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Chapter 0

Getting started with crlibm

0.1 Whatis crlibm?

The crlibm project aims at developing a portable, proven, correctly rounded, and efficient mathematical
library (1ibm) for double precision.

correctly rounded Current 1ibm implementation do not always return the floating-point number that
is closest to the exact mathematical result. As a consequence, different 1ibm implementation will
return different results for the same input, which prevents full portability of floating-point ap-
plications. In addition, few libraries support but the round-to-nearest mode of the IEEE754/IEC
60559 standard for floating-point arithmetic (hereafter usually referred to as the IEEE-754 stan-
dard). crlibm provides the four rounding modes: To nearest, to 400, to —co and to zero.

portable crlibm is written in C and will be compiled by any compiler fulfilling basic requirements of
the ISO/IEC 9899:1999 (hereafter referred to as C99) standard. This is the case of gcc version 3 and
higher which is available on most computer systems. It also requires a floating-point implemen-
tation respecting the IEEE-754 standard, which is also available on most modern systems. crlibm
has been tested on a large range of systems.

proven Other libraries attempt to provide correctly-rounded result. For theoretical and practical rea-
sons, this behaviour is difficult to prove, and in extreme cases termination is not even guaranteed.
crlibmintends to provide a comprehensive proof of the theoretical possibility of correct rounding,
the algorithms used, and the implementation, assuming C99 and IEEE-754 compliance.

efficient performance and resource usage of crlibm should be comparable to existing 1ibm implemen-
tations, both in average and in the worst case. In contrast, other correctly-rounded libraries have
worst case performance and memory consumption several order of magnitude larger than stan-
dard 1ibms.

The ultimate goal of the crlibm project is to push towards the standardization of correctly-rounded
elementary functions.

0.2 Compilation and installation

See the INSTALL file in the main directory. This library is developed using the GNU autotools, and can
therefore be compiled on most Unix-like systems by ./configure; make.

The command make check will launch the selftest. For more advanced testing you will need to have
MPER installed (see www.mpfr.org) and to pass the --enable-mpfr flag to configure. For other flags,
see ./configure --help.


www.mpfr.org

0.3 Using crlibm functions in your program

Currently crlibm functions have different names from the standard math.h functions. For example, for
the sine function (double sin(double) in the standard math.h), you have four different functions in
crlibm for the four different rounding modes. These functions are named sin_rn, sin_ru, sin_rd and
sin_rz for round to the nearest, round up, round down and round to zero respectively. These functions
are declared in the C header file crlibm.h.

The crlibm library relies on double-precision IEEE-754 compliant floating-point operations. For

some processors and some operating systems (most notably IA32 and IA64 processors under GNU/Linux),

the default precision is set to double-extended. On such systems you will need to call the crlibm_init ()
function before using any crlibm function to ensure such compliance. This has the effect of setting the
processor flags to IEEE-754 double-precision with rounding to the nearest mode. This function returns
the previous processor status, so that previous mode can be restored using the function crlibm_exit ().
Note that you probably only need one call to crlibm_init () at the beginning of your program, not one
call before each call to a mathematical function.

Here is a non-exhaustive list of systems on which crlibm_init() is NOT needed, and which can
therefore use crlibm as a transparent replacement of the standard 1ibm:

e Most Power/PowerPC based systems, including those from Apple or from IBM;

o All the 64-bit Linux versions: the reason is that all x86-compatible processors (by AMD and In-
tel) supporting 64-bit addressing also feature SSE2 FP instructions, which are cleaner and more
efficient than the legacy x87 FPU. On such systems, SSE2 is therefore used by default by gcc for
double-precision FP computing.

e On recent 32-bit x86 processors also featuring SSE2 extensions (including pentium 4 and later, and
generally most processors produced after 2005), you can try to force the use of SSE2 instructions
using configure --enable-sse2. Beware, the code produced will not run on older hardware.

Here’s an example function named compare. ¢ using the cosine function from crlibm library.

