
The build2 Package Manager

Copyright © 2014-2022 the build2 authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the

MIT License.

Revision 0.15, July 2022

This revision of the document describes the build2 package manager 0.15.x series.

Table of Contents

.................. 1Preface

................ 11 Package Name

................ 12 Package Version

............. 43 Package Version Constraint

............ 64 Package Build System Skeleton

........... 85 Dependency Configuration Negotiation

............ 115.1 Prefer X but Accept X or Y

............... 115.2 Use If Enabled

........... 125.3 Disable If Enabled by Default

................. 126 Manifests

.............. 126.1 Manifest Format

.............. 166.2 Package Manifest

............... 176.2.1 name

.............. 186.2.2 version

.............. 186.2.3 project

.............. 186.2.4 priority

.............. 186.2.5 summary

.............. 196.2.6 license

.............. 216.2.7 topics

.............. 216.2.8 keywords

............. 216.2.9 description

.............. 226.2.10 changes

............... 226.2.11 url

.............. 226.2.12 doc-url

.............. 226.2.13 src-url

............ 236.2.14 package-url

.............. 236.2.15 email

............ 236.2.16 package-email

............ 236.2.17 build-email

.......... 236.2.18 build-warning-email

.......... 236.2.19 build-error-email

.............. 246.2.20 depends

............. 316.2.21 requires

....... 326.2.22 tests, examples, benchmarks

.............. 336.2.23 builds

........ 346.2.24 build-{include, exclude}

............. 356.2.25 build-file

........ 366.3 Package List Manifest for pkg Repositories

.......... 366.3.1 sha256sum (list manifest)

......... 376.3.2 location (package manifest)

......... 376.3.3 sha256sum (package manifest)

........ 376.4 Package List Manifest for dir Repositories

.............. 376.4.1 location

.............. 386.4.2 fragment

iRevision 0.15, July 2022 The build2 Package Manager

Table of Contents

............... 386.5 Repository Manifest

............... 386.5.1 location

................ 396.5.2 type

................ 396.5.3 role

................ 396.5.4 trust

................. 396.5.5 url

................ 406.5.6 email

............... 406.5.7 summary

.............. 406.5.8 description

.............. 416.5.9 certificate

............... 416.5.10 fragment

.............. 416.6 Repository List Manifest

............ 426.6.1 min-bpkg-version

.............. 426.6.2 compression

.......... 426.7 Signature Manifest for pkg Repositories

............... 436.7.1 sha256sum

............... 436.7.2 signature

Revision 0.15, July 2022ii The build2 Package Manager

Table of Contents

Preface

This document describes bpkg, the build2 package dependency manager. For the package

manager command line interface refer to the bpkg(1) man pages.

1 Package Name

The bpkg package name can contain ASCII alphabetic characters ([a-zA-Z]), digits

([0-9]), underscores (_), plus/minus (+-), and dots/periods (.). The name must be at least

two characters long with the following additional restrictions:

1. It must start with an alphabetic character.

2. It must end with an alphabetic, digit, or plus character.

3. It must not be any of the following illegal names:

build
con prn aux nul
com1 com2 com3 com4 com5 com6 com7 com8 com9
lpt1 lpt2 lpt3 lpt4 lpt5 lpt6 lpt7 lpt8 lpt9

The use of the plus (+) character in package names is discouraged. Pluses are used in URL

encoding which makes specifying packages that contain pluses in URLs cumbersome.

The use of the dot (.) character in package names is discouraged except for distinguishing the

implementations of the same functionality for different languages. For example, libfoo and

libfoo.bash.

Package name comparison is case-insensitive but the original case must be preserved for

display, in file names, etc. The reason for case-insensitive comparison is Windows file names.

If the package is a library then it is strongly recommended that you start its package name

with the lib prefix, for example, libfoo. Some package repositories may make this a

requirement as part of their submission policy.

If a package (normally a library) supports usage of multiple major versions in the same

project, then it is recommended to append the major version number to the package name

starting from version 2.0.0, for example, libfoo (before 2.0.0), libfoo2 (2.Y.Z),

libfoo3 (3.Y.Z), etc.

2 Package Version

The bpkg package version format tries to balance the need of accommodating existing soft­

ware versions on one hand and providing a reasonably straightforward comparison semantics

on another. For some background on this problem see deb-version(1) and the Semantic

Versioning specification.

1Revision 0.15, July 2022 The build2 Package Manager

Preface

http://semver.org/
http://semver.org/

Note also that if you are starting a new project that will use the build2 toolchain, then it is

strongly recommended that you use the standard versioning scheme which is a more strictly

defined subset of semantic versioning that allows automation of many version management

tasks. See version Module for details.

The bpkg package version has the following form:

[+<epoch>-]<upstream>[-<prerel>][+<revision>][#<iteration>]

The epoch part should be an integer. It can be used to change to a new versioning scheme that

would be incompatible with the old one. If not specified, then epoch defaults to 1 except for a

stub version (see below) in which case it defaults to 0. The explicit zero epoch can be used if

the current versioning scheme (for example, date-based) is known to be temporary.

The upstream part is the upstream software version that this package is based on. It can only

contain alpha-numeric characters and .. The . character is used to separate the version into

components.

The prerel part is the upstream software pre-release marker, for example, alpha, beta, candi­

date, etc. Its format is the same as for upstream except for two special values: the absent

prerel (for example, 1.2.3) signifies the maximum or final release while the empty prerel

(for example, 1.2.3-) signifies the minimum or earliest possible release. The minimum

release is intended to be used for version constraints (for example, libfoo < 1.2.3-)

rather than actual releases.

The revision part should be an integer. It is used to version package releases that are based on

the same upstream versions. If not specified, then revision defaults to 0.

The iteration part is an integer. It is used internally by bpkg to automatically version modifi­

cations to the packaging information (specifically, to package manifest and lockfile) in exter­

nal packages that have the same upstream version and revision. As a result, the iteration

cannot not be specified by the user and is only shown in the bpkg output (for example, by

pkg-status command) in order to distinguish between package iterations with otherwise

identical versions. Note also that iteration is relative to the bpkg configuration. Or, in other

words, it is an iteration number of a package as observed by a specific configuration. As a

result, two configurations can "see" the same package state as two different iterations.

Package iterations are used to support package development during which requiring the devel­

oper to manually increment the version or revision after each modification would be impracti­

cal. This mechanism is similar to the automatic commit versioning provided by the standard

version except that it is limited to the packaging information but works for uncommitted

changes.

Version +0-0- (least possible version) is reserved and specifying it explicitly is illegal.

Explicitly specifying this version does not make much sense since libfoo < +0-0- is

always false and libfoo > +0-0- is always true. In the implementation this value is used

as a special empty version.

Revision 0.15, July 20222 The build2 Package Manager

2 Package Version

Version 0 (with a potential revision, for example, 0+1, 0+2) is used to signify a stub

package. A stub is a package that does not contain source code and can only be "obtained"

from other sources, for example, a system package manager. Note that at some point a stub

may be converted into a full-fledged package at which point it will be assigned a "real"

version. It is assumed that this version will always be greater than the stub version.

When displaying the package version or when using the version to derive the file name, the

default epoch value as well as zero revision and iteration values are omitted (even if they

were explicitly specified, for instance, in the package manifest). For example, +1-1.2.3+0
will be used as libfoo-1.2.3.

This versioning scheme and the choice of delimiter characters (.-+) is meant to align with

semantic versioning.

Some examples of versions:

0+1
+0-20180112
1.2.3
1.2.3-a1
1.2.3-b2
1.2.3-rc1
1.2.3-alpha1
1.2.3-alpha.1
1.2.3-beta.1
1.2.3+1
+2-1.2.3
+2-1.2.3-alpha.1+3
+2.2.3#1
1.2.3+1#1
+2-1.2.3+1#2

The version sorting order is epoch, upstream, prerel, revision, and finally, iteration. The

upstream and prerel parts are compared from left to right, one component at a time, as

described next.

To compare two components, first the component types are determined. A component that

only consists of digits is an integer. Otherwise, it is a string. If both components are integers,

then they are compared as integers. Otherwise, they are compared lexicographically and

case-insensitively. The reason for case-insensitive comparison is Windows file names.

A non-existent component is considered 0 if the other component is an integer and an empty

string if the other component is a string. For example, in 1.2 vs 1.2.0, the third component

in the first version is 0 and the two versions are therefore equal. As a special exception to this

rule, an absent prerel part is always greater than any non-absent part. And thus making the

final release always older than any pre-release.

This algorithm gives correct results for most commonly-used versioning schemes, for

example:

3Revision 0.15, July 2022 The build2 Package Manager

2 Package Version

1.2.3 < 12.2
1.alpha < 1.beta
20151128 < 20151228
2015.11.28 < 2015.12.28

One notable versioning scheme where this approach gives an incorrect result is hex numbers

(consider A vs 1A). The simplest work around is to convert such numbers to decimal. Alterna­

tively, one can fix the width of the hex number and pad all the values with leading zeros, for

example: 00A vs 01A.

It is also possible to convert the upstream and prerel parts into a canonical representation that

will produce the correct comparison result when always compared lexicographically and as a

whole. This can be useful, for example, when storing versions in the database which would

otherwise require a custom collation implementation to obtain the correct sort order.

To convert one of these parts to its canonical representation, all its string components are

converted to the lower case while all its integer components are padded with leading zeros to

the fixed length of 16 characters, with all trailing zero-only components removed. Note that

this places an implementation limit on the length of integer components which should be

checked by the implementation when converting to the canonical representation. The 16 char­

acters limit was chosen to still be able to represent (with some spare) components in the

YYYYMMDDhhmmss form while not (visually) bloating the database too much. As a special

case, the absent prerel part is represented as ~. Since the ASCII code for ~ is greater than any

other character that could appear in prerel, such a string will always be greater than any other

representation. The empty prerel part is represented as an empty string.

