS: foo

libbar uses the optimizing compiler
section

CFLAGS += -03

.SUBDIRS: bar

Main program does not use the optimizing compiler
LIBS = foo/libfoo bar/libbar
CProgram(hello, hello_code hello_helper)

.DEFAULT: hello$(EXE)

Later, suppose we decide to port this project to Win32, and we discover that
we need different compiler flags and an additional library.

Default project configuration
if $(equal $(0STYPE), Win32)
CC = cl /nologo
CFLAGS += /DWIN32 /MT
export
else
CC = gcc
CFLAGS += -g
export

libfoo uses the default configuration
.SUBDIRS: foo

libbar uses the optimizing compiler

section
CFLAGS += $(if $(equal $(0STYPE), Win32), $(EMPTY), -03)
.SUBDIRS: bar

Default libraries
LIBS = foo/libfoo bar/libbar

We need 1libwin32 only on Win32
if $(equal $(OSTYPE), Win32)
LIBS += win32/1libwin32

.SUBDIRS: win32
export

Main program does not use the optimizing compiler

2.5. SUBDIRECTORIES 25

CProgram(hello, hello_code hello_helper)
.DEFAULT: hello$(EXE)

Note the use of the export directives to export the variable definitions from
the if-statements. Variables in omake are scoped—variables in nested blocks
(blocks with greater indentation), are not normally defined in outer blocks.
The export directive specifies that the variable definitions in the nested blocks
should be exported to their parent block.

Finally, for this example, we decide to copy all libraries into a common 1ib
directory. We first define a directory variable, and replace occurrences of the
lib string with the variable.

The common 1lib directory
LIB = $(dir 1ib)

phony target to build just the libraries
.PHONY: makelibs

Default project configuration
if $(equal $(OSTYPE), Win32)
CC = cl /nologo
CFLAGS += /DWIN32 /MT
export
else
CC = gcc
CFLAGS += -g
export

libfoo uses the default configuration
.SUBDIRS: foo

libbar uses the optimizing compiler

section
CFLAGS += $(if $(equal $(OSTYPE), Win32), $(EMPTY), -03)
.SUBDIRS: bar

Default libraries
LIBS = $(LIB)/libfoo $(LIB)/libbar

We need 1ibwin32 only on Win32
if $(equal $(OSTYPE), Win32)
LIBS += $(LIB)/1libwin32

.SUBDIRS: win32
export

26 CHAPTER 2. OMAKE QUICKSTART GUIDE

Main program does not use the optimizing compiler
CProgram(hello, hello_code hello_helper)

.DEFAULT: hello$(EXE)

In each subdirectory, we modify the OMakefiles in the library directo-
ries to install them into the $(LIB) directory. Here is the relevant change
to foo/0Makefile.

INCLUDES +=/bar

FOO_FILES = foo_a foo_b
StaticCLibraryInstall(makelib, $(LIB), libfoo, $(FOO_FILES))

Directory (and file names) evaluate to relative pathnames. Within the foo
directory, the $(LIB) variable evaluates to ../1ib.

As another example, instead of defining the INCLUDES variable separately in
each subdirectory, we can define it in the toplevel as follows.

INCLUDES = $(ROOT) $(dir foo bar win32)

In the foo directory, the INCLUDES variable will evaluate to the string/bar ../win32.
In the bar directory, it would be/foo . ../win32. In the root directory
it would be . foo bar win32.

2.6 Other things to consider

omake also handles recursive subdirectories. For example, suppose the foo di-
rectory itself contains several subdirectories. The foo/0Makefile would then
contain its own .SUBDIRS target, and each of its subdirectories would contain
its own OMakefile.

2.7 Building OCaml programs
By default, omake is also configured with functions for building OCaml pro-
grams. The functions for OCaml program use the 0Caml prefix. For example,
suppose we reconstruct the previous example in OCaml, and we have a file called
hello_code.ml that contains the following code.

open Printf

let () = printf "Hello world\n"

An example OMakefile for this simple project would contain the following.

2.7. BUILDING OCAML PROGRAMS 27

Use the byte-code compiler
BYTE_ENABLED = true
NATIVE_ENABLED = false
OCAMLCFLAGS += -g

Build the program
OCamlProgram(hello, hello_code)
.DEFAULT: hello.run

Next, suppose the we have two library subdirectories: the foo subdirectory
is written in C, the bar directory is written in OCaml, and we need to use the
standard OCaml Unix module.

Default project configuration
if $(equal $(0OSTYPE), Win32)
CC = cl /nologo
CFLAGS += /DWIN32 /MT
export
else
CC = gcc
CFLAGS += -g
export

Use the byte-code compiler
BYTE_ENABLED = true
NATIVE_ENABLED = false
OCAMLCFLAGS += -g

library subdirectories
INCLUDES += $(dir foo bar)
OCAMLINCLUDES += $(dir foo bar)
.SUBDIRS: foo bar

C libraries
LIBS = foo/libfoo

0Caml libraries
OCAML_LIBS = bar/libbar

Also use the Unix module
OCAML_OTHER_LIBS = unix

The main program
O0CamlProgram(hello, hello_code hello_helper)

.DEFAULT: hello

28 CHAPTER 2. OMAKE QUICKSTART GUIDE

The foo/0Makefile would be configured as a C library.

FOO_FILES = foo_a foo_b
StaticCLibrary(libfoo, $(FOO_FILES))

The bar/0Makefile would build an ML library.

BAR_FILES = bar_a bar_b bar_c
OCamlLibrary(libbar, $(BAR_FILES))

2.8 The OMakefile and OMakeroot files

OMake uses the OMakefile and OMakeroot files for configuring a project. The
syntax of these files is the same, but their role is slightly different. For one
thing, every project must have exactly one OMakeroot file in the project root
directory. This file serves to identify the project root, and it contains code that
sets up the project. In contrast, a multi-directory project will often have an
OMakefile in each of the project subdirectories, specifying how to build the
files in that subdirectory.

Normally, the OMakeroot file is boilerplate. The following listing is a typical
example.

include $(STDLIB)/build/Common
include $(STDLIB)/build/C
include $(STDLIB)/build/0Caml
include $(STDLIB)/build/LaTeX

Redefine the command-line variables
DefineCommandVars(.)

The current directory is part of the project
.SUBDIRS:

The include lines include the standard configuration files needed for the
project. The $(STDLIB) represents the omake library directory. The only re-
quired configuration file is Common. The others are optional; for example, the
$ (STDLIB) /build/0Caml file is needed only when the project contains programs
written in OCaml.

The DefineCommandVars function defines any variables specified on the com-
mand line (as arguments of the form VAR=<value>). The .SUBDIRS line specifies
that the current directory is part of the project (so the OMakefile should be
read).

Normally, the OMakeroot file should be small and project-independent. Any
project-specific configuration should be placed in the OMakefiles of the project.

2.9. MULTIPLE VERSION SUPPORT 29

2.9 Multiple version support

OMake version 0.9.6 introduced preliminary support for multiple, simultaneous
versions of a project. Versioning uses the vmount (dirl, dir2) function, which
defines a “virtual mount” of directory dirl over directory dir2. A “virtual
mount” is like a transparent mount in Unix, where the files from dirl appear
in the dir2 namespace, but new files are created in dir2. More precisely, the
filename dir2/foo refers to: a) the file dir1/foo if it exists, or b) dir2/foo
otherwise.

The vmount function makes it easy to specify multiple versions of a project.
Suppose we have a project where the source files are in the directory src/, and
we want to compile two versions, one with debugging support and one optimized.
We create two directories, debug and opt, and mount the src directory over
them.

section
CFLAGS += -g
vmount (-1, src, debug)
.SUBDIRS: debug

section
CFLAGS += -03
vmount (-1, src, opt)
.SUBDIRS: opt

Here, we are using section blocks to define the scope of the vmount—you
may not need them in your project.