Listing 1: compare.c

#include<stdio .h>
#include<math.h>
#include<crlibm .h>

int main(void){
double x, res_libm, res_crlibm;

printf ("Enter a floating point number: ”);

scanf ("%lf"”, &x);

res_libm = cos(x);

crlibm_init(); /« no need here to save the old processor state returned by crlibm_init () =/
res_crlibm = cos.rn(x);

printf ("\n x=%.25e \n”, x);

printf (”\n cos(x) with the system : %.25e \n”, res_libm);

printf (”\n cos(x) with crlibm : %.25e \n”, res_crlibm);

return 0;

This example will be compiled with gcc compare.c -1lm -lcrlibm -o compare

0.4 Currently available functions

The currently available functions are summarized in Table
Here are some comments on this table:

e Every function takes a double-precision number and returns a double-precision number.
e For trigonometric functions the angles are expressed in radian.

e The two last columns describe the state of the proof:

8




crlibm name

State of the proof

9 | 'to nearest | to oo to —oco to zero Worst cases Proof of the code
exp exp-n exp-ru exp-rd exp_rz complete complete (formal)
expml | expml.rn | expml.ru | expml.rd | expml.rz complete partial
log log_rn log_ru log_rd log_rz complete complete
loglp | loglpmn | loglpru | loglprd | loglp.rz complete partial
log2 log2_rn log2_ru log2_rd log2_rz complete partial
logl0 | loglOrn | loglOru | loglOrd | loglO.rz complete partial
sin sin_rn sin_ru sin_rd sin_rz [—, 7] complete (paper+formal)
cos cos_In cos_ru cos_rd CoS_rz [—7/2,7/2] complete (paper+formal)
tan tan_rn tan_ru tan_rd tan_rz [—7m/2,7/2] complete (paper+formal)
asin asin_rn asin_ru asin_rd asin_rz complete partial
acos acos_rn acos_ru acos_rd acos._1z complete partial
atan atan_rn atan_ru atan_rd atan._rz complete complete (paper)
sinh sinh_rn sinh_ru sinh_rd sinh_rz complete complete (paper)
cosh cosh_rn cosh_ru cosh_rd cosh._rz complete complete (paper)
sinpi sinpi_rn sinpi_ru sinpi_rd sinpi_rz complete complete (formal)
cospi | cospirn | cospiru | cospird | cospirz complete complete (formal)
tanpi | tanpirn | tanpiru | tanpird | tanpirz [2725,277] complete (formal)
atanpi | atanpirn | atanpiru | atanpird | atanpirz || [tan(27 %), tan(27>77)] complete (paper)
pow pow_rn see chapter see chapter|(15

Table 1: Current state of crlibm.

The first indicates the state of the search for worst cases for correct rounding [26] 27]. If it
indicates “complete”, it means that the function is guaranteed to return correct rounding
on its whole floating-point input range. Otherwise, it mentions the interval on which the
function is guaranteed to return correct rounding. Note that crlibm is designed in such a
way that there is a very high probability that it is correctly rounded everywhere, however
this is not yet proven formally. This question is explained in details in section[1.3]

The second indicates the state of the proof of the code itself. Some (older) functions have a
lengthy paper proof in this document, some other have a partial or complete formal proof
using the Gappa proof assistant [31} [13].

0.5 Writing portable floating-point programs

Here are some rules to help you design programs which have to produce exactly the same results on
different architectures and different operating systems.

e Try to use the same compiler on all the systems.

e Demand C99 compliance (pass the -C99, -std=c99, or similar flag to the compiler). For Fortran,
demand F90 compliance.

e Call crlibm_init() before you begin floating-point computation. This ensures that the compu-
tations will all be done in IEEE-754 double-precision with round to nearest mode, which is the
largest precision well supported by most systems. On IA32 processors, problems may still occur
for extremely large or extremely small values.

9




e Do not hesitate to rely heavily on parentheses (the compiler should respect them according to
the standards, although of course some won’t). Many times, wondering where the parentheses
should go in an expression like a+b+c+d will even help you improve the accuracy of your code.

e Use crlibm functions in place of math.h functions.
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Chapter 1

Introduction: Goals and methods

1.1 Correct rounding and elementary functions

The need for accurate elementary functions is important in many critical programs. Methods for com-
puting these functions include table-based methods[17, 38]], polynomial approximations and mixed
methods[9]. See the books by Muller[34] or Markstein[30] for recent surveys on the subject.