Note that because it is not possible to perform a reverse conversion without the possibility of

loss (consider 01.AA.BB), the original parts may also have to be stored, for example, for

display, to derive package archive names, etc.

In quite a few contexts the implementation needs to ignore the revision and/or iteration parts.

For example, this is needed to implement the semantics of newer revisions/iterations of pack­

ages replacing their old ones since we do not keep multiple revisions/iterations of the same

upstream version in the same repository. As a result, in the package object model, we have a

version key as just {epoch, upstream, prerel} but also store the package revision and iteration

so that it can be shown to the user, etc.

3 Package Version Constraint

The bpkg package version constraint may follow the package name in certain contexts, such

as the manifest values and bpkg command line, to restrict the allowed package version set. It

can be specified using comparison operators, shortcut (to range) operators, or ranges and has

the following form:

<version-constraint> = <comparison> | <shortcut> | <range>
<comparison> = (’==’ | ’>’ | ’<’ | ’>=’ | ’<=’) <version>
<shortcut> = (’^’ | ’~’) <version>
<range> = (’(’ | ’[’) <version> <version> (’)’ | ’]’)

Revision 0.15, July 20224 The build2 Package Manager

3 Package Version Constraint

The shortcut operators can only be used with standard versions (a semantic version without

the pre-release part is a standard version). They are equivalent to the following ranges. The

X.Y.Z- version signifies the earliest pre-release in the X.Y.Z series; see Package Version

for details.

~X.Y.Z [X.Y.Z X.Y+1.0-)

^X.Y.Z [X.Y.Z X+1.0.0-) if X > 0
^0.Y.Z [0.Y.Z 0.Y+1.0-) if X == 0

That is, the tilde (~) constraint allows upgrades to any further patch version while the caret

(^) constraint – also to any further minor version.

Zero major version component is customarily used during early development where the minor

version effectively becomes major. As a result, the tilde constraint has special semantics for

this case.

Note that the shortuct operators can only be used with the complete, three-component versions

(X.Y.Z with the optional pre-release part per the standard version). Specifically, there is no

support for special ^X.Y or ~X semantics offered by some package manager – if desired,

such functionality can be easily achieved with ranges. Also, the 0.0.Z version is not consid­

ered special except as having zero major component for the tilde semantics discussed above.

Note also that pre-releases do not require any special considerations when used with the short­

cut operators. For example, if package libfoo is usable starting with the second beta of the

2.0.0 release, then our constraint could be expressed as:

libfoo ^2.0.0-b.2

Internally, shortcuts and comparisons can be represented as ranges (that is, [v, v] for ==,

(v, inf) for >, etc). However, for display and serialization such representations should be

converted back to simple operators. While it is possible that the original manifest specified

equality or shortucts as full ranges, it is acceptable to display/serialize them as simpler opera­

tors.

Instead of a concrete value, the version in the constraint can be specified in terms of the

dependent package’s version (that is, the version of the package placing the constraint) using

the special $ value. For example:

libfoo == $

A constraint that contains $ is called incomplete. This mechanism is primarily useful when

developing related packages that should track each other’s versions exactly or closely.

In comparison operators and ranges the $ value is replaced with the dependent version ignor­

ing the revision. For shortcut operators, the dependent version must be a standard version and

the following additional processing is applied depending on whether the version is a release,

final pre-release, or a snapshot pre-release.

5Revision 0.15, July 2022 The build2 Package Manager

3 Package Version Constraint

1. For a release we set the min version patch to zero. For ^ we also set the minor version to

zero, unless the major version is zero (reduces to ~). The max version is set according to

the standard shortcut logic. For example, ~$ is completed as follows:

1.2.0 -> [1.2.0 1.3.0-)
1.2.1 -> [1.2.0 1.3.0-)
1.2.2 -> [1.2.0 1.3.0-)

And ^$ is completed as follows:

1.0.0 -> [1.0.0 2.0.0-)
1.1.1 -> [1.0.0 2.0.0-)

2. For a final pre-release the key observation is that if the patch component for ~ or minor

and patch components for ^ are not zero, then that means there has been a compatible

release and we treat this case the same as release, ignoring the pre-release part. If,

however, it/they are zero, then that means there may yet be no final release and we have

to start from the first alpha. For example, for the ~$ case:

1.2.0-a.1 -> [1.2.0-a.1 1.3.0-)
1.2.0-b.2 -> [1.2.0-a.1 1.3.0-)
1.2.1-a.1 -> [1.2.0 1.3.0-)
1.2.2-b.2 -> [1.2.0 1.3.0-)

And for the ^$ case:

1.0.0-a.1 -> [1.0.0-a.1 2.0.0-)
1.0.0-b.2 -> [1.0.0-a.1 2.0.0-)
1.0.1-a.1 -> [1.0.0 2.0.0-)
1.1.0-b.2 -> [1.0.0 2.0.0-)

3. For a snapshot pre-release we distinguish two cases: a patch snapshot (the patch compo­

nent is not zero) and a major/minor snapshot (the patch component is zero). For the patch

snapshot case we assume that it is (most likely) developed independently of the depen­

dency and we treat it the same as the final pre-release case. For example, if the dependent

version is 1.2.1-a.0.nnn, the dependency could be 1.2.0 or 1.2.2 (or some­

where in-between).

For the major/minor snapshot we assume that all the packages are developed in the lock­

step and have the same X.Y.0 version. In this case we make the range start from the

earliest possible version in this "snapshot series" and end before the final pre-release. For

example (in this case ~ and ^ are treated the same):

1.2.0-a.0.nnn -> [1.2.0-a.0.1 1.2.0-a.1)
2.0.0-b.2.nnn -> [2.0.0-b.2.1 2.0.0-b.3)

4 Package Build System Skeleton

There are situations where bpkg may need to evaluate buildfile expressions and frag­

ments before committing to a particular version of the package and therefore before actually

unpacking anything. For example, bpkg may need to evaluate a condition in the conditional

dependency or it may need to negotiate a configuration among several dependents of a

Revision 0.15, July 20226 The build2 Package Manager

4 Package Build System Skeleton

package which requires it to know this package’s configuration variable types and default

values.

To solve this chicken and egg kind of problem, bpkg includes a minimal subset of the build

system files along with the package’s standard metadata (name, version, etc) into the reposi­

tory metadata (packages.manifest). This subset is called the package build system

skeleton, or just package skeleton for short, and includes the build/bootstrap.build
and build/root.build files (or their alternative naming scheme variants) as well as any

files that may be sourced by root.build.

The inclusion of build/bootstrap.build and build/root.build (if present) as

well as any build/config/*.build (or their alternative naming scheme variants) is

automatic. However, if root.build sources any files other than

build/config/*.build, then they must be specified explicitly in the package manifest

using the build-file value.

Inside these buildfiles the skeleton load can be distinguished from normal load by examining

the build.mode variable, which is set to skeleton during the skeleton load. In particular,

this variable must be used to omit loading of build system modules that are neither built-in nor

standard pre-installed and which are therefore listed as package dependencies. Such modules

are not yet available during the skeleton load. For example:

root.build

using cxx # Ok, built-in module.
using autoconf # Ok, standard pre-installed module.

if ($build.mode != ’skeleton’)
 using hello

The build.mode variable can also be used to omit parts of root.build that are expen­

sive to evaluate and which are only necessary during the actual build. Here is a realistic

example:

root.build

...

using cxx

Determine the GCC plugin directory. But omit doing it during the
skeleton load.
#
if ($build.mode != ’skeleton’)
{
 if ($cxx.id != ’gcc’)
 fail ’this project can only be built with GCC’

 # If plugin support is disabled, then -print-file-name will print
 # the name we have passed (the real plugin directory will always
 # be absolute).
 #
 plugin_dir = [dir_path] \
 $process.run($cxx.path -print-file-name=plugin)

7Revision 0.15, July 2022 The build2 Package Manager

4 Package Build System Skeleton

 if ("$plugin_dir" == plugin)
 fail "$recall($cxx.path) does not support plugins"

 plugin_dir = $normalize($plugin_dir)
}

5 Dependency Configuration Negotiation

In bpkg, a dependent package may specify a desired configuration for a dependency package.

Because there could be multiple such dependents, bpkg needs to come up with a dependency

configuration that is acceptable to all of them. This process is called the dependency configu­

ration negotiation.

The desired dependency configuration is specified as part of the depends manifest value and

can be expressed as either a single require clause or as a pair of prefer/accept clauses.

The require clause is essentially a shortcut for specifying the prefer/accept clauses

where the accept condition simply verifies all the variable values assigned in the prefer
clause. It is, however, further restricted to the common case of only setting bool variables

and only to true to allow additional optimizations during the configuration negotiation. The

remainder of this section only deals with the general prefer/accept semantics.

While the exact format of prefer/accept is described as part of the depends manifest

value, for this section it is sufficient to know that the prefer clause is an arbitrary build­
file fragment that is expected to set one or more dependency configuration variables to the

values preferred by this dependent while the accept clause is a buildfile eval context

expression that should evaluate to true or false indicating whether the dependency

configuration values it is evaluated on are acceptable to this dependent. For example:

libfoo ^1.0.0
{
 # We prefer the cache but can work without it.
 # We need the buffer of at least 4KB.
 #
 prefer
 {
 config.libfoo.cache = true

 config.libfoo.buffer = ($config.libfoo.buffer < 4096 \
 ? 4096 \
 : $config.libfoo.buffer)
 }

 accept ($config.libfoo.buffer >= 4096)
}

The configuration negotiation algorithm can be summarized as cooperative refinement.

Specifically, whenever a prefer clause of a dependent changes any configuration value, all

other dependents’ prefer clauses are re-evaluated. This process continues until there are no

more changes (success), one of the accept clauses returned false (failure), or the process

starts "yo-yo’ing" between two or more configurations (failure).