The -1 option is optional. It specifies that files form the src directory should
be linked into the target directories (or copied, if the system is Win32). The
links are added as files are referenced. If no options are given, then files are not
copied or linked, but filenames are translated to refer directly to the src/ files.

Now, when a file is referenced in the debug directory, it is linked from the
src directory if it exists. For example, when the file debug/0Makefile is read,
the src/0Makefile is linked into the debug/ directory.

The vmount model is fairly transparent. The OMakefiles can be written as
if referring to files in the src/ directory—they need not be aware of mounting.
However, there are a few points to keep in mind.

2.10 Notes

e When using the vmount function for versioning, it wise to keep the source
files distinct from the compiled versions. For example, suppose the source
directory contained a file src/foo.o. When mounted, the foo.o file will
be the same in all versions, which is probably not what you want. It is
better to keep the src/ directory pristine, containing no compiled code.

30

CHAPTER 2. OMAKE QUICKSTART GUIDE

e When using the vmount -1 option, files are linked into the version direc-
tory only if they are referenced in the project. Functions that examine
the filesystem (like $(1s ...)) may produce unexpected results.

Chapter 3

Additional build examples

Let’s explain the OMake build model a bit more. One issue that dominates this
discussion is that OMake is based on global project analysis. That means you
define a configuration for the entire project, and you run one instance of omake.

For single-directory projects this doesn’t mean much. For multi-directory
projects it means a lot. With GNU make, you would usually invoke the make
program recursively for each directory in the project. For example, suppose you
had a project with some project root directory, containing a directory of sources
src, which in turn contains subdirectories 1ib and main. So your project looks
like this nice piece of ASCII art.

my_project/
| --> Makefile
¢—=> src/
| -—=> Makefile
|-—-> 1ib/
I | ---> Makefile
| ¢~—-> source files...
¢——=> main/
| -—-> Makefile
¢---> source files...

Typically, with GNU make, you would start an instance of make in my_project/;
this would in term start an instance of make in the src/ directory; and this would
start new instances in 1ib/ and main/. Basically, you count up the number of
Makefiles in the project, and that is the number of instances of make processes
that will be created.

The number of processes is no big deal with today’s machines (sometimes
contrary the the author’s opinion, we no longer live in the 1970s). The problem
with the scheme was that each make process had a separate configuration, and
it took a lot of work to make sure that everything was consistent. Furthermore,
suppose the programmer runs make in the main/ directory, but the 1ib/ is out-

31

32 CHAPTER 3. ADDITIONAL BUILD EXAMPLES

of-date. In this case, make would happily crank away, perhaps trying to rebuild
files in 1ib/, perhaps just giving up.

With OMake this changes entirely. Well, not entirely. The source structure
is quite similar, we merely add some Os to the ASCII art.

my_project/
| -—> OMakeroot (or Root.om)
|--> OMakefile
‘—-> src/
|---> OMakefile
[---> 1ib/
| |---> OMakefile
| ‘——-> source files...
‘——-> main/
| -—-> OMakefile
¢——-—> source files...

The role of each <dir>/0Makefile plays the same role as each <dir>/Makefile:
it describes how to build the source files in <dir>. The OMakefile retains much
of syntax and structure of the Makefile, but in most cases it is much simpler.

One minor difference is the presence of the OMakeroot in the project root.
The main purpose of this file is to indicate where the project root is in the first
place (in case omake is invoked from a subdirectory). The OMakeroot serves as
the bootstrap file; omake starts by reading this file first. Otherwise, the syntax
and evaluation of OMakeroot is no different from any other OMakefile.

The big difference is that OMake performs a global analysis. Here is what
happens when omake starts.

1. omake locates that OMakeroot file, and reads it.

2. Each OMakefile points to its subdirectory OMakefiles using the .SUBDIRS
target. For example, my_project/0Makefile has a rule,

.SUBDIRS: src
and the my_project/src/0OMakefile has a rule,

.SUBDIRS: 1ib main

omake uses these rules to read and evaluate every OMakefile in the project.
Reading and evaluation is fast. This part of the process is cheap.

3. Now that the entire configuration is read, omake determines which files are
out-of-date (using a global analysis), and starts the build process. This
may take a while, depending on what exactly needs to be done.

3.1. OMAKEROOT VS. OMAKEFILE 33

There are several advantages to this model. First, since analysis is global, it
is much easier to ensure that the build configuration is consistent—after all, there
is only one configuration. Another benefit is that the build configuration is in-
herited, and can be re-used, down the hierarchy. Typically, the root OMakefile
defines some standard boilerplate and configuration, and this is inherited by
subdirectories that tweak and modify it (but do not need to restate it entirely).
The disadvantage of course is space, since this is global analysis after all. In
practice rarely seems to be a concern; omake takes up much less space than
your web browser even on large projects.

Some notes to the GNU/BSD make user.

o OMakefiles are a lot like Makefiles. The syntax is similar, and there many
of the builtin functions are similar. However, the two build systems are
not the same. Some evil features (in the authors’ opinions) have been
dropped in OMake, and some new features have been added.

e OMake works the same way on all platforms, including Win32. The stan-
dard configuration does the right thing, but if you care about porting your
code to multiple platforms, and you use some tricky features, you may need
to condition parts of your build config on the $(0STYPE) variable.

e A minor issue is that OMake dependency analysis is based on MD5 file
digests. That is, dependencies are based on file contents, not file modifi-
cation times. Say goodbye to false rebuilds based on spurious timestamp
changes and mismatches between local time and fileserver time.

3.1 OMakeroot vs. OMakefile

Before we begin with examples, let’s ask the first question, “What is the differ-
ence between the project root OMakeroot and OMakefile?” A short answer is,
there is no difference, but you must have an OMakeroot file (or Root.om file).

However, the normal style is that OMakeroot is boilerplate and is more-
or-less the same for all projects. The OMakefile is where you put all your
project-specific stuff.

To get started, you don’t have to do this yourself. In most cases you just
perform the following step in your project root directory.

e Run omake --install in your project root.

This will create the initial OMakeroot and OMakefile files that you can edit
to get started.
3.2 An example C project

To begin, let’s start with a simple example. Let’s say that we have a full
directory tree, containing the following files.

34 CHAPTER 3. ADDITIONAL BUILD EXAMPLES

my_project/
| --> OMakeroot
|--> OMakefile
‘—-> src/
| -—-> OMakefile
[---> 1ib/
| | ---> OMakefile
| |---> ouch.c
| | -—-> ouch.h
| ¢---> bandaid.c
¢——=> main/
| ---> OMakefile
|--—> horsefly.c
|---> horsefly.h
¢——=> main.c

Here is an example listing.

my_project/0Makeroot:

Include the standard configuration for C applications
open build/C

Process the command-line vars
DefineCommandVars ()

Include the OMakefile in this directory.
.SUBDIRS:

my_project/0Makefile:

Set up the standard configuration
CFLAGS += -g

Include the src subdirectory
.SUBDIRS: src

my_project/src/0Makefile:
Add any extra options you like
CFLAGS += -02

Include the subdirectories
.SUBDIRS: 1ib main

my_project/src/lib/0Makefile:
Build the library as a static library.
This builds libbug.a on Unix/08X, or libbug.lib on Win32.
Note that the source files are listed _without_ suffix.

3.3. AN EXAMPLE OCAML PROJECT 35

StaticCLibrary(libbug, ouch bandaid)

my_project/src/main/0Makefile:
Some files include the .h files in ../1lib
INCLUDES += ../1lib

Indicate which libraries we want to link against.
LIBS[] +=
../1lib/libbug

Build the program.

Builds horsefly.exe on Win32, and horsefly on Unix.

The first argument is the name of the executable.