The IEEE-754 standard for floating-point arithmetic[5] defines the usual floating-point formats (sin-
gle and double precision). It also specifies the behavior of the four basic operators (4, —, x, +) and
the square root in four rounding modes (to the nearest, towards +oo, towards —co and towards 0). Its
adoption and widespread use have increased the numerical quality of, and confidence in floating-point
code. In particular, it has improved portability of such code and allowed construction of proofs on its
numerical behavior. Directed rounding modes (towards +co, —cc and 0) also enabled efficient interval
arithmetic[32] 21].

However, the IEEE-754 standard specifies nothing about elementary functions, which limits these
advances to code excluding such functions. Currently, several options exist: on one hand, one can
use today’s mathematical libraries that are efficient but without any warranty on the correctness of the
results. To be fair, most modern libraries are accurate-faithful: trying to round to nearest, they return a
number that is one of the two FP numbers surrounding the exact mathematical result, and indeed return
the correctly rounded result most of the time. This behaviour is sometimes described using phrases like
99% correct rounding or 0.501 ulp accuracy.

When stricter guarantees are needed, some multiple-precision packages like MPFR [33] offer correct
rounding in all rounding modes, but are several orders of magnitude slower than the usual mathe-
matical libraries for the same precision. Finally, there are are currently three attempts to develop a
correctly-rounded 1ibm. The first was IBM’s 1ibultim[29] which is both portable and fast, if bulky,
but lacks directed rounding modes needed for interval arithmetic. The second was Arénaire’s crlibm,
which was first distributed in 2003. The third is Sun correctly-rounded mathematical library called
libmcr, whose first beta version appeared in 2004. These libraries are reviewed in

The goal of the crlibm project is to build on a combination of several recent theoretical and algorith-
mic advances to design a proven correctly rounded mathematical library, with an overhead in terms of
performance and resources acceptable enough to replace existing libraries transparently.

More generally, the crlibm project serves as an open-source framework for research on software
elementary functions. As a side effect, it may be used as a tutorial on elementary function development.

1.2 A methodology for efficient correctly-rounded functions

1.2.1 The Table Maker’s Dilemma

With a few exceptions, the image 7 of a floating-point number x by a transcendental function f is a
transcendental number, and can therefore not be represented exactly in standard numeration systems.
The only hope is to compute the floating-point number that is closest to (resp. immediately above or

11



immediately below) the mathematical value, which we call the result correctly rounded to the nearest
(resp. towards +o0 or towards —oo).

It is only possible to compute an approximation y to the real number i with precision €. This ensures
that the real value § belongs to the interval [y(1 —€),y(1 + €)]. Sometimes however, this information
is not enough to decide correct rounding. For example, if [y(1 —€),y(1 + €)] contains the middle of
two consecutive floating-point numbers, it is impossible to decide which of these two numbers is the
correctly rounded to the nearest of §J. This is known as the Table Maker’s Dilemma (TMD). For example,
if we consider a numeration system in radix 2 with n-bit mantissa floating point number and m the
number of significant bit in i such that € < 2™, then the TMD occurs:

o for rounding toward +o0, —oo, 0, when the result is of the form:

m bits

T.xxx..xx111111...11 xxx...
—_——

n bits

or:
m bits

1.xxx...xx 000000...00 xxx...
———

n bits

e for rounding to nearest, when the result is of the form:

m bits

T.xxx..xx011111...11 xxx...
———

n bits

or:
m bits

1.xxx...xx 100000...00 xxx...
——

n bits

1.2.2 The onion peeling strategy

A method described by Ziv [40] is to increase the precision € of the approximation until the correctly
rounded value can be decided. Given a function f and an argument x, the value of f(x) is first eval-
uated using a quick approximation of precision g;. Knowing ¢, it is possible to decide if rounding is
possible, or if more precision is required, in which case the computation is restarted using a slower
approximation of precision €, greater than g1, and so on. This approach makes sense even in terms of
average performance, as the slower steps are rarely taken.