Revision 0.15, July 20228 The build2 Package Manager

5 Dependency Configuration Negotiation

The dependents are expected to cooperate by not overriding "better" values that were set by

other dependents. Consider the following two prefer clauses:

prefer
{
 config.libfoo.buffer = 4096
}

prefer
{
 config.libfoo.buffer = ($config.libfoo.buffer < 4096 \
 ? 4096 \
 : $config.libfoo.buffer)
}

The first version is non-cooperative and should only be used if this dependent requires the

buffer to be exactly 4KB. The second version is cooperative: it will increase the buffer to the

minimum required by this dependent but will respect values above 4KB.

One case where we don’t need to worry about this is when setting the configuration variable

to the "best" possible value. One common example of this is setting a bool configuration to

true.

With a few exceptions discussed below, a dependent must always re-set the configuration

variable, even if to the better value. For example, the following is an incorrect attempt at the

above cooperative prefer clause:

prefer
{
 if ($config.libfoo.buffer < 4096) # Incorrect.
 config.libfoo.buffer = 4096
}

The problem with the above attempt is that the default value could be greater than 4KB, in

which case bpkg will have no idea that there is a dependent relying on this configuration

value.

Before each prefer clause re-evaluation, variables that were first set to their current values

by this dependent are reset to their defaults thus allowing the dependent to change its mind,

for instance, in response to other configuration changes. For example:

While we have no preference about the cache, if enabled/disabled,
we need a bigger/smaller buffer.
#
prefer
{
 min_buffer = ($config.libfoo.cache ? 8192 : 4096)

 config.libfoo.buffer = ($config.libfoo.buffer < $min_buffer \
 ? $min_buffer \
 : $config.libfoo.buffer)
}

accept ($config.libfoo.buffer >= ($config.libfoo.cache ? 8192 : 4096))

9Revision 0.15, July 2022 The build2 Package Manager

5 Dependency Configuration Negotiation

The interesting case to consider in the above example is when config.libfoo.cache
changes from true to false: without the reset to defaults semantics the prefer clause

would have kept the buffer at 8KB (since it’s greater than the 4KB minimum).

Currently accept is always evaluated after prefer and temporary variables (like

min_buffer in the above example) set in prefer are visible in accept. But it’s best not

to rely on this in case it changes in the future. For example, we may try harder to resolve the

"yo-yo’ing" case mentioned above by checking if one of the alternating configurations are

acceptable to everyone without re-evaluation.

This is also the reason why we need a separate accept in the first place. Plus, it allows for

more advanced configuration techniques where we may need to have an acceptance criteria

but no preferences.

Configuration variables that are set by the dependent in the prefer clause are visible in the

subsequent clauses as well as in the subsequent depends values of this dependent. Configu­

ration variables that are not set, however, are only visible until the immediately following

reflect clause. For example, in the above listing, config.libfoo.cache would still

be visible in the reflect clause if it were to follow accept but no further. As a result, if

we need to make decisions based on configuration variables that we have no preference about,

they need to be saved in the reflect clause. For example:

depends:
\
libfoo ^1.0.0
{
 # We have no preference about the cache but need to
 # observe its value.
 #
 prefer
 {
 }

 accept (true)

 reflect
 {
 config.hello.libfoo_cache = $config.libfoo.cache
 }
}
\

depends: libbar ^1.0.0 ? ($config.hello.libfoo_cache)

It is possible to determine the origin of the configuration variable value using the

$config.origin() function. It returns either undefined if the variable is undefined

(only possible if it has no default value), default if the variable has the default value from

the config directive in root.build, buildfile if the value is from a buildfile,

normally config.build, or override if the value is a command line override (that is,

user configuration). For example, this is how we could use it if we only wanted to change the

default value (notice that it’s the variable’s name and not its $-expansion that we pass to

$config.origin()):

Revision 0.15, July 202210 The build2 Package Manager

5 Dependency Configuration Negotiation

prefer
{
 config.libfoo.buffer = (\
 $config.origin(config.libfoo.buffer) == ’default’ \
 ? 4096 \
 : $config.libfoo.buffer)
}

The following sub-sections discuss a number of more advanced configuration techniques that

are based on the functionality described in this section.

5.1 Prefer X but Accept X or Y

Consider a configuration variable that is a choice between several mutually exclusive values,

for example, user interface backends that could be, say, cli, gui, or none. In such situa­

tions it’s common to prefer one value but being able to work with some subset of them. For

example, we could prefer gui but were also able to make do with cli but not with none.

Here is how we could express such a configuration:

libfoo ^1.0.0
{
 # We prefer ‘gui‘, can also work with ‘cli‘ but not ‘none‘.
 #
 prefer
 {
 config.libfoo.ui = (\
 $config.origin(config.libfoo.ui) == ’default’ || \
 ($config.libfoo.ui != ’gui’ && $config.libfoo.ui != ’cli’) \
 ? ’gui’ \
 : $config.libfoo.ui)
 }

 accept ($config.libfoo.ui == ’gui’ || $config.libfoo.ui == ’cli’)
}

5.2 Use If Enabled

Sometimes we may want to use a feature if it is enabled by someone else but not enable it

ourselves. For example, the feature might be expensive and our use of it tangential, but if it’s

enabled anyway, then we might as well take advantage of it. Here is how we could express

such a configuration:

libfoo ^1.0.0
{
 # Use config.libfoo.x only if enabled by someone else.
 #
 prefer
 {
 }

 accept (true)

 reflect

11Revision 0.15, July 2022 The build2 Package Manager

5.1 Prefer X but Accept X or Y

 {
 config.hello.libfoo_x = $config.libfoo.x
 }
}

5.3 Disable If Enabled by Default

Sometimes we may want to disable a feature that is enabled by default provided that nobody

else needs it. For example, the feature might be expensive and we would prefer to avoid

paying the cost if we are the only ones using this dependency. Here is how we could express

such a configuration:

libfoo ^1.0.0
{
 prefer
 {
 if ($config.origin(config.libfoo.x) == ’default’)
 config.libfoo.x = false
 }

 accept (true)
}

6 Manifests

This chapter describes the general manifest file format as well as the concrete manifests used

by bpkg.

Currently, three manifests are defined: package manifest, repository manifest, and signature

manifest. The former two manifests can also be combined into a list of manifests to form the

list of available packages and the description of a repository, respectively.

6.1 Manifest Format

A manifest is a UTF-8 encoded text restricted to the Unicode graphic characters, tabs (\t),

carriage returns (\r), and line feeds (\n). It contains a list of name-value pairs in the form:

<name>: <value>

For example:

name: libfoo
version: 1.2.3

If a value needs to be able to contain other Unicode codepoints, they should be escaped in a

value-specific manner. For example, the backslash (\) escaping described below can be

extended for this purpose.

Revision 0.15, July 202212 The build2 Package Manager

6 Manifests

The name can contain any characters except : and whitespaces. Newline terminates the pair

unless escaped with \ (see below). Leading and trailing whitespaces before and after name

and value are ignored except in the multi-line mode (see below).

If the first non-whitespace character on the line is #, then the rest of the line is treated as a

comment and ignored except if the preceding newline was escaped or in the multi-line mode

(see below). For example:

This is a comment.
short: This is #not a comment
long: Also \
#not a comment

The first name-value pair in the manifest file should always have an empty name. The value

of this special pair is the manifest format version. The version value shall use the default (that

is, non-multi-line) mode and shall not use any escape sequences. Currently it should be 1, for

example:

: 1
name: libfoo
version: 1.2.3

Any new name that is added without incrementing the version must be optional so that it can

be safely ignored by older implementations.

The special empty name pair can also be used to separate multiple manifests. In this case the

version may be omitted in the subsequent manifests, for example:

: 1
name: libfoo
version: 1.2.3
:
name: libbar
version: 2.3.4

To disable treating of a newline as a name-value pair terminator we can escape it with \. Note

that \ is only treated as an escape sequence when followed by a newline and both are simply

removed from the stream (as opposed to being replaced with a space). To enter a literal \ at

the end of the value, use the \\ sequence. For example:

description: Long text that doesn’t fit into one line \
so it is continued on the next line.

windows-path: C:\foo\bar\\

Notice that in the final example only the last \ needs special handling since it is the only one

that is followed by a newline.

One may notice that in this newline escaping scheme a line consisting of just \ followed by a

newline has no use, except, perhaps, for visual presentation of, arguably, dubious value. For

example, this representation:

13Revision 0.15, July 2022 The build2 Package Manager

6.1 Manifest Format

description: First line. \
\
Second line.

Is semantically equivalent to:

description: First line. Second line.

As a result, such a sequence is "overloaded" to provide more useful functionality in two ways:

Firstly, if : after the name is followed on the next line by just \ and a newline, then it signals

the start of the multi-line mode. In this mode all subsequent newlines and # are treated as

ordinary characters rather than value terminators or comments until a line consisting of just \
and a newline (the multi-line mode terminator). For example:

description:
\
First paragraph.
#
Second paragraph.
\

Expressed as a C-string, the value in the above example is:

"First paragraph.\n#\nSecond paragraph."

Originally, the multi-line mode was entered if : after the name were immediately followed by

\ and a newline but on the same line. While this syntax is still recognized for backwards

compatibility, it is deprecated and will be discontinued in the future.

Note that in the multi-line mode we can still use newline escaping to split long lines, for

example:

description:
\
First paragraph that doesn’t fit into one line \
so it is continued on the next line.
Second paragraph.
\

And secondly, in the simple (that is, non-multi-line) mode, the sole \ and newline sequence is

overloaded to mean a newline. So the previous example can also be represented like this:

description: First paragraph that doesn’t fit into one \
line so it is continued on the next line.\
\
Second paragraph.

Note that the multi-line mode can be used to capture a value with leading and/or trailing

whitespaces, for example:

description:
\
 test

\

Revision 0.15, July 202214 The build2 Package Manager

6.1 Manifest Format

The C-string representing this value is:

" test\n"

EOF can be used instead of a newline to terminate both simple and multi-line values. For

example the following representation results in the same value as in the previous example.

description:
\
 test

<EOF>

By convention, names are all in lower case and multi-word names are separated with -. Note

that names are case-sensitive.