The second argument is an array of object files (without suffix)
that are part of the program.

CProgram(horsefly, horsefly main)

Build the program by default (in case omake is called

without any arguments). EXE is defined as .exe on Win32,
otherwise it is empty.

.DEFAULT: horsefly$(EXE)

Most of the configuration here is defined in the file build/C.om (which is
part of the OMake distribution). This file takes care of a lot of work, including:

e Defining the StaticCLibrary and CProgram functions, which describe the
canonical way to build C libraries and programs.

e Defining a mechanism for scanning each of the source programs to discover
dependencies. That is, it defines .SCANNER rules for C source files.

Variables are inherited down the hierarchy, so for example, the value of
CFLAGS in src/main/OMakefile is “-g -02”.

3.3 An example OCaml project

Let’s repeat the example, assuming we are using OCaml instead of C. This time,
the directory tree looks like this.

my_project/
| -—> OMakeroot
|--> OMakefile
‘——> src/
| -—-> OMakefile
|---> 1ib/
| | -—-> OMakefile
| |---> ouch.ml

36 CHAPTER 3. ADDITIONAL BUILD EXAMPLES

| |---> ouch.mli
| ¢——-> bandaid.ml
¢——-> main/
|---> OMakefile
| -—-> horsefly.ml
| -—-> horsefly.mli
‘——=> main.ml

The listing is only a bit different.

my_project/0Makeroot:
Include the standard configuration for 0Caml applications
open build/0Caml

Process the command-line vars
DefineCommandVars ()

Include the OMakefile in this directory.
.SUBDIRS:

my_project/0Makefile:
Set up the standard configuration
OCAMLFLAGS += -Wa

Do we want to use the bytecode compiler,

or the native-code one? Let’s use both for
this example.

NATIVE_ENABLED = true

BYTE_ENABLED = true

Include the src subdirectory
.SUBDIRS: src

my_project/src/0Makefile:
Include the subdirectories
.SUBDIRS: 1ib main

my_project/src/lib/0Makefile:
Let’s do aggressive inlining on native code
OCAMLOPTFLAGS += -inline 10

Build the library as a static library.

This builds libbug.a on Unix/0SX, or libbug.lib on Win32.
Note that the source files are listed _without_ suffix.
OCamlLibrary(libbug, ouch bandaid)

3.4. HANDLING NEW LANGUAGES 37

my_project/src/main/0Makefile:
These files depend on the interfaces in ../lib
OCAMLINCLUDES += ../lib

Indicate which libraries we want to link against.
OCAML_LIBS[] +=
../1ib/libbug

Build the program.

Builds horsefly.exe on Win32, and horsefly on Unix.

The first argument is the name of the executable.

The second argument is an array of object files (without suffix)
that are part of the program.

OCamlProgram(horsefly, horsefly main)

Build the program by default (in case omake is called

without any arguments). EXE is defined as .exe on Win32,
otherwise it is empty.

.DEFAULT: horsefly$(EXE)

In this case, most of the configuration here is defined in the file build/0Caml . om.
In this particular configuration, files in my_project/src/1ib are compiled ag-
gressively with the option -inline 10, but files in my_project/src/lib are
compiled normally.

3.4 Handling new languages

The previous two examples seem to be easy enough, but they rely on the OMake
standard library (the files build/C and build/0Caml) to do all the work. What
happens if we want to write a build configuration for a language that is not
already supported in the OMake standard library?

For this example, let’s suppose we are adopting a new language. The lan-
guage uses the standard compile/link model, but is not in the OMake standard
library. Specifically, let’s say we have the following setup.

e Source files are defined in files with a . cat suffix (for Categorical Abstract
Terminology).

e .cat files are compiled with the catc compiler to produce .woof files
(Wicked Object-Oriented Format).

e .ywoof files are linked by the catc compiler with the —c option to produce
a .dog executable (Digital Object Group). The catc also defines a -a
option to combine several .woof files into a library.

e Each .cat can refer to other source files. If a source file a.cat contains
a line open b, then a.cat depends on the file b.woof, and a.cat must

38 CHAPTER 3. ADDITIONAL BUILD EXAMPLES

be recompiled if b.woof changes. The catc function takes a -I option to
define a search path for dependencies.

To define a build configuration, we have to do three things.

1. Define a .SCANNER rule for discovering dependency information for the
source files.

2. Define a generic rule for compiling a .cat file to a .woof file.

3. Define a rule (as a function) for linking .woof files to produce a .dog
executable.

Initially, these definitions will be placed in the project root OMakefile.

3.4.1 Defining a default compilation rule

Let’s start with part 2, defining a generic compilation rule. We’ll define the
build rule as an implicit rule. To handle the include path, we’ll define a variable
CAT_INCLUDES that specifies the include path. This will be an array of directo-
ries. To define the options, we’ll use a lazy variable (Section [Z7). In case there
are any other standard flags, we’ll define a CAT_FLAGS variable.

Define the catc command, in case we ever want to override it
CATC = catc

The default flags are empty
CAT_FLAGS =

The directories in the include path (empty by default)
INCLUDES[] =

Compute the include options from the include path
PREFIXED_INCLUDES[] = $‘(mapprefix -I, $(INCLUDES))

The default way to build a .woof file
%.woof: Y.cat
$(CATC) $(PREFIXED_INCLUDES) $(CAT_FLAGS) -c $<

The final part is the build rule itself, where we call the catc compiler with
the include path, and the CAT_FLAGS that have been defined. The $< variable
represents the source file.

3.4.2 Defining a rule for linking

For linking, we’ll define another rule describing how to perform linking. Instead
of defining an implicit rule, we’ll define a function that describes the linking step.
The function will take two arguments; the first is the name of the executable
(without suffix), and the second is the files to link (also without suffixes). Here
is the code fragment.

3.4. HANDLING NEW LANGUAGES 39

Optional link options
CAT_LINK_FLAGS =

The function that defines how to build a .dog program
CatProgram(program, files) =

Add the suffixes

file_names = $(addsuffix .woof, $(files))

prog_name = $(addsuffix .dog, $(program))

The build rule
$(prog_name): $(file_names)
$(CATC) $(PREFIXED_INCLUDES) $(CAT_FLAGS) $(CAT_LINK_FLAGS) -o $@ $+

Return the program name
value $(prog_name)

The CAT_LINK_FLAGS variable is defined just in case we want to pass addi-
tional flags specific to the link step. Now that this function is defined, whenever
we want to define a rule for building a program, we simply call the rule. The pre-
vious implicit rule specifies how to compile each source file, and the CatProgram
function specifies how to build the executable.

Build a rover.dog program from the source
files neko.cat and chat.cat.

Compile it by default.

.DEFAULT: $(CatProgram rover, neko chat)

3.4.3 Dependency scanning

That’s it, almost. The part we left out was automated dependency scanning.
This is one of the nicer features of OMake, and one that makes build specifica-
tions easier to write and more robust. Strictly speaking, it isn’t required, but
you definitely want to do it.

The mechanism is to define a .SCANNER rule, which is like a normal rule, but
it specifies how to compute dependencies, not the target itself. In this case, we
want to define a .SCANNER rule of the following form.

.SCANNER: Y%.woof: %.cat
<commands>

This rule specifies that a .woof file may have additional dependencies that
can be extracted from the corresponding . cat file by executing the <commands>.
The result of executing the <commands> should be a sequence of dependencies
in OMake format, printed to the standard output.

As we mentioned, each .cat file specifies dependencies on .woof files with
an open directive. For example, if the neko.cat file contains a line open chat,
then neko.woof depends on chat.woof. In this case, the <commands> should
print the following line.