However there was until recently no practical bound on the termination time of such an algorithm.
This iteration has been proven to terminate, but the actual maximal precision required in the worst case
is unknown. This might prevent using this method in critical application.

1.3 The Correctly Rounded Mathematical Library

Our own library, called crlibm for correctly rounded mathematical library, is based on the work of Lefevre
and Muller [26, 27] who computed the worst-case € required for correctly rounding several functions
in double-precision over selected intervals in the four IEEE-754 rounding modes. For example, they
proved that 157 bits are enough to ensure correct rounding of the exponential function on all of its
domain for the four IEEE-754 rounding modes.

1.3.1 Two steps are enough

Thanks to such results, we are able to guarantee correct rounding in two iterations only, which we may
then optimize separately. The first of these iterations is relatively fast and provides between 60 and
80 bits of accuracy (depending on the function), which is sufficient in most cases. It will be referred

12



throughout this document as the quick phase of the algorithm. The second phase, referred to as the
accurate phase, is dedicated to challenging cases. It is slower but has a reasonably bounded execution
time, tightly targeted at Lefevre’s worst cases.

Having a proven worst-case execution time lifts the last obstacle to a generalization of correctly
rounded transcendentals. Besides, having only two steps allows us to publish, along with each function,
a proof of its correctly rounding behavior.

1.3.2 Portable IEEE-754 FP for a fast first step

The computation of a tight bound on the approximation error of the first step (g;) is crucial for the
efficiency of the onion peeling strategy: overestimating £; means going more often than needed through
the second step, as will be detailed below in As we want the proof to be portable as well as the
code, our first steps are written in strict IEEE-754 arithmetic. On some systems, this means preventing
the compiler/processor combination to use advanced floating-point features such as fused multiply-
and-add or extended double precision. It also means that the performance of our portable library will
be lower than optimized libraries using these features (see [12] for recent research on processor-specific
correct-rounding).

To ease these proofs, our first steps make wide use of classical, well proven results like Sterbenz’
lemma or other floating-point theorems. When a result is needed in a precision higher than double
precision (as is the case of i1, the result of the first step), it is represented as as the sum of two floating-
point numbers, also called a double-double number. There are well-known algorithms for computing on
double-doubles, and they are presented in the next chapter. An advantage of properly encapsulating
double-double arithmetic is that we can actually exploit fused multiply-and-add operators in a trans-
parent manner (this experimental feature is currently available for the Itanium and PowerPC platforms,
when using the gcc compiler).

At the end of the quick phase, a sequence of simple tests on 1; knowing €; allows to decide whether
to go for the second step. The sequence corresponding to each rounding mode is shared by most func-
tions and is also carefully proven in the next chapter.

1.3.3 Ad-hoc, fast multiple precision for accurate second step

For the second step, we may use two specific multiple-precision libraries:

o We first designed an ad-hoc multiple-precision library called Software Carry-Save library (scslib)
which is lighter and faster than other available libraries for this specific application [14}[10]. This
choice is motivated by considerations of code size and performance, but also by the need to be
independent of other libraries: Again, we need a library on which we may rely at the proof level.
This library is included in crlibm, but also distributed separately [2]. This library is described in
more details in[2.8

e More recently, we have been using redundant triple-double arithmetic for the second step. This
approach is lighter, about ten times faster, and has the advantage of making it easier to reuse
information from the fast step in the accurate one. The drawback is that it is more difficult to
master. The basic triple-double procedures, and associated usage theorems, are described in a
separate document (tripledoubleprocedures.pdf) also available in this distribution.

1.3.4 Relaxing portability

The crlibm framework has been used to study the performance advantage of using double-extended
(DE) arithmetic when available. More specifically, the first case may be implemented fully in DE preci-
sion, and the second step may be implemented fully in double-DE arithmetic. Experiments have been
performed on the logarithm and arctangent functions [12]. On some systems (mostly Linux on an IA32
processor) the logarithm will by default use this technology.