Also by convention, the following name suffixes are used to denote common types of values:

-file
-url
-email

For example:

description: Inline description
description-file: README
package-url: http://www.example.com
package-email: john@example.com

Other common name suffixes (such as -feed) could be added later.

Generally, unless there is a good reason not to, we keep values lower-case (for example,

requires values such as c++11 or linux). An example where we use upper/mixed case

would be license; it seems unlikely gplv2 would be better than GPLv2.

A number of name-value pairs described below allow for the value proper to be optionally

followed by ; and a comment. Such comments serve as additional documentation for the user

and should be one or more full sentences, that is start with a capital letter and end with a

period. Note that unlike #-style comments which are ignored, these comments are considered

to be part of the value. For example:

email: foo-users@example.com ; Public mailing list.

It is recommended that you keep comments short, single-sentence. Note that non-comment

semicolons in such values have to be escaped with a backslash, for example:

url: http://git.example.com/?p=foo\;a=tree

The only other recognized escape sequence in such values is \\, which is replaced with a

single backslash. If a backslash is followed by any other character, then it is treated literally.

15Revision 0.15, July 2022 The build2 Package Manager

6.1 Manifest Format

If a value with a comment is multi-line, then ; must appear on a separate line, for example:

url:
\
http://git.example.com/?p=foo;a=tree
;
Git repository tree.
\

In this case, only lines that consist of a sole non-comment semicolon need escaping, for

example:

license:
\
other: strange
\;
license
\

The only other recognized escape sequence in such multi-line values is lines consisting of two

or more backslashes followed by a semicolon.

In the manifest specifications described below optional components are enclosed in square

brackets ([]). If the name is enclosed in [] then the name-value pair is optional, otherwise –

required. For example:

name: <name>
license: <licenses> [; <comment>]
[description]: <text>

In the above example name is required, license has an optional component (comment),

and description is optional.

In certain situations (for example, shell scripts) it can be easier to parse the binary manifest

representation. The binary representation does not include comments and consists of a

sequence of name-value pairs in the following form:

<name>:<value>\0

That is, the name and the value are separated by a colon and each pair (including the last) is

terminated with the NUL character. Note that there can be no leading or trailing whitespace

characters around the name and any whitespaces after the colon and before the NUL termina­

tor are part of the value. Finally, the manifest format versions are always explicit (that is, not

empty) in binary manifest lists.

6.2 Package Manifest

The package manifest (the manifest file found in the package’s root directory) describes a

bpkg package. The manifest synopsis is presented next followed by the detailed description

of each value in subsequent sections.

Revision 0.15, July 202216 The build2 Package Manager

6.2 Package Manifest

The subset of the values up to and including license constitute the package manifest

header. Note that the header is a valid package manifest since all the other values are optional.

There is also no requirement for the header values to appear first or to be in a specific order.

In particular, in a full package manifest they can be interleaved with non-header values.

name: <name>
version: <version>
[project]: <name>
[priority]: <priority> [; <comment>]
summary: <text>
license: <licenses> [; <comment>]

[topics]: <topics>
[keywords]: <keywords>
[description]: <text>
[description-file]: <path> [; <comment>]
[description-type]: <text-type>
[changes]: <text>
[changes-file]: <path> [; <comment>]

[url]: <url> [; <comment>]
[doc-url]: <url> [; <comment>]
[src-url]: <url> [; <comment>]
[package-url]: <url> [; <comment>]

[email]: <email> [; <comment>]
[package-email]: <email> [; <comment>]
[build-email]: <email> [; <comment>]
[build-warning-email]: <email> [; <comment>]
[build-error-email]: <email> [; <comment>]

[depends]: [*] <alternatives> [; <comment>]
[requires]: [*] <alternatives> [; <comment>]

[tests]: [*] <name> [<version-constraint>]
[examples]: [*] <name> [<version-constraint>]
[benchmarks]: [*] <name> [<version-constraint>]

[builds]: <class-expr> [; <comment>]
[build-include]: <config>[/<target>] [; <comment>]
[build-exclude]: <config>[/<target>] [; <comment>]

[build-file]: <path>

[bootstrap-build]: <text>
[root-build]: <text>
[*-build]: <text>

[bootstrap-build2]: <text>
[root-build2]: <text>
[*-build2]: <text>

6.2.1 name

name: <name>

17Revision 0.15, July 2022 The build2 Package Manager

6.2.1 name

The package name. See Package Name for the package name format description. Note that the

name case is preserved for display, in file names, etc.

6.2.2 version

version: <version>
[upstream-version]: <string>

The package version. See Package Version for the version format description. Note that the

version case is preserved for display, in file names, etc.

When packaging existing projects, sometimes you may want to deviate from the upstream

versioning scheme because, for example, it may not be representable as a bpkg package

version or simply be inconvenient to work with. In this case you would need to come up with

an upstream-to-downstream version mapping and use the upstream-version value to

preserve the original version for information.

6.2.3 project

[project]: <name>

The project this package belongs to. The project name has the same restrictions as the package

name (see Package Name for details) and its case is preserved for display, in directory names,

etc. If unspecified, then the project name is assumed to be the same as the package name.

Projects are used to group related packages together in order to help with organization and

discovery in repositories. For example, packages hello, libhello, and libhello2
could all belong to project hello. By convention, projects of library packages are named

without the lib prefix.

6.2.4 priority

[priority]: <priority> [; <comment>]

<priority> = security | high | medium | low

The release priority (optional). As a guideline, use security for security fixes, high for

critical bug fixes, medium for important bug fixes, and low for minor fixes and/or feature

releases. If not specified, low is assumed.

6.2.5 summary

summary: <text>

The short description of the package.

Revision 0.15, July 202218 The build2 Package Manager

6.2.2 version

6.2.6 license

license: <licenses> [; <comment>]

<licenses> = <license> [, <license>]*
<license> = [<scheme>:] <name>
<scheme> = other

The package license. The default license name scheme is SPDX License Expression. In its

simplest form, it is just an ID of the license under which this package is distributed. An

optional comment normally gives the full name of the license, for example:

license: MPL-2.0 ; Mozilla Public License 2.0

The following table lists the most commonly used free/open source software licenses and their

SPDX license IDs:

MIT ; MIT License.

BSD-2-Clause ; BSD 2-Clause "Simplified" License
BSD-3-Clause ; BSD 3-Clause "New" or "Revised" License
BSD-4-Clause ; BSD 4-Clause "Original" or "Old" License

GPL-2.0-only ; GNU General Public License v2.0 only
GPL-2.0-or-later ; GNU General Public License v2.0 or later
GPL-3.0-only ; GNU General Public License v3.0 only
GPL-3.0-or-later ; GNU General Public License v3.0 or later

LGPL-2.0-only ; GNU Library General Public License v2 only
LGPL-2.0-or-later ; GNU Library General Public License v2 or later
LGPL-2.1-only ; GNU Lesser General Public License v2.1 only
LGPL-2.1-or-later ; GNU Lesser General Public License v2.1 or later
LGPL-3.0-only ; GNU Lesser General Public License v3.0 only
LGPL-3.0-or-later ; GNU Lesser General Public License v3.0 or later

AGPL-3.0-only ; GNU Affero General Public License v3.0 only
AGPL-3.0-or-later ; GNU Affero General Public License v3.0 or later

Apache-1.0 ; Apache License 1.0
Apache-1.1 ; Apache License 1.1
Apache-2.0 ; Apache License 2.0

MPL-1.0 ; Mozilla Public License 1.0
MPL-1.1 ; Mozilla Public License 1.1
MPL-2.0 ; Mozilla Public License 2.0

BSL-1.0 ; Boost Software License 1.0

Unlicense ; The Unlicense (public domain)

If the package is licensed under multiple licenses, then an SPDX license expression can be

used to specify this, for example:

license: Apache-2.0 OR MIT
license: MIT AND BSD-2-Clause

19Revision 0.15, July 2022 The build2 Package Manager

6.2.6 license

https://spdx.org/licenses/

A custom license or extra conditions can be expressed either using the license reference mech­

anism of the SPDX license expression or using the other scheme (described below). For

example:

license: LicenseRef-My-MIT-Like; Custom MIT-alike license
license: other: MIT with extra attribution requirements

The other license name scheme can be used to specify licenses that are not defined by

SPDX. The license names in this scheme are free form with case-insensitive comparison. The

following names in this scheme have predefined meaning:

other: public domain ; Released into the public domain
other: available source ; Not free/open source with public source code
other: proprietary ; Not free/open source
other: TODO ; License is not yet decided

For new projects The Unlicense disclaimer with the Unlicense SPDX ID is recommended

over other: public domain.

To support combining license names that use different schemes, the license manifest value

can contain a comma-separated list of license names. This list has the AND semantics, that is,

the user must comply with all the licenses listed. To capture alternative licensing options (the

OR semantics), multiple license manifest values are used, for example:

license: GPL-2.0-only, other: available source
license: other: proprietary

For complex licensing situations it is recommended to add comments as an aid to the user, for

example:

license: LGPL-2.1-only AND MIT ; If linking with GNU TLS.
license: BSD-3-Clause ; If linking with OpenSSL.