40 CHAPTER 3. ADDITIONAL BUILD EXAMPLES

neko.woof: chat.woof

For an analogy that might make this clearer, consider the C programming
language, where a .o file is produced by compiling a .c file. If a file foo.c con-
tains a line like #include "fum.h", then foo.c should be recompiled whenever
fum.h changes. That is, the file foo.o depends on the file fum.h. In the OMake
parlance, this is called an implicit dependency, and the .SCANNER <commands>
would print a line like the following.

foo.o: fum.h

Now, returning to the animal world, to compute the dependencies of neko . woof,
we should scan neko. cat, line-by-line, looking for lines of the form open <name>.
We could do this by writing a program, but it is easy enough to do it in omake
itself. We can use the builtin Buk—Tuncfiod to scan the source file. One slight
complication is that the dependencies depend on the INCLUDE path. We’ll use
the find-in-path funcfion to find them. Here we go.

.SCANNER: %.woof: %.cat
section

Scan the file

deps([] =

awk ($<)

case $’ open’
deps[] += $2
export

Remove duplicates, and find the files in the include path
deps = $(find-in-path $(INCLUDES), $(set $(deps)))

Print the dependencies
println($"$@: $(deps)")

Let’s look at the parts. First, the entire body is defined in a section because
we are computing it internally, not as a sequence of shell commands.

We use the deps variable to collect all the dependencies. The awk func-
tion scans the source file ($<) line-by-line. For lines that match the regular
expression ~open (meaning that the line begins with the word open), we add
the second word on the line to the deps variable. For example, if the input line
is open chat, then we would add the chat string to the deps array. All other
lines in the source file are ignored.

Next, the $(set $(deps)) expression removes any duplicate values in the
deps array (sorting the array alphabetically in the process). The find-in-path
function then finds the actual location of each file in the include path.

The final step is print the result as the string $"$@: $(deps)" The quota-
tions are added to flatten the deps array to a simple string.

3.4. HANDLING NEW LANGUAGES 41

3.4.4 Pulling it all together

To complete the example, let’s pull it all together into a single project, much
like our previous example.

my_project/
| --> OMakeroot
|--> OMakefile
‘—-> src/
|---> OMakefile
|---> 1ib/
| | -—-> OMakefile
| | ---> neko.cat
| ¢--—-> chat.cat
¢——-> main/
| -—-> OMakefile
¢=-—-> main.cat

The listing for the entire project is as follows. Here, we also include a function
CatLibrary to link several .woof files into a library.

my_project/0Makeroot:
Process the command-line vars
DefineCommandVars ()

Include the OMakefile in this directory.
.SUBDIRS:

my_project/0Makefile:
HARSHHBHHHBHSHHBHHH B HHA SRR B HRA SRR H R H RSB H RS R B H RS H R SHH
Standard config for compiling .cat files
#

Define the catc command, in case we ever want to override it
CATC = catc

The default flags are empty
CAT_FLAGS =

The directories in the include path (empty by default)
INCLUDES[] =

Compute the include options from the include path
PREFIXED_INCLUDES[] = $‘(mapprefix -I, $(INCLUDES))

Dependency scanner for .cat files
.SCANNER: %.woof: %.cat

42

CHAPTER 3. ADDITIONAL BUILD EXAMPLES

section
Scan the file
deps[] =
awk ($<)
case $’ open’
deps[] += $2
export

Remove duplicates, and find the files in the include path
deps = $(find-in-path $(INCLUDES), $(set $(deps)))

Print the dependencies
println($"$e: $(deps)")

The default way to compile a .cat file
%.woof: Y.cat
$(CATC) $(PREFIXED_INCLUDES) $(CAT_FLAGS) -c $<

Optional link options
CAT_LINK_FLAGS =

Build a library for several .woof files
CatLibrary(lib, files) =
Add the suffixes
file_names = $(addsuffix .woof, $(files))
lib_name = $(addsuffix .woof, $(1ib))

The build rule
$(1lib_name): $(file_names)
$(CATC) $(PREFIXED_INCLUDES) $(CAT_FLAGS) $(CAT_LINK_FLAGS) -a $@ $+

Return the program name
value $(lib_name)

The function that defines how to build a .dog program
CatProgram(program, files) =

Add the suffixes

file_names = $(addsuffix .woof, $(files))

prog_name = $(addsuffix .dog, $(program))

The build rule
$(prog_name) : $(file_names)
$(CATC) $(PREFIXED_INCLUDES) $(CAT_FLAGS) $(CAT_LINK_FLAGS) -o $@ $+

Return the program name
value $(prog_name)

3.5. COLLAPSING THE HIERARCHY, .SUBDIRS BODIES 43

B S S s S S S s s s s s s
Now the program proper
#

Include the src subdirectory
.SUBDIRS: src

my_project/src/0Makefile:
.SUBDIRS: 1ib main

my_project/src/lib/0Makefile:
CatLibrary(cats, neko chat)

my_project/src/main/OMakefile:
Allow includes from the ../lib directory
INCLUDES[] += ../1lib

Build the program
.DEFAULT: $(CatProgram main, main ../cats)

Some notes. The configuration in the project OMakeroot defines the standard
configuration, including the dependency scanner, the default rule for compiling
source files, and functions for building libraries and programs.

These rules and functions are inherited by subdirectories, so the .SCANNER
and build rules are used automatically in each subdirectory, so you don’t need
to repeat them.

3.4.5 Finishing up

At this point we are done, but there are a few things we can consider.

First, the rules for building cat programs is defined in the project OMakefile.
If you had another cat project somewhere, you would need to copy the OMakeroot
(and modify it as needed). Instead of that, you should consider moving the con-
figuration to a shared library directory, in a file like Cat.om. That way, instead
of copying the code, you could include the shared copy with an OMake command
open Cat. The share directory should be added to your OMAKEPATH environment
variable to ensure that omake knows how to find it.

Better yet, if you are happy with your work, consider submitting it as a
standard configuration (by sending a request to omake@metaprl.org) so that
others can make use of it too.

3.5 Collapsing the hierarchy, .SUBDIRS bodies

Some projects have many subdirectories that all have the same configuration.
For instance, suppose you have a project with many subdirectories, each con-

44 CHAPTER 3. ADDITIONAL BUILD EXAMPLES

taining a set of images that are to be composed into a web page. Apart from
the specific images, the configuration of each file is the same.

To make this more concrete, suppose the project has four subdirectories
pagel, page2, page3, and page4. Each contains two files imagel.jpg and
image?2. jpg that are part of a web page generated by a program genhtml.

Instead of of defining a OMakefile in each directory, we can define it as a
body to the .SUBDIRS command.

.SUBDIRS: pagel page2 page3 page4
index.html: imagel.jpg image2jpg
genhtml $+ > $@

The body of the .SUBDIRS is interpreted exactly as if it were the OMakefile,
and it can contain any of the normal statements. The body is evaluated in the
subdirectory for each of the subdirectories. We can see this if we add a statement
that prints the current directory ($(CWD)).

.SUBDIRS: pagel page2 page3 page4
println($(absname $(CWD)))
index.html: imagel.jpg image2jpg

genhtml $+ > $@
prints

/home/jyh/.../pagel

/home/jyh/.../page2

/home/jyh/.../page3

/home/jyh/.../page4d

3.5.1 Using glob patterns

Of course, this specification is quite rigid. In practice, it is likely that each
subdirectory will have a different set of images, and all should be included in
the web page. One of the easier solutions is to use one of the directory-listing
functions, like or IS. The glob function takes a shell pattern, and returns
an array of file with matching filenames in the current directory.

.SUBDIRS: pagel page2 page3 page4
IMAGES = $(glob *.jpg)
index.html: $(IMAGES)

genhtml $+ > $0

3.5.2 Simplified sub-configurations

Another option is to add a configuration file in each of the subdirectories that
defines directory-specific information. For this example, we might define a file
BuildInfo.om in each of the subdirectories that defines a list of images in that
directory. The .SUBDIRS line is similar, but we include the BuildInfo file.

