i1 : kk=ZZ/101 o1 = kk o1 : QuotientRing |
i2 : S=kk[a..e] o2 = S o2 : PolynomialRing |
i3 : L={3,3,4,6} o3 = {3, 3, 4, 6} o3 : List |
i4 : I=randomBinomialIdeal(L,S) 2 2 2 2 4 o4 = ideal (a*b*d - 14b*e , b*c - 16a*b*e, a*b e - 43c*d*e , a b*e - ------------------------------------------------------------------------ 2 3 42b d*e ) o4 : Ideal of S |
The binomials are generated one at a time, and there is no checking to see whether the ideal returned is minally generated by fewer elements, so the number of minimal generators may not be what you expect.