For backwards compatibility with existing packages, the following (deprecated) scheme-less

values on the left are recognized as aliases for the new values on the right:

BSD2 BSD-2-Clause
BSD3 BSD-3-Clause
BSD4 BSD-4-Clause
GPLv2 GPL-2.0-only
GPLv3 GPL-3.0-only
LGPLv2 LGPL-2.0-only
LGPLv2.1 LGPL-2.1-only
LGPLv3 LGPL-3.0-only
AGPLv3 AGPL-3.0-only
ASLv1 Apache-1.0
ASLv1.1 Apache-1.1
ASLv2 Apache-2.0
MPLv2 MPL-2.0

public domain other: public domain
available source other: available source
proprietary other: proprietary
TODO other: TODO

Revision 0.15, July 202220 The build2 Package Manager

6.2.6 license

https://unlicense.org/

6.2.7 topics

[topics]: <topics>

<topics> = <topic> [, <topic>]*

The package topics (optional). The format is a comma-separated list of up to five potentially

multi-word concepts that describe this package. For example:

topics: xml parser, xml serializer

6.2.8 keywords

[keywords]: <keywords>

<keywords> = <keyword> [<keyword>]*

The package keywords (optional). The format is a space-separated list of up to five words that

describe this package. Note that the package and project names as well as words from its

summary are already considered to be keywords and need not be repeated in this value.

6.2.9 description

[description]: <text>
[description-file]: <path> [; <comment>]
[description-type]: <text-type>

The detailed description of the package. It can be provided either inline as a text fragment or

by referring to a file within a package (e.g., README), but not both.

In the web interface (brep) the description is displayed according to its type. Currently,

pre-formatted plain text, GitHub-Flavored Markdown, and CommonMark are supported with

the following description-type values, respectively:

text/plain
text/markdown;variant=GFM
text/markdown;variant=CommonMark

If just text/markdown is specified, then the GitHub-Flavored Markdown (which is a

superset of CommonMark) is assumed.

If the description type is not explicitly specified and the description is specified as

description-file, then an attempt to derive the type from the file extension is made.

Specifically, the .md and .markdown extensions are mapped to text/markdown, the

.txt and no extension are mapped to text/plain, and all other extensions are treated as

an unknown type, similar to unknown description-type values. And if the description

is not specified as a file, text/plain is assumed.

21Revision 0.15, July 2022 The build2 Package Manager

6.2.7 topics

https://github.github.com/gfm
https://spec.commonmark.org/current

6.2.10 changes

[changes]: <text>
[changes-file]: <path> [; <comment>]

The description of changes in the release.

The tricky aspect is what happens if the upstream release stays the same (and has, say, a

NEWS file to which we point) but we need to make another package release, for example, to

apply a critical patch.

Multiple changes values can be present which are all concatenated in the order specified,

that is, the first value is considered to be the most recent (similar to ChangeLog and NEWS
files). For example:

changes: 1.2.3-2: applied upstream patch for critical bug bar
changes: 1.2.3-1: applied upstream patch for critical bug foo
changes-file: NEWS

Or:

changes:
\
1.2.3-2
 - applied upstream patch for critical bug bar
 - regenerated documentation

1.2.3-1
 - applied upstream patch for critical bug foo
\
changes-file: NEWS

In the web interface (brep) the changes are displayed as pre-formatted plain text, similar to

the package description.

6.2.11 url

[url]: <url> [; <comment>]

The project home page URL.

6.2.12 doc-url

[doc-url]: <url> [; <comment>]

The project documentation URL.

6.2.13 src-url

[src-url]: <url> [; <comment>]

Revision 0.15, July 202222 The build2 Package Manager

6.2.10 changes

The project source repository URL.

6.2.14 package-url

[package-url]: <url> [; <comment>]

The package home page URL. If not specified, then assumed to be the same as url. It only

makes sense to specify this value if the project and package are maintained separately.

6.2.15 email

[email]: <email> [; <comment>]

The project email address. For example, a support mailing list.

6.2.16 package-email

[package-email]: <email> [; <comment>]

The package email address. If not specified, then assumed to be the same as email. It only

makes sense to specify this value if the project and package are maintained separately.

6.2.17 build-email

[build-email]: <email> [; <comment>]

The build notification email address. It is used to send build result notifications by automated

build bots. If unspecified, then no build result notifications for this package are sent by email.

For backwards compatibility with existing packages, if it is specified but empty, then this is

the same as unspecified.

6.2.18 build-warning-email

[build-warning-email]: <email> [; <comment>]

The build warning notification email address. Unlike build-email, only build warning

and error notifications are sent to this email.

6.2.19 build-error-email

[build-error-email]: <email> [; <comment>]

The build error notification email address. Unlike build-email, only build error notifica­

tions are sent to this email.

23Revision 0.15, July 2022 The build2 Package Manager

6.2.14 package-url

6.2.20 depends

[depends]: [*] <alternatives> [; <comment>]

Single-line form:

<alternatives> = <alternative> [’|’ <alternative>]*
<alternative> = <dependencies> [’?’ <enable-cond>] [<reflect-var>]
<dependencies> = <dependency> | \
 ’{’ <dependency> [<dependency>]* ’}’ [<version-constraint>]
<dependency> = <name> [<version-constraint>]
<enable-cond> = ’(’ <buildfile-eval-expr> ’)’
<reflect-var> = <config-var> ’=’ <value>

Multi-line form:

<alternatives> =
 <alternative>[
 ’|’
 <alternative>]*

<alternative> =
 <dependencies>
 ’{’
 [
 ’enable’ <enable-cond>
]

 [
 ’require’
 ’{’
 <buildfile-fragment>
 ’}’

] | [

 ’prefer’
 ’{’
 <buildfile-fragment>
 ’}’

 ’accept’ <accept-cond>
]

 [
 ’reflect’
 ’{’
 <buildfile-fragment>
 ’}’
]
 ’}’

<accept-cond> = ’(’ <buildfile-eval-expr> ’)’

The dependency packages. The most common form of a dependency is a package name

followed by the optional version constraint. For example:

Revision 0.15, July 202224 The build2 Package Manager

6.2.20 depends

depends: libhello ^1.0.0

See Package Version Constraint for the format and semantics of the version constraint.

Instead of a concrete value, the version in the constraint can also be specified in terms of the

dependent package’s version (that is, its version value) using the special $ value. This

mechanism is primarily useful when developing related packages that should track each

other’s versions exactly or closely. For example:

name: sqlite3
version: 3.18.2
depends: libsqlite3 == $

If multiple packages are specified within a single depends value, they must be grouped with

{}. This can be useful if the packages share a version constraint. The group constraint applies

to all the packages in the group that do not have their own constraint. For example:

depends: { libboost-any libboost-log libboost-uuid ~1.77.1 } ~1.77.0

If the depends value starts with *, then it is a build-time dependency. Otherwise it is

run-time. For example:

depends: * byacc >= 20210619

Most of the build-time dependencies are expected to be tools such as code generators, so you

can think of * as the executable mark printed by ls. An important difference between the two

kinds of dependencies is that in case of cross-compilation a build-time dependency must be

built for the host machine, not the target. Build system modules are also build-time dependen­

cies.

Two special build-time dependency names are recognized and checked in an ad hoc manner:

build2 (the build2 build system) and bpkg (the build2 package manager). This allows

us to specify the minimum required build system and package manager versions, for example:

depends: * build2 >= 0.15.0
depends: * bpkg >= 0.15.0

If you are developing or packaging a project that uses features from the not yet released

(staged) version of the build2 toolchain, then you can use the pre-release version in the

constraint. For example:

depends: * build2 >= 0.16.0-
depends: * bpkg >= 0.16.0-

A dependency can be conditional, that is, it is only enabled if a certain condition is met. For

example:

depends: libposix-getopt ^1.0.0 ? ($cxx.target.class == ’windows’)

The condition after ? inside () is a buildfile eval context expression that should evaluate

to true or false, as if it were specified in the buildfile if directive (see Expansion

and Quoting and Conditions (if-else) for details).

25Revision 0.15, July 2022 The build2 Package Manager

6.2.20 depends

The condition expression is evaluated after loading the package build system skeleton, that is,

after loading its root.build (see Package Build System Skeleton for details). As a result,

variable values set by build system modules that are loaded in root.build as well as the

package’s configuration (including previously reflected; see below) or computed values can

be referenced in dependency conditions. For example, given the following root.build:

root.build

...

using cxx

MinGW ships POSIX <getopt.h>.
#
need_getopt = ($cxx.target.class == ’windows’ && \
 $cxx.target.system != ’mingw32’)

config [bool] config.hello.regex ?= false

We could have the following conditional dependencies:

depends: libposix-getopt ^1.0.0 ? ($need_getopt) ; Windows && !MinGW.
depends: libposix-regex ^1.0.0 ? ($config.hello.regex && \
 $cxx.target.class == ’windows’)

The first depends value in the above example also shows the use of an optional comment.

It’s a good idea to provide it if the condition is not sufficiently self-explanatory.

A dependency can "reflect" configuration variables to the subsequent depends values and to

the package configuration. This can be used to signal whether a conditional dependency is

enabled or which dependency alternative was selected (see below). The single-line form of

depends can only reflect one configuration variable. For example:

depends: libposix-regex ^1.0.0 \
 ? ($cxx.target.class == ’windows’) \
 config.hello.external_regex=true

root.build

...

using cxx

config [bool] config.hello.external_regex ?= false

buildfile

libs =

if $config.hello.external_regex
 import libs += libposix-regex%lib{posix-regex}

exe{hello}: ... $libs

Revision 0.15, July 202226 The build2 Package Manager

6.2.20 depends

In the above example, if the hello package is built for Windows, then the dependency on

libposix-regex will be enabled and the package will be configured with

config.hello.external_regex=true. This is used in the buildfile to decide

whether to import libposix-regex. While in this example it would have probably been

easier to just duplicate the check for Windows in the buildfile (or, better yet, factor this

check to root.build and share the result via a computed variable between manifest and

buildfile), the reflect mechanism is the only way to communicate the selected depen­

dency alternative (discussed next).

An attempt to set a reflected configuration variable that is overridden by the user is an error.

In a sense, configuration variables that are used to reflect information should be treated as the

package’s implementation details if the package management is involved. If, however, the

package is configured without bpkg’s involvement, then these variables could reasonably be

provided as user configuration.