3.5. COLLAPSING THE HIERARCHY, .SUBDIRS BODIES 45

.SUBDIRS: pagel page2 page3 paged
include BuildInfo # Defines the IMAGES variable

index.html: $(IMAGES)
genhtml $+ > $@

Where we might have the following configurations.

pagel/BuildInfo.om:

IMAGES[] = image.jpg
page2/BuildInfo.om:

IMAGES[] = ../common/header.jpg winlogo.jpg
page3/BuildInfo.om:

IMAGES[] = ../common/header.jpg unixlogo.jpg daemon. jpg
page4/BuildInfo.om:

IMAGES[] = fee.jpg fi.jpg foo.jpg fum.jpg

3.5.3 Computing the subdirectory list

The other hardcoded specification is the list of subdirectories pagel, ..., page4.
Rather than editing the project OMakefile each time a directory is added, we
could compute it (again with glob).

.SUBDIRS: $(glob page*)
index.html: $(glob *.jpg)
genhtml $+ > $@

Alternately, the directory structure may be hierarchical. Instead of using
glob, we could use the subdirs function, returns each of the directories in a
hierarchy. For example, this is the result of evaluating the subdirs function in
the omake project root. The P option, passed as the first argument, specifies
that the listing is “proper,” it should not include the omake directory itself.

osh> subdirs(P, .)

- : <array
/home/jyh/.../omake/mk : Dir
/home/jyh/.../omake/RPM : Dir

/home/jyh/.../omake/osx_resources : Dir>
Using subdirs, our example is now as follows.
.SUBDIRS: $(subdirs P, .)

index.html: $(glob *.jpg)
genhtml $+ > $@

46 CHAPTER 3. ADDITIONAL BUILD EXAMPLES

In this case, every subdirectory will be included in the project.

If we are using the BuildInfo.om option. Instead of including every subdi-
rectory, we could include only those that contain a BuildInfo.om file. For this
purpose, we can use the find function, which traverses the directory hierarchy
looking for files that match a test expression. In our case, we want to search for
files with the name BuildInfo.om. Here is an example call.

osh> FILES = $(find . -name BuildInfo.om)

- : <array
/home/jyh/.../omake/doc/html/BuildInfo.om : File
/home/jyh/.../omake/src/BuildInfo.om : File
/home/jyh/.../omake/tests/simple/BuildInfo.om : File>

osh> DIRS = $(dirof $(FILES))

- : <array
/home/jyh/.../omake/doc/html : Dir
/home/jyh/.../omake/src : Dir
/home/jyh/.../omake/tests/simple : Dir>

In this example, there are three BuildInfo.on files, in the doc/html, src,
and tests/simple directories. The dirof function returns the directories for
each of the files.

Returning to our original example, we modify it as follows.

.SUBDIRS: $(dirof $(find . -name BuildInfo.om))
include BuildInfo # Defines the IMAGES variable

index.html: $(IMAGES)
genhtml $+ > $@

3.5.4 Temporary directories

Sometimes, your project may include temporary directories—directories where
you place intermediate results. these directories are deleted whenever the project
is cleanup up. This means, in particular, that you can’t place an OMakefile in a
temporary directory, because it will be removed when the directory is removed.

Instead, if you need to define a configuration for any of these directories, you
will need to define it using a .SUBDIRS body.

section
CREATE_SUBDIRS = true

.SUBDIRS: tmp
Compute an MD5 digest
%.digest: %.comments
echo $(digest $<) > $0

Extract comments from the source files

3.5. COLLAPSING THE HIERARCHY, .SUBDIRS BODIES 47

%.comments: ../src/%.src
grep ’"#’ $< > $0

.DEFAULT: foo.digest
.PHONY: clean

clean:
rm -rf tmp

In this example, we define the CREATE_SUBDIRS variable as true, so that
the tmp directory will be created if it does not exist. The .SUBDIRS body in
this example is a bit contrived, but it illustrates the kind of specification you
might expect. The clean phony-target indicates that the tmp directory should
be removed when the project is cleaned up.

48

CHAPTER 3. ADDITIONAL BUILD EXAMPLES

Chapter 4

OMake concepts and syntax

Projects are specified to omake with OMakefiles. The OMakefile has a format
similar to a Makefile. An OMakefile has three main kinds of syntactic objects:
variable definitions, function definitions, and rule definitions.

4.1 Variables

Variables are defined with the following syntax. The name is any sequence of
alphanumeric characters, underscore _, and hyphen -.

<name> = <value>

Values are defined as a sequence of literal characters and variable expansions.
A variable expansion has the form $ (<name>), which represents the value of the
<name> variable in the current environment. Some examples are shown below.

CC = gcc
CFLAGS = -Wall -g
COMMAND = $(CC) $(CFLAGS) -02

In this example, the value of the COMMAND variable is the string gcc -Wall -g -02.

Unlike make(1), variable expansion is eager and pure (see also the section on
Scoping). That is, variable values are expanded immediately and new variable
definitions do not affect old ones. For example, suppose we extend the previous
example with following variable definitions.

X = $(COMMAND)
COMMAND = $(COMMAND) -03
Y = $(COMMAND)

In this example, the value of the X variable is the string gcc -Wall -g -02
as before, and the value of the Y variable is gcc -Wall -g -02 -03.

49

50 CHAPTER 4. OMAKE CONCEPTS AND SYNTAX

4.2 Adding to a variable definition

Variables definitions may also use the += operator, which adds the new text to
an existing definition. The following two definitions are equivalent.

Add options to the CFLAGS variable
CFLAGS = $(CFLAGS) -Wall -g

The following definition is equivalent
CFLAGS += -Wall -g

4.3 Arrays

Arrays can be defined by appending the [] sequence to the variable name and
defining initial values for the elements as separate lines. Whitespace on each
line is taken literally. The following code sequence prints ¢ d e.

X[1]

H oo
o
®

println($(nth 1, $(X)))

4.4 Special characters and quoting

The following characters are special to omake: $() :,=#\. To treat any of these
characters as normal text, they should be escaped with the backslash character

\.
DOLLAR = \$
Newlines may also be escaped with a backslash to concatenate several lines.

FILES = a.c\
b.c\
c.c

Note that the backslash is not an escape for any other character, so the
following works as expected (that is, it preserves the backslashes in the string).

DOSTARGET = C:\WINDOWS\control.ini

An alternative mechanism for quoting special text is the use $"..." escapes.
The number of double-quotations is arbitrary. The outermost quotations are
not included in the text.

4.5. FUNCTION DEFINITIONS 51

=
|

= $""String containing "quoted text" ""
= $"""Multi-line

text.

The # character is not special"""

[vs]
|

Note that it is not possible to denote the empty string with this notation.
As a workaround, call the string function without parameters, as in

EMPTY = $(string)

4.5 Function definitions

Functions are defined using the following syntax.

<name>(<params>) =
<indented-body>

The parameters are a comma-separated list of identifiers, and the body must
be placed on a separate set of lines that are indented from the function definition
itself. For example, the following text defines a function that concatenates its
arguments, separating them with a colon.

ColonFun(a, b) =
return($(a) : $(b))

The return expression can be used to return a value from the function. A
return statement is not required; if it is omitted, the returned value is the value
of the last expression in the body to be evaluated. NOTE: as of version 0.9.6,
return is a control operation, causing the function to immediately return. In
the following example, when the argument a is true, the function £ immediately
returns the value 1 without evaluating the print statement.

f(a) =
if $(a)
return 1
println(The argument is false)
return O

In many cases, you may wish to return a value from a section or code block
without returning from the function. In this case, you would use the value
operator. In fact, the value operator is not limited to functions, it can be used
any place where a value is required. In the following definition, the variable X
is defined as 1 or 2, depending on the value of a, then result is printed, and
returned from the function.

52 CHAPTER 4. OMAKE CONCEPTS AND SYNTAX

f_value(a) =

X =
if $(a)
value 1
else
value 2
println(The value of X is $(X))
value $(X)

Functions are called using the GNU-make syntax, $ (<name> <args)), where
<args> is a comma-separated list of values. For example, in the following pro-
gram, the variable X contains the value foo:bar.

X = $(ColonFun foo, bar)

If the value of a function is not needed, the function may also be called using
standard function call notation. For example, the following program prints the
string “She says: Hello world”.

Printer(name) =
println($(name) says: Hello world)

Printer (She)

4.5.1 Passing parameterized bodies

It is sometimes useful to pass an argument that can be evaluated. For example,
the built-in function foreach takes an array of values, and runs some code for
every array element:

al] =

q
foreach(x => ..., $(a))

println($"Next element: $(x)")

Note that you really have to write three dots - this is not an omission. The
three dots reference the indented subsection immediately following.

This feature is very similar to passing anonymous functions. However, there
are subtle differences, in particular with respect to scoping. The parameterized
body behaves much like section, and exports of private (statically-scoped)
variables to the enclosing scope are possible.

4.5.2 Keyword arguments

This feature was introduced in version 0.9.8.6.
Functions can also have keyword parameters and arguments. The syntax of
a keyword parameter/argument is [~|?]1<id> [= <expression>], where the

4.5. FUNCTION DEFINITIONS 53

keyword name <id> is preceeded by the character ~ (for required arguments),
or ? (for optional arguments). If a default value = <expression> is provided,
the argument is always optional.

Keyword arguments and normal anonymous arguments are completely sep-
arate. Also, it is an error to pass a keyword argument to a function that does
not define it as a keyword parameter.

osh>f(x, 7y = 1, z) =
add($(mul $x, 100), $(mul $y, 10), $=)

- : <fun 0>
osh>f(1, "y = 2, 3)
- : 123 : Int

osh>f (1, 3, "y = 2)
- : 123 : Int

osh>f (1, 3)

- : 113 : Int

osh>f(1, 2, 3)
**x* omake error:
File -: line 11, characters 0-10
arity mismatch: expected 2 args, got 3
osh>f("z = 7)
**x* omake error:
File -: line 12, characters 0-8
no such keyword: z

An optional keyword argument defaults to the empty value.

osh> g(7x) =
println($">>>$x<<<™)

- : <fun 0>

osh> g()

>>><KLL

osh> g("x = xxx)

>>>xxx<<<L

It is an error to omit a required keyword argument.

osh> h("x, 7y) =
println(x = $x; y = $y)
- : <fun 0>
osh> h("y = 2, "x = 1)
x=1, y=2
osh> h("y = 2)
*** omake error:
File -: line 11, characters 0-9
keyword argument is required: x

54 CHAPTER 4. OMAKE CONCEPTS AND SYNTAX

4.6 Curried functions

This feature was introduced in version 0.9.8.6.

Functions that are marked with the classifier curry can be called with “too
many” arguments. It is expected that a curried function returns a function that
consumes the remaining arguments. All arguments must be specified.

osh>curry.f(x, y) =
println($"Got two arguments: x = $x, y = $y")
g(z) =
add($x, $y, $z)
osh> f(1, 2, 3)

Got two arguments: x = 1, y = 2
- : 6 : Int
osh> f(1, 2)
Got two arguments: x = 1, y = 2

*%% omake error:
File -: line 62, characters 0-7
arity mismatch: expected 1 args, got O

The function apply can be used to compute partial applications, whether or
not the function is labeled as a curried function.

osh> fi(a, “b = 2, “c
println($"a =

- : <fun 0>

osh> £2 = $(apply $(f1), “c = 13, 11)

- : <curry 0>

osh> f2(14, “b = 12)

a=11, b=12, c = 13, d = 14

osh> £2(24)

a=11, b =2, c =13, d = 24

=3,d =
$a, b = $b, ¢ = $c, d = $a")

4.7 Comments

Comments begin with the # character and continue to the end of the line.

4.8 File inclusion

Files may be included with the include or open form. The included file must
use the same syntax as an OMakefile.

include $(Config_file)

The open operation is similar to an include, but the file is included at most
once.

4.9. SCOPING, SECTIONS 95

open Config

Repeated opens are ignored, so this
line has no effect.
open Config

If the file specified is not an absolute filenmame, both include and open
operations search for the file based on the OMAREPATH variabld. In case of the
open directive, the search is performed at parse time, and the argument to open
may not contain any expressions.

4.9 Scoping, sections

Scopes in omake are defined by indentation level. When indentation is increased,
such as in the body of a function, a new scope is introduced.

The section form can also be used to define a new scope. For example, the
following code prints the line X = 2, followed by the line X = 1.

X=1
section
X=2

println(X = $(X))

println(X = $(X))

This result may seem surprising—the variable definition within the section
is not visible outside the scope of the section.

The export form, which will be described in detail in Section B33, can be
used to circumvent this restriction by exporting variable values from an inner
scope. For example, if we modify the previous example by adding an export
expression, the new value for the X variable is retained, and the code prints the
line X = 2 twice.

X=1

section
X=2
println(X = $(X))
export

println(X = $(X))

There are also cases where separate scoping is quite important. For example,
each OMakefile is evaluated in its own scope. Since each part of a project
may have its own configuration, it is important that variable definitions in one
OMakefile do not affect the definitions in another.

To give another example, in some cases it is convenient to specify a separate
set of variables for different build targets. A frequent idiom in this case is to
use the section command to define a separate scope.

56 CHAPTER 4. OMAKE CONCEPTS AND SYNTAX

section
CFLAGS += -g
hoct by
$(YACC) $<
.SUBDIRS: foo

.SUBDIRS: bar baz

In this example, the -g option is added to the CFLAGS variable by the foo
subdirectory, but not by the bar and baz directories. The implicit rules are
scoped as well and in this example, the newly added yacc rule will be inherited
by the foo subdirectory, but not by the bar and baz ones; furthermore this
implicit rule will not be in scope in the current directory.

4.10 Conditionals

Top level conditionals have the following form.

if <test>
<true-clause>
elseif <test2>
<elseif-clause>
else
<else-clause>

The <test> expression is evaluated, and if it evaluates to a true value (see
Section B2 for more information on logical values, and Boolean functions), the
code for the <true-clause> is evaluated; otherwise the remaining clauses are
evaluated. There may be multiple elseif clauses; both the elseif and else
clauses are optional. Note that the clauses are indented, so they introduce new
scopes.

When viewed as a predicate, a value corresponds to the Boolean false, if its
string representation is the empty string, or one of the strings false, no, nil,
undefined, or 0. All other values are true.

The following example illustrates a typical use of a conditional. The OSTYPE
variable is the current machine architecture.

Common suffixes for files
if $(equal $(0STYPE), Win32)
EXT_LIB = .1lib

EXT_0BJ = .obj
EXT_ASM = .asm
EXE = .exe
export

elseif $(mem $(0STYPE), Unix Cygwin)
EXT_LIB = .a

4.11. MATCHING o7

EXT_0BJ = .o
EXT_ASM = .s
EXE =
export

else

Abort on other architectures
eprintln(0S type $(0STYPE) is not recognized)

exit (1)

4.11 Matching

Pattern matching is performed with the switch and match forms.

switch <string>
case <patternl>
<clausel>
case <pattern2>
<clause2>
default
<default-clause>
The number of cases is arbitrary. The default clause is optional; however,

if it is used it should be the last clause in the pattern match.
For switch, the string is compared with the patterns literally.

switch $(HOST)
case mymachine
println(Building on mymachine)
default
println(Building on some other machine)
Patterns need not be constant strings. The following function tests for a
literal match against patternl, and a match against pattern2 with ## delim-

iters.