If you feel the need to allow a reflected configuration variable to also potentially be supplied

as user configuration, then it’s probably a good sign that you should turn things around: make

the variable only user-configurable and use the enable condition instead of reflect. Alterna­

tively, you could try to recognize and handle user overrides with the help of the

$config.origin() function discussed in Dependency Configuration Negotiation.

While multiple depends values are used to specify multiple packages with the AND seman­

tics, inside depends we can specify multiple packages (or groups of packages) with the OR

semantics, called dependency alternatives. For example:

depends: libmysqlclient >= 5.0.3 | libmariadb ^10.2.2

When selecting an alternative, bpkg only considers packages that are either already present

in the build configuration or are selected as dependencies by other packages, picking the first

alternative with a satisfactory version constraint and an acceptable configuration. As a result,

the order of alternatives expresses a preference. If, however, this does not yield a suitable

alternative, then bpkg fails asking the user to make the selection.

For example, if the package with the above dependency is called libhello and we build it

in a configuration that already has both libmysqlclient and libmariadb, then bpkg
will select libmysqlclient, provided the existing version satisfies the version constraint.

If, however, there are no existing packages in the build configuration and we attempt to build

just libhello, then bpkg will fail asking the user to pick one of the alternatives. If we

wanted to make bpkg select libmariadb we could run:

$ bpkg build libhello ?libmariadb

While bpkg’s refusal to automatically pick an alternative that would require building a new

package may at first seem unfriendly to the user, practical experience shows that such extra

user-friendliness would rarely justify the potential confusion that it may cause.

27Revision 0.15, July 2022 The build2 Package Manager

6.2.20 depends

Also note that it’s not only the user that can pick a certain alternative but also a dependent

package. Continuing with the above example, if we had hello that depended on libhello
but only supported MariaDB (or provided a configuration variable to explicitly select the

database), then we could have the following in its manifest:

depends: libmariadb ; Select MariaDB in libhello.
depends: libhello ^1.0.0

Dependency alternatives can be combined with all the other features discussed above: groups,

conditional dependencies, and reflect. As mentioned earlier, reflect is the only way to commu­

nicate the selection to subsequent depends values and the package configuration. For

example:

depends: libmysqlclient >= 5.0.3 config.hello.db=’mysql’ | \
 libmariadb ^10.2.2 ? ($cxx.target.class != ’windows’) \
 config.hello.db=’mariadb’

depends: libz ^1.2.1100 ? ($config.hello.db == ’mysql’)

If an alternative is conditional and the condition evaluates to false, then this alternative is

not considered. If all but one alternative are disabled due to conditions, then this becomes an

ordinary dependency. If all the alternatives are disabled due to conditions, then the entire

dependency is disabled. For example:

depends: libmysqlclient >= 5.0.3 ? ($config.hello.db == ’mysql’) | \
 libmariadb ^10.2.2 ? ($config.hello.db == ’mariadb’)

While there is no need to use the dependency alternatives in the above example (since the

alternatives are mutually exclusive), it makes for good documentation of intent.

Besides as a single line, the depends value can also be specified in a multi-line form which,

besides potentially better readability, provides additional functionality. In the multi-line form,

each dependency alternative occupies a separate line and | can be specified either at the end

of the dependency alternative line or on a separate line. For example:

depends:
\
libmysqlclient >= 5.0.3 ? ($config.hello.db == ’mysql’) |
libmariadb ^10.2.2 ? ($config.hello.db == ’mariadb’)
\

A dependency alternative can be optionally followed by a block containing a number of

clauses. The enable clause is the alternative way to specify the condition for a conditional

dependency while the reflect clause is the alternative way to specify the reflected configu­

ration variable. The block may also contain #-style comments, similar to buildfile. For

example:

depends:
\
libmysqlclient >= 5.0.3
{
 reflect
 {

Revision 0.15, July 202228 The build2 Package Manager

6.2.20 depends

 config.hello.db = ’mysql’
 }
}
|
libmariadb ^10.2.2
{
 # TODO: MariaDB support on Windows.
 #
 enable ($cxx.target.class != ’windows’)

 reflect
 {
 config.hello.db = ’mariadb’
 }
}
\

While the enable clause is essentially the same as its inline ? variant, the reflect clause

is an arbitrary buildfile fragment that can have more complex logic and assign multiple

configuration variables. For example:

libmariadb ^10.2.2
{
 reflect
 {
 if ($cxx.target.class == ’windows’)
 config.hello.db = ’mariadb-windows’
 else
 config.hello.db = ’mariadb-posix’
 }
}

The multi-line form also allows us to express our preferences and requirements for the depen­

dency configuration. If all we need is to set one or more bool configuration variables to

true (which usually translates to enabling one or more features), then we can use the

require clause. For example:

libmariadb ^10.2.2
{
 require
 {
 config.libmariadb.cache = true

 if ($cxx.target.class != ’windows’)
 config.libmariadb.tls = true
 }
}

For more complex dependency configurations instead of require we can use the prefer
and accept clauses. The prefer clause can set configuration variables of any type and to

any value in order to express the package’s preferred configuration while the accept condi­

tion evaluates whether any given configuration is acceptable. If used instead of require,

both prefer and accept must be present. For example:

29Revision 0.15, July 2022 The build2 Package Manager

6.2.20 depends

libmariadb ^10.2.2
{
 # We prefer the cache but can work without it.
 # We need the buffer of at least 4KB.
 #
 prefer
 {
 config.libmariadb.cache = true

 config.libmariadb.buffer = ($config.libmariadb.buffer < 4096 \
 ? 4096 \
 : $config.libmariadb.buffer)
 }

 accept ($config.libmariadb.buffer >= 4096)
}

The require clause is essentially a shortcut for specifying the prefer/accept clauses

where the accept condition simply verifies all the variable values assigned in the prefer
clause. It is, however, further restricted to the common case of only setting bool variables

and only to true to allow additional optimizations during the configuration negotiation.

The require and prefer clauses are arbitrary buildfile fragments similar to

reflect while the accept clause is a buildfile eval context expression that should

evaluate to true or false, similar to enable.

Given the require and prefer/accept clauses of all the dependents of a particular

dependency, bpkg tries to negotiate a configuration acceptable to all of them as described in

Dependency Configuration Negotiation.

All the clauses are evaluated in the specified order, that is, enable, then require or

prefer/accept, and finally reflect, with the (negotiated, in case of prefer) configu­

ration values set by preceding clauses available for examination by the subsequent clauses in

this depends value as well as in all the subsequent ones. For example:

depends:
\
libmariadb ^10.2.2
{
 prefer
 {
 config.libmariadb.cache = true

 config.libmariadb.buffer = ($config.libmariadb.buffer < 4096 \
 ? 4096 \
 : $config.libmariadb.buffer)
 }

 accept ($config.libmariadb.buffer >= 4096)

 reflect
 {
 config.hello.buffer = $config.libmariadb.buffer
 }

Revision 0.15, July 202230 The build2 Package Manager

6.2.20 depends

}
\

depends: liblru ^1.0.0 ? ($config.libmariadb.cache)

The above example also highlights the difference between the require/prefer and

reflect clauses that is easy to mix up: in require/prefer we set the dependency’s

while in reflect we set the dependent’s configuration variables.

6.2.21 requires

[requires]: [*] <alternatives> [; <comment>]

<alternatives> = <alternative> [’|’ <alternative>]*
<alternative> = <requirements> [’?’ [<enable-cond>]] [<reflect-var>]
<requirements> = [<requirement>] | \
 ’{’ <requirement> [<requirement>]* ’}’ [<version-constraint>]
<requirement> = <name> [<version-constraint>]
<enable-cond> = ’(’ <buildfile-eval-expr> ’)’
<reflect-var> = <config-var> ’=’ <value>

The package requirements other than other packages. Such requirements are normally

checked in an ad hoc way during package configuration by its buildfiles and the primary

purpose of capturing them in the manifest is for documentation. However, there are some

special requirements that are recognized by the tooling (see below). For example:

requires: c++11
requires: linux | windows | macos
requires: libc++ ? ($macos) ; libc++ if using Clang on Mac OS.

The format of the requires value is similar to depends with the following differences.

The requirement name (with or without version constraint) can mean anything (but must still

be a valid package name). Only the enable and reflect clauses are permitted. There is a

simplified syntax with either the requirement or enable condition or both being empty and

where the comment carries all the information (and is thus mandatory). For example:

requires: ; X11 libs.
requires: ? ($windows) ; Only 64-bit.
requires: ? ; Only 64-bit if on Windows.
requires: x86_64 ? ; Only if on Windows.

Note that requires can also be used to specify dependencies on system libraries, that is, the

ones not to be packaged. In this case it may make sense to also specify the version constraint.

For example:

requires: libx11 >= 1.7.2

To assist potential future automated processing, the following pre-defined requirement names

should be used for the common requirements:

31Revision 0.15, July 2022 The build2 Package Manager

6.2.21 requires

c++98
c++03
c++11
c++14
c++17
c++20
c++23

posix
linux
macos
freebsd
openbsd
netbsd
windows

gcc[_X.Y.Z] ; For example: gcc_6, gcc_4.9, gcc_5.0.0
clang[_X.Y] ; For example: clang_6, clang_3.4, clang_3.4.1
msvc[_N.U] ; For example: msvc_14, msvc_15.3

The following pre-defined requirement names are recognized by automated build bots:

bootstrap
host

The bootstrap value should be used to mark build system modules that require bootstrap­

ping. The host value should be used to mark packages, such source code generators, that are

normally specified as build-time dependencies by other packages and therefore should be built

in a host configuration. See the bbot documentation for details.

6.2.22 tests, examples, benchmarks

[tests]: [*] <name> [<version-constraint>]
[examples]: [*] <name> [<version-constraint>]
[benchmarks]: [*] <name> [<version-constraint>]

Separate tests, examples, and benchmarks packages. If the value starts with *, then the

primary package is a build-time dependency for the specified package. Otherwise it is

run-time. See the depends value for details on build-time dependencies.