Switch2(s, patternl, pattern2) =
switch $(s)
case $(patternl)
println(Patternl)
case $"##$(pattern2)##"
println(Pattern2)

default
println(Neither pattern matched)

For match the patterns are egrep(l)-style regular expressions. The nu-

meric variables $1, $2, . can be used to retrieve values that are matched

by \(...\) expressions.

58 CHAPTER 4. OMAKE CONCEPTS AND SYNTAX

match $(NODENAME)@$ (SYSNAME)@$ (RELEASE)
case $"mymachine.*@\(.*\)@\(.*\)"
println(Compiling on mymachine; sysname $1 and release $2 are ignored)

case $".*0Linux@.*2\.4\.\(.*\)"
println(Compiling on a Linux 2.4 system; subrelease is $1)

default
eprintln(Machine configuration not implemented)
exit (1)

4.12 Objects

OMake is an object-oriented language. Generally speaking, an object is a value
that contains fields and methods. An object is defined with a . suffix for a
variable. For example, the following object might be used to specify a point
(1,5) on the two-dimensional plane.

Coord. =
x =1
y=5

print (message) =
println($"$(message): the point is ($(x), $(y)")

Define X to be 5
X = $(Coord.x)

This prints the string, "Hi: the point is (1, 5)"
Coord.print (Hi)

The fields x and y represent the coordinates of the point. The method print
prints out the position of the point.

4.13 Classes

We can also define classes. For example, suppose we wish to define a generic
Point class with some methods to create, move, and print a point. A class is
really just an object with a name, defined with the class directive.

Point. =
class Point

Default values for the fields
x =0
y=0

4.14. INHERITANCE 59

Create a new point from the coordinates
new(x, y) =

this.x = $(x)

this.y = $(y)

return $(this)

Move the point to the right
move-right() =

x = $(add $(x), 1)

return $(this)

Print the point
print() =
println($"The point is ($(x), $(y)")

$(Point.new 1, 5)
$(pl.move-right)

pl
p2

Prints "The point is (1, 5)"
pl.print()

Prints "The point is (2, 5)"
p2.print ()

Note that the variable $ (this) is used to refer to the current object. Also,
classes and objects are functional—the new and move-right methods return
new objects. In this example, the object p2 is a different object from p1, which
retains the original (1,5) coordinates.

4.14 Inheritance

Classes and objects support inheritance (including multiple inheritance) with
the extends directive. The following definition of Point3D defines a point with
x, y, and z fields. The new object inherits all of the methods and fields of the
parent classes/objects.

Z. =
z =0

Point3D. =
extends $(Point)
extends $(Z)
class Point3D

print() =

60 CHAPTER 4. OMAKE CONCEPTS AND SYNTAX

println($"The 3D point is ($(x), $(y), $(=z))™)

The "new" method was not redefined, so this
defines a new point (1, 5, 0).
p = $(Point3D.new 1, 5)

4.15 static.

The static. object is used to specify values that are persistent across runs
of OMake. They are frequently used for configuring a project. Configuring
a project can be expensive, so the static. object ensure that the configura-
tion is performed just once. In the following (somewhat trivial) example, a
static section is used to determine if the IMTEX command is available. The
$(where latex) function returns the full pathname for latex, or false if the
command is not found.

static. =
LATEX_ENABLED = false
print (--- Determining if LaTeX is installed)
if $(where latex)
LATEX_ENABLED = true
export

if $(LATEX_ENABLED)
println($’ (enabled)’)
else
println($’ (disabled)’)

The OMake standard library provides a number of useful functions for pro-
gramming the static. tests, as described in Chapter . Using the standard
library, the above can be rewritten as

open configure/Configure
static. =
LATEX_ENABLED = $(CheckProg latex)

As a matter of style, a static. section that is used for configuration should
print what it is doing using the ConIMsgChecking and ConiMsgResuly func-
tions (of course, most of helper functions in the standard library would do that
automatically).

4.15.1 .STATIC

This feature was introduced in version 0.9.8.5.
There is also a rule form of static section. The syntax can be any of the
following three forms.

4.15. STATIC. 61

Export all variables defined by the body
.STATIC:
<body>

Specify file-dependencies
.STATIC: <dependencies>
<body>

Specify which variables to export, as well as file dependencies
.STATIC: <vars>: <dependencies>
<body>

The <vars> are the variable names to be defined, the <dependencies> are
file dependencies—the rule is re-evaluated if one of the dependencies is changed.
The <vars> and <dependencies> can be omitted; if so, all variables defined in
the <body> are exported.

For example, the final example of the previous section can also be imple-
mented as follows.

open configure/Configure
.STATIC:
LATEX_ENABLED = $(CheckProg latex)

The effect is much the same as using static. (instead of .STATIC). However,
in most cases .STATIC is preferred, for two reasons.

First, a .STATIC section is lazy, meaning that it is not evaluated until one
of its variables is resolved. In this example, if $(LATEX_ENABLED) is never
evaluated, the section need never be evaluated either. This is in contrast to the
static. section, which always evaluates its body at least once.

A second reason is that a . STATIC section allows for file dependencies, which
are useful when the .STATIC section is used for memoization. For example
suppose we wish to create a dictionary from a table that has key-value pairs.
By using a .STATIC section, we can perform this computation only when the
input file changes (not on every fun of omake). In the following example the
Einciion is used to parse the file table-file. When a line is encountered with
the form key = wvalue, the key/value pair is added the the TABLE.

.STATIC: table-file
TABLE = $(Map)
awk (table-file)
case $’°\([[:alnum:]1]1+\) *= *\(.*\)’
TABLE = $(TABLE.add $1, $2)
export

It is appropriate to think of a .STATIC section as a rule that must be recom-
puted whenever the dependencies of the rule change. The targets of the rule
are the variables it exports (in this case, the TABLE variable).

62 CHAPTER 4. OMAKE CONCEPTS AND SYNTAX

4.15.1.1 .MEMO

A .MEMO rule is just like a .STATIC rule, except that the results are not saved
between independent runs of omake.

4.15.1.2 :key:

The .STATIC and .MEMO rules also accept a :key: value, which specifies a “key”
associated with the values being computed. It is useful to think of a .STATIC
rule as a dictionary that associates keys with their values. When a .STATIC
rule is evaluated, the result is saved in the table with the :key: defined by the
rule (if a :key: is not specified, a default key is used instead). In other words,
a rule is like a function. The :key: specifies the function “argument”, and the
rule body computes the result.
To illustrate, let’s use a .MEMO rule to implement a Fibonacci function.

fib(i) =
i = $(int $i)
.MEMO: :key: $i
println($"Computing fib($i)...")
result =
if $(or $(eq $i, 0), $(eq $i, 1))
value $i
else
add($(fib $(sub $i, 1)), $(fib $(sub $i, 2)))
value $(result)

$(fib 100"
$(fib 12)")

println($"£fib(10)
println($"£ib(12)

When this script is run, it produces the following output.

Computing fib(10)...
Computing fib(9)...
Computing fib(8)...
Computing fib(7)...
Computing fib(6)...
Computing fib(5)...
Computing fib(4)...
Computing fib(3)...
Computing fib(2)...
Computing fib(1)...
Computing £ib(0)...
fib(10) = 55
Computing fib(12)...
Computing fib(11)...
fib(12) = 144

4.16. CONSTANTS 63

Note that the Fibonacci computation is performed just once for each value of
the argument, rather than an exponential number of times. In other words, the
.MEMO rule has performed a memoization, hence the name. Note that if . STATIC
were used instead, the values would be saved across runs of omake.