These packages are built and tested by automated build bots together with the primary

package (see the bbot documentation for details). This, in particular, implies that these pack­

ages must be available from the primary package’s repository or its complement repositories,

recursively. The recommended naming convention for these packages is the primary package

name followed by -tests, -examples, or -benchmarks, respectively. For example:

name: hello
tests : hello-tests
examples: hello-examples

See Package Version Constraint for the format and semantics of the optional version

constraint. Instead of a concrete value, it can also be specified in terms of the primary

package’s version (see the depends value for details), for example:

Revision 0.15, July 202232 The build2 Package Manager

6.2.22 tests, examples, benchmarks

tests: hello-tests ~$

Note that normally the tests, etc., packages themselves do not have an explicit dependency on

the primary package (in a sense, the primary package has a special dependency on them).

They are also not built by automated build bots separately from their primary package but

may have their own build constraints, for example, to be excluded from building on some

platforms where the primary package is still built, for example:

name: hello-tests
builds: -windows

6.2.23 builds

[builds]: [<class-uset> ’:’] [<class-expr>] [; <comment>]

<class-uset> = <class-name> [<class-name>]*
<class-expr> = <class-term> [<class-term>]*
<class-term> = (’+’|’-’|’&’)[’!’](<class-name> | ’(’ <class-expr> ’)’)

The package build configurations. They specify the build configuration classes the package

should or should not be built for by automated build bots. For example:

builds: -windows

Build configurations can belong to multiple classes with their names and semantics varying

between different build bot deployments. However, the pre-defined none, default, all,

host, and build2 classes are always provided. If no builds value is specified in the

package manifest, then the default class is assumed.

A build configuration class can also derive from another class in which case configurations

that belong to the derived class are treated as also belonging to the base class (or classes,

recursively). See the Build Configurations page of the build bot deployment for the list of

available build configurations and their classes.

The builds value consists of an optional underlying class set (<class-uset>) followed

by a class set expression (<class-expr>). The underlying set is a space-separated list of

class names that define the set of build configurations to consider. If not specified, then all the

configurations belonging to the default class are assumed. The class set expression can

then be used to exclude certain configurations from this initial set.

The class expression is a space-separated list of terms that are evaluated from left to right. The

first character of each term determines whether the build configuration that belong to its set

are added to (+), subtracted from (-), or intersected with (&) the current set. If the second

character in the term is !, then its set of configuration is inverted against the underlying set.

The term itself can be either the class name or a parenthesized expression. Some examples

(based on the cppget.org deployment):

builds: none ; None.
builds: all ; All (suitable for libraries).
builds: host ; All host (suitable for tools).
builds: default ; All default.

33Revision 0.15, July 2022 The build2 Package Manager

6.2.23 builds

https://ci.cppget.org/?build-configs

builds: host : &default ; Host default.
builds: default legacy ; All default and legacy.
builds: host: &(+default +legacy) ; Host default and legacy.
builds: -windows ; Default except Windows.
builds: all : -windows ; All except Windows.
builds: all : -mobile ; All except mobile.
builds: all : &gcc ; All with GCC only.
builds: all : &gcc-8+ ; All with GCC 8 and up only.
builds: gcc : -optimized ; GCC without optimization.
builds: gcc : &(+linux +macos) ; GCC on Linux and Mac OS.

Notice that the colon and parentheses must be separated with spaces from both preceding and

following terms.

Multiple builds values are evaluated in the order specified and as if they were all part of a

single expression. Only the first value may specify the underlying set. The main reason for

having multiple values is to provide individual reasons (as the builds value comments) for

different parts of the expression. For example:

builds: default experimental ; Only modern compilers are supported.
builds: -gcc ; GCC is not supported.
builds: -clang ; Clang is not supported.

builds: default
builds: -(+macos &gcc) ; Homebrew GCC is not supported.

The builds value comments are used by the web interface (brep) to display the reason for

the build configuration exclusion.

After evaluating all the builds values, the final configuration set can be further fine-tuned

using the build-{include, exclude} patterns.

6.2.24 build-{include, exclude}

[build-include]: <config>[/<target>] [; <comment>]
[build-exclude]: <config>[/<target>] [; <comment>]

The package build inclusions and exclusions. The build-include and build-exclude
values further reduce the configuration set produced by evaluating the builds values. The

config and target values are filesystem wildcard patterns which are matched against the build

configuration names and target names (see the bbot documentation for details). In particular,

the * wildcard matches zero or more characters within the name component while the **
sequence matches across the components. Plus, wildcard-only pattern components match

absent name components. For example:

build-exclude: windows** # matches windows_10-msvc_15
build-exclude: macos*-gcc** # matches macos_10.13-gcc_8.1-O3
build-exclude: linux-gcc*-* # matches linux-gcc_8.1 and linux-gcc_8.1-O3

The exclusion and inclusion patterns are applied in the order specified with the first match

determining whether the package will be built for this configuration and target. If none of the

patterns match (or none we specified), then the package is built.

Revision 0.15, July 202234 The build2 Package Manager

6.2.24 build-{include, exclude}

As an example, the following value will exclude 32-bit builds for the MSVC 14 compiler:

build-exclude: *-msvc_14**/i?86-** ; Linker crash.

As another example, the following pair of values will make sure that a package is only built

on Linux:

build-include: linux**
build-exclude: ** ; Only supported on Linux.

Note that the comment of the matching exclusion is used by the web interface (brep) to

display the reason for the build configuration exclusion.

6.2.25 build-file

[build-file]: <path>

[bootstrap-build]: <text>
[root-build]: <text>
[*-build]: <text>

[bootstrap-build2]: <text>
[root-build2]: <text>
[*-build2]: <text>

The contents of the mandatory bootstrap.build file, optional root.build file, and

additional files included by root.build, or their alternative naming scheme variants

(bootstrap.build2, etc). Packages with the alternative naming scheme should use the

*-build2 values instead of *-build. See Package Build System Skeleton for background.

These files must reside in the package’s build/ subdirectory and have the .build exten­

sion (or their alternative names). They can be provided either inline as text fragments or, for

additional files, by referring to them with a path relative to this subdirectory, but not both. The

-build/-build2 manifest value name prefixes must be the file paths relative to this

subdirectory with the extension stripped.

As an example, the following values correspond to the build/config/common.build

file:

build-file: config/common.build

config/common-build:
\
config [bool] config.libhello.fancy ?= false
\

And the following values correspond to the build2/config/common.build2 file in a

package with the alternative naming scheme:

35Revision 0.15, July 2022 The build2 Package Manager

6.2.25 build-file

build-file: config/common.build2

config/common-build2:
\
config [bool] config.libhello.fancy ?= false
\

If unspecified, then the package’s bootstrap.build, root.build, and

build/config/*.build files (or their alternative names) will be automatically added,

for example, when the package list manifest is created.

6.3 Package List Manifest for pkg Repositories

The package list manifest (the packages.manifest file found in the pkg repository root

directory) describes the list of packages available in the repository. First comes a manifest that

describes the list itself (referred to as the list manifest). The list manifest synopsis is presented

next:

sha256sum: <sum>

After the list manifest comes a (potentially empty) sequence of package manifests. These

manifests shall not contain any *-file or incomplete depends values (such values should

be converted to their inline versions or completed, respectively) but must contain the

*-build values (unless the corresponding files are absent) and the following additional (to

package manifest) values:

location: <path>
sha256sum: <sum>

The detailed description of each value follows in the subsequent sections.

6.3.1 sha256sum (list manifest)

sha256sum: <sum>

The SHA256 checksum of the repositories.manifest file (described below) that

corresponds to this repository. The sum value should be 64 characters long (that is, just the

SHA256 value, no file name or any other markers), be calculated in the binary mode, and use

lower-case letters.

This checksum is used to make sure that the repositories.manifest file that was

fetched is the same as the one that was used to create the packages.manifest file. This

also means that if repositories.manifest is modified in any way, then pack­
ages.manifest must be regenerated as well.

Revision 0.15, July 202236 The build2 Package Manager

6.3 Package List Manifest for pkg Repositories

6.3.2 location (package manifest)

location: <path>

The path to the package archive file relative to the repository root. It should be in the POSIX

representation.

if the repository keeps multiple versions of the package and places them all into the repository

root directory, it can get untidy. With location we allow for sub-directories.

6.3.3 sha256sum (package manifest)

sha256sum: <sum>

The SHA256 checksum of the package archive file. The sum value should be 64 characters

long (that is, just the SHA256 value, no file name or any other markers), be calculated in the

binary mode, and use lower-case letters.

6.4 Package List Manifest for dir Repositories

The package list manifest (the packages.manifest file found in the dir repository root

directory) describes the list of packages available in the repository. It is a (potentially empty)

sequence of manifests with the following synopsis:

location: <path>
[fragment]: <string>

The detailed description of each value follows in the subsequent sections. The fragment
value can only be present in a merged packages.manifest file for a multi-fragment

repository.

As an example, if our repository contained the src/ subdirectory that in turn contained the

libfoo and foo packages, then the corresponding packages.manifest file could look

like this:

: 1
location: src/libfoo/
:
location: src/foo/

6.4.1 location

location: <path>

The path to the package directory relative to the repository root. It should be in the POSIX

representation.

37Revision 0.15, July 2022 The build2 Package Manager

6.4 Package List Manifest for dir Repositories

6.4.2 fragment

[fragment]: <string>

The repository fragment id this package belongs to.

6.5 Repository Manifest

The repository manifest (only used as part of the repository manifest list described below)

describes a pkg, dir, or git repository. The manifest synopsis is presented next followed

by the detailed description of each value in subsequent sections.

[location]: <uri>
[type]: pkg|dir|git
[role]: base|prerequisite|complement
[trust]: <fingerprint>
[url]: <url>
[email]: <email> [; <comment>]
[summary]: <text>
[description]: <text>
[certificate]: <pem>
[fragment]: <string>

See also the Repository Chaining documentation for further information @@ TODO.

6.5.1 location

[location]: <uri>

The repository location. The location can and must only be omitted for the base repository.

Since we got hold of its manifest, then we presumably already know the location of the base

repository. If the location is a relative path, then it is treated as relative to the base repository

location.

For the git repository type the relative location does not inherit the URL fragment from the

base repository. Note also that the remote git repository locations normally have the .git

extension that is stripped when a repository is cloned locally. To make the relative locations

usable in both contexts, the .git extension should be ignored if the local prerequisite reposi­

tory with the extension does not exist while the one without the extension does.

While POSIX systems normally only support POSIX paths (that is, forward slashes only),

Windows is generally able to handle both slash types. As a result, it is recommended that

POSIX paths are always used in the location values, except, perhaps, if the repository is

explicitly Windows-only by, for example, having a location that is an absolute Windows path

with the drive letter. The bpkg package manager will always try to represent the location as a

POSIX path and only fallback to the native representation if that is not possible (for example,

there is a drive letter in the path).

Revision 0.15, July 202238 The build2 Package Manager

6.5 Repository Manifest

6.5.2 type

[type]: pkg|dir|git

The repository type. The type must be omitted for the base repository. If the type is omitted

for a prerequisite/complement repository, then it is guessed from its location value as

described in bpkg-rep-add(1).

6.5.3 role

[role]: base|prerequisite|complement

The repository role. The role value can be omitted for the base repository only.

6.5.4 trust

[trust]: <fingerprint>

The repository fingerprint to trust. The trust value can only be specified for prerequisite

and complement repositories and only for repository types that support authentication

(currently only pkg). The fingerprint value should be an SHA256 repository fingerprint

represented as 32 colon-separated hex digit pairs. The repository in question is only trusted

for use as a prerequisite or complement of this repository. If it is also used by other reposito­

ries or is added to the configuration by the user, then such uses cases are authenticated inde­

pendently.

6.5.5 url

[url]: <url>

The repository’s web interface (brep) URL. It can only be specified for the base repository

(the web interface URLs for prerequisite/complement repositories can be extracted from their

respective manifests).

For example, given the following url value:

url: https://example.org/hello/

The package details page for libfoo located in this repository will be

https://example.org/hello/libfoo.

The web interface URL can also be specified as relative to the repository location (the loca­
tion value). In this case url should start with two path components each being either . or

... If the first component is .., then the www, pkg or bpkg domain component, if any, is

removed from the location URL host, just like when deriving the repository name.

Similarly, if the second component is .., then the pkg or bpkg path component, if any, is

removed from the location URL path, again, just like when deriving the repository name.

39Revision 0.15, July 2022 The build2 Package Manager

6.5.2 type

Finally, the version component is removed from the location URL path, the rest (after the

two ./.. components) of the url value is appended to it, and the resulting path is normal­

ized with all remaining .. and . applied normally.

For example, assuming repository location is:

https://pkg.example.org/test/pkg/1/hello/stable

The following listing shows some of the possible combinations (the <> marker is used to

highlight the changes):

./. -> https://pkg.example.org/test/pkg/hello/stable

../. -> https://< >example.org/test/pkg/hello/stable

./.. -> https://pkg.example.org/test/< >hello/stable

../.. -> https://< >example.org/test/< >hello/stable

././.. -> https://pkg.example.org/test/pkg/hello< >

../../../.. -> https://< >example.org/test< >

The rationale for the relative web interface URLs is to allow deployment of the same reposi­

tory to slightly different configuration, for example, during development, testing, and public

use. For instance, for development we may use the https://example.org/pkg/ setup

while in production it becomes https://pkg.example.org/. By specifying the web

interface location as, say, ../., we can run the web interface at these respective locations

using a single repository manifest.

6.5.6 email

[email]: <email> [; <comment>]

The repository email address. It must and can only be specified for the base repository. The

email address is displayed by the web interface (brep) in the repository about page and could

be used to contact the maintainers about issues with the repository.

6.5.7 summary

[summary]: <text>

The short description of the repository. It must and can only be specified for the base reposi­

tory.

6.5.8 description

[description]: <text>

The detailed description of the repository. It can only be specified for the base repository.

In the web interface (brep) the description is formatted into one or more paragraphs using

blank lines as paragraph separators. Specifically, it is not represented as <pre> so any kind

of additional plain text formatting (for example, lists) will be lost and should not be used in

the description.

Revision 0.15, July 202240 The build2 Package Manager

6.5.6 email

6.5.9 certificate

[certificate]: <pem>

The X.509 certificate for the repository. It should be in the PEM format and can only be spec­

ified for the base repository. Currently only used for the pkg repository type.

The certificate should contain the CN and O components in the subject as well as the email:

component in the subject alternative names. The CN component should start with name: and

continue with the repository name prefix/wildcard (without trailing slash) that will be used to

verify the repository name(s) that are authenticated with this certificate. See bpkg-reposi­

tory-signing(1) for details.

If this value is present then the packages.manifest file must be signed with the corre­

sponding private key and the signature saved in the signature.manifest file. See

Signature Manifest for details.

6.5.10 fragment

[fragment]: <string>

The repository fragment id this repository belongs to.

6.6 Repository List Manifest

@@ TODO See the Repository Chaining document for more information on the terminology

and semantics.

The repository list manifest (the repositories.manifest file found in the repository

root directory) describes the repository. It starts with an optional header manifest optionally

followed by a sequence of repository manifests consisting of the base repository manifest

(that is, the manifest for the repository that is being described) as well as manifests for its

prerequisite and complement repositories. The individual repository manifests can appear in

any order and the base repository manifest can be omitted.

The fragment values can only be present in a merged repositories.manifest file

for a multi-fragment repository.

As an example, a repository manifest list for the math/testing repository could look like

this:

math/testing
#
: 1
min-bpkg-version: 0.14.0
:
email: math-pkg@example.org
summary: Math package repository
:
role: complement

41Revision 0.15, July 2022 The build2 Package Manager

6.6 Repository List Manifest

location: ../stable
:
role: prerequiste
location: https://pkg.example.org/1/misc/testing

Here the first manifest describes the base repository itself, the second manifest – a comple­

ment repository, and the third manifest – a prerequisite repository. Note that the complement

repository’s location is specified as a relative path. For example, if the base repository loca­

tion were:

https://pkg.example.org/1/math/testing

Then the completement’s location would be:

https://pkg.example.org/1/math/stable

The header manifest synopsis is presented next followed by the detailed description of each

value in subsequent sections.

[min-bpkg-version]: <ver>
[compression]: <compressions>

6.6.1 min-bpkg-version

[min-bpkg-version]: <ver>

The earliest version of bpkg that is compatible with this repository. Note that if specified, it

must be the first value in the header.

6.6.2 compression

[compression]: <compressions>

<compressions> = <compression> [<compression>]*

Available compressed variants of the packages.manifest file. The format is a

space-separated list of the compression methods. The none method means no compression.

Absent compression value is equivalent to specifying it with the none value.

6.7 Signature Manifest for pkg Repositories

The signature manifest (the signature.manifest file found in the pkg repository root

directory) contains the signature of the repository’s packages.manifest file. In order to

detect the situation where the downloaded signature.manifest and pack­
ages.manifest files belong to different updates, the manifest contains both the checksum

and the signature (which is the encrypted checksum). We cannot rely on just the signature

since a mismatch could mean either a split update or tampering. The manifest synopsis is

presented next followed by the detailed description of each value in subsequent sections.

Revision 0.15, July 202242 The build2 Package Manager

6.7 Signature Manifest for pkg Repositories

sha256sum: <sum>
signature: <sig>

6.7.1 sha256sum

sha256sum: <sum>

The SHA256 checksum of the packages.manifest file. The sum value should be 64

characters long (that is, just the SHA256 value, no file name or any other markers), be calcu­

lated in the binary mode, and use lower-case letters.

6.7.2 signature

signature: <sig>

The signature of the packages.manifest file. It should be calculated by encrypting the

above sha256sum value with the repository certificate’s private key and then

base64-encoding the result.

43Revision 0.15, July 2022 The build2 Package Manager

6.7.1 sha256sum

	Preface
	1 Package Name
	2 Package Version
	3 Package Version Constraint
	4 Package Build System Skeleton
	5 Dependency Configuration Negotiation
	5.1 Prefer X but Accept X or Y
	5.2 Use If Enabled
	5.3 Disable If Enabled by Default

	6 Manifests
	6.1 Manifest Format
	6.2 Package Manifest
	6.2.1 name
	6.2.2 version
	6.2.3 project
	6.2.4 priority
	6.2.5 summary
	6.2.6 license
	6.2.7 topics
	6.2.8 keywords
	6.2.9 description
	6.2.10 changes
	6.2.11 url
	6.2.12 doc-url
	6.2.13 src-url
	6.2.14 package-url
	6.2.15 email
	6.2.16 package-email
	6.2.17 build-email
	6.2.18 build-warning-email
	6.2.19 build-error-email
	6.2.20 depends
	6.2.21 requires
	6.2.22 tests, examples, benchmarks
	6.2.23 builds
	6.2.24 build-{include, exclude}
	6.2.25 build-file

	6.3 Package List Manifest for pkg Repositories
	6.3.1 sha256sum (list manifest)
	6.3.2 location (package manifest)
	6.3.3 sha256sum (package manifest)

	6.4 Package List Manifest for dir Repositories
	6.4.1 location
	6.4.2 fragment

	6.5 Repository Manifest
	6.5.1 location
	6.5.2 type
	6.5.3 role
	6.5.4 trust
	6.5.5 url
	6.5.6 email
	6.5.7 summary
	6.5.8 description
	6.5.9 certificate
	6.5.10 fragment

	6.6 Repository List Manifest
	6.6.1 min-bpkg-version
	6.6.2 compression

	6.7 Signature Manifest for pkg Repositories
	6.7.1 sha256sum
	6.7.2 signature