As a general guideline, whenever you use a .STATIC or .MEMO rule within
a function body, you will usually want to use a :key: value to index the rule
by the function argument. However, this is not required. In the following, the
.STATIC rule is used to perform some expensive computation once.

fx) =
.STATIC:
y = $(expensive-computation)
add ($x, $y)

Additonal care should be taken for recursive functions, like the Fibonacci
function. If the :key: is omitted, then the rule would be defined in terms of
itself, resulting in a cyclic dependency. Here is the output of the Fibonacci
program with an omitted :key:.

Computing fib(10)...
Computing fib(8)...
Computing fib(6)...
Computing fib(4)...
Computing fib(2)...
Computing fib(0)...
£ib(10) = 0

fib(12) = 0

The reason for this behavior is that the result value is not saved until the base
case i = 0 || i = 1 is reached, so fib calls itself recursively until reaching
fib(0), whereupon the result value is fixed at 0.

In any case, recursive definitions are perfectly acceptable, but you will usu-
ally want a :key: argument so that each recursive call has a different :key:.
In most cases, this means that the :key: should include all arguments to the
function.

4.16 Constants

Internally, OMake represents values in several forms, which we list here.
e int
— Constructor: $(int <i>) EZ.
— Object: Int [ZTA.

An integer is a represented with finite precision using the OCaml
representation (31 bits on a 32 platform, and 63 bits on a 64 bit
platform).

64 CHAPTER 4. OMAKE CONCEPTS AND SYNTAX

— See also: arithmetic B223.
e float

— Constructor: $(float <x>) EZ.

— Object: Float IZT3.

— A float is a floating-point value, represented in IEEE 64-bit format.
— See also: arithmetic 2=3.

e array

— Constructor: $(array <vi>, ..., <vn>) B3
— Object: Array [T

— An array is a finite list of values. Arrays are also defined with an
array definition

X[=

<v1>
<vn>
— See also: nth B033, nth-t1 B3H, length B34, ...
e string

— Object: String IZTH.

— By default, all constant character sequences represent strings, so the
simple way to construct a string is to write it down. Internally, the
string may be parsed as several pieces. A string often represents an
array of values separated by whitespace.

osh>3 = This is a string
- : <sequence
"This" : Sequence
> 7 : White
"is" : Sequence
> 2 . White
a" : Sequence
> 7 ¢ White
"string" : Sequence>
: Sequence
osh>length($S)
- : 4 : Int

— A data string is a string where whitespace is taken literally. It repre-
sents a single value, not an array. The constructors are the quotations
$"..."and $’...°.

4.16. CONSTANTS

osh>S = $’’’This is a string’’’
- : <data "This is a string"> : String
— See also: Quoted strings [2.
o file

— Constructor: $(file <names>) M.
— Object: File TXTT13.

65

— A file object represents the abstract name for a file. The file object
can be viewed as an absolute name; the string representation depends

on the current directory.

osh>name = $(file foo)

- : /Users/jyh/projects/omake/0.9.8.x/foo :

osh>echo $(name)

foo

osh>cd ..

- : /Users/jyh/projects/omake : Dir
osh>echo $(name)

0.9.8.x/foo

— See also: vmount MG .
e directory

— Constructor: $(dir <names>) M.
— Object: Dir T4

File

— A directory object is like a file object, but it represents a directory.

e map (dictionary)

— Object: Map XT3,

— A map/dictionary is a table that maps values to values. The Map
object is the empty map. The data structure is persistent, and all
operations are pure and functional. The special syntax $lkey| can

be used for keys that are strings.

osh>table = $(Map)
osh>table = $(table.add x, int)
osh>table. +=

$lyl = int
osh>table.find(y)
- : "int" : Sequence

e channel

— Constructor: $(fopen <filename>, <mode>) MIZ4.

66

CHAPTER 4. OMAKE CONCEPTS AND SYNTAX
— Objects: InChannel [ZTT1H, OutChannel T2 T4
— Channels are used for buffered input/output.
e function
— Constructor: $(fun <params> => <body>) 5.
— Object: Fun [ZT4.
— Functions can be defined in several ways.
x As an anonymous function,
$(fun i, j => $(add $i, $j))
x As a named function,
£, j) =
add($i, $j)
x (This feature was introduced in version 0.9.8.6.) As an anony-
mous function argument.
osh>foreach(i => $(add $i, 1), 1 2 3)
- : <array 2 3 4> : Array
e lexer
— Object: Lexer MITT.
— This object represents a lexer.
e parser

— Object: Parser MIITI3.

— This object represents a parser.

Chapter 5

Variables and Naming

During evaluation, there are three different kinds of namespaces. Variables can
be private, or they may refer to fields in the current this object, or they can
be part of the global namespace. The namespace can be specified directly by
including an explicit qualifier before the variable name. The three namespaces
are separate; a variable can be bound in one or more simultaneously.

private namespace
private.X =1
current object

this.X = 2
public, globally defined
global.X = 3

5.1 private.

The private. qualifier is used to define variables that are private to the current
file/scope. The values are not accessible outside the scope. Private variables
are statically (lexically) scoped.

Unforunately, private variables have always been incorrectly im-
plemented in every omake version. Read the section below on the
issues. In version 0.10 the problems still exist, and will probably be
tackled in 0.11.

Obj. =
private.X = 1

print() =
println(The value of X is: $X)

Prints:
The private value of X is: 1

67

68

Obj.print)

CHAPTER 5. VARIABLES AND NAMING

This is an error--X is private in 0bj

y = $(0bj.X)

In addition, private definitions do not affect the global value of a variable.

The public value
x =1

This object uses
Obj. =
private.x = 2

print() =
x =3
println(The
println(The
£0O

Prints:

of x is 1

a private value of x

private value of x is: $x)
public value of x is: $(public.x))

The private value of x is: 3
The public value of x is: 1

Obj.print ()

Private variables have two additional properties.

1. Private variables are local to the file in which they are defined.

2. Private variables are not exported by the export directive, unless they
are mentioned explicitly in the export directive.

private. =

FLAG

section
FLAG =
export

FLAG is

section
FLAG =
export

FLAG is

true

false

still true

false
FLAG

now false

5.2. THIS. 69

As mentioned above, there are issues with private variables. In particular,
when a function closure is built, the current values are remembered with the
closure, and any future updates are not seen. For example:

private.X = foo
10 =
println($"The value of X is $(X)")
£0O
X = bar
£O

This prints foo twice! As this is probably not what you want, the recom-
mendation is:

e Use private variables only within functions, and do not expect that updates
work across function boundaries.

e Do not export private variables at the end of a function.

e If you want to pass an anonymous function around, and want to export
some private variable, consider to use the => notation (see Section BZ2).

These issues will likely be fixed soon.

5.2 this.

The this. qualifier is used to define fields that are local to an object. Object
variables are dynamically scoped.

X=1
£O =

println(The public value of X is: $(X))
Prints:
The public value of X is: 2
section

X=2

40)
X is a protected field in the object
0bj. =

this.X = 3

print() =

println(The value of this.X is: $(X))
£O

70 CHAPTER 5. VARIABLES AND NAMING

Prints:

The value of this.X is: 3
The public value of X is: 1
Obj.print ()

This is legal, it defines Y as 3
Y = $(0bj.X)

In general, it is a good idea to define object variables as protected. The
resulting code is more modular because variables in your object will not produce
unexpected clashes with variables defined in other parts of the project.

5.3 global.

The global. qualifier is used to specify global dynamically-scoped variables. In
the following example, the global. definition specifies that the binding X = 4
is to be dynamically scoped. Global variables are not defined as fields of an
object.
X=1
£fO =
println(The global value of X is: $(X))
Prints:
The global value of X is: 2
section

X=2

£O

Obj. =
this.X = 3

print() =
println(The protected value of X is: $(X))
global .X = 4
£O

Prints:

The protected value of X is: 3
The globa