Another useful, non-portable hardware feature is the fused multiply-and-add available on Pow-
er/PowerPC and Itanium. The crlibm code does its best to use it when available.
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1.3.5 Proving the correct rounding property

Throughout this document, what we call “proving” a function mostly means proving a tight bound on
the total relative error of our evaluation scheme. The actual proof of the correct rounding property is
then dependent on the availability of an actual worst-case accuracy for correctly rounding this function,
as computed by Lefevre and Muller. Three cases may happen:

e The worst case have been computed over the whole domain of the function. In this case the
correct rounding property for this function is fully proven. The state of this search for worst cases
is described in Table[T|page[9}

e The worst cases have been computed only over a subdomain of the function. Then the correct
rounding property is proven on this subdomain. Outside of this domain crlibm offers “astronom-
ical confidence” that the function is correctly rounded: to the best of current knowledge [18} 12],
the probability of the existence of a misrounded value in the function’s domain is lower than 240,
This is the case of the trigonometric functions, for instance. The actual domain on which the proof
is complete is mentionned in the respective chapter of this document, and summed up in Table

e The search for worst cases hasn’t begun yet.

We acknowledge that the notion of astronomical confidence breaks the objective of guaranteed cor-
rect rounding, and we sidestep this problem by publishing along with the library (in this document)
the domain of full confidence, which will only expand as time goes. Such behaviour has been proposed
as a standard in [15]. The main advantage of this approach is that it ensures bounded and consistent
worst-case execution time (within a factor 100 of that of the best available faithful 1ibms), which we
believe is crucial to the generalization of correctly rounded functions.

The alternative to our approach would be to implement a multi-layer onion-peeling strategy, as do
GNU MPER and Sun’s 1ibmcr. There are however many drawbacks to this approach, too:

e One may argue that, due to the finite nature of computers, it only pushes the bounds of astronomy
a little bit further.

e The multilayer approach is only proven to terminate on elementary functions: the termination
proof needs a theorem stating for example that the image of a rational by the function (with some
well-known exceptions) will not be a rational. For other library functions like special functions,
we have no such theorem. For these functions, we prefer take the risk of a misrounded value than
the risk of an infinite loop.

e Similarly, the multilayer approach has potentially unbounded execution time and memory con-
sumption which make it unsuitable for real-time or safety-critical applications, whereas crlibm
will only be unsuitable if the safety depends on correct rounding, which is much less likely.

e Multilayer code is probably much more complex and error prone. One important problem is
that it contains code that, according all probabilities, will never be run. Therefore, testing this
code can not be done on the final production executable, but on a different executable in which
previous layers have been disabled. This introduces the possibility of undetected bugs in the final
production executable.

In the future, we will add, to those crlibm functions for which the required worst-case accuracy is
unknown, a misround detection test at the end of the second step. This test will either print out on
standard error a lengthy warning inviting to report this case, or launch MPFR computation, depending
on a compilation switch.

1.3.6 Error analysis and the accuracy/performance tradeoff

As there are two steps on the evaluation, the proof also usually consists of two parts. The code of the
second, accurate step is usually very simple and straightforward:

e Performance is not that much of an issue, since this step is rarely taken.
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o All the special cases have already been filtered by the first step.
e The scslib library provides an overkill of precision.

Therefore, the error analysis of the second step, which ultimately proves the correct rounding prop-
erty, is not very difficult.
For the first step, however, things are more complicated:

e We have to handle special cases (infinities, NaNs, signed zeroes, over- and underflows).
e Performance is a primary concern, sometimes leading to “dirty tricks” obfuscating the code.
e We have to compute a tight error bound, as explained below.

Why do we need a tight error bound? Because the decision to launch the second step is taken by a
rounding test depending on

e the approximation yj + y; computed in the first step, and
e this error bound g;, which is computed statically.

The various rounding tests are detailed and proven in The important notion here is that the
probability of launching the second, slower step will be proportional to the error bound € computed for the first
step.

This defines the main performance tradeoff one has to manage when designing a correctly-rounded
function: The average evaluation time will be

Tavg = T1 + p2 T2 (1.1)

where T7 and T are the execution time of the first and second phase respectively (with T, ~ 10077 in
crlibm), and p; is the probability of launching the second phase (typically we aim at pp = 1/1000 so
that the average cost of the second step is less than 10% of the total.

As py is almost proportional to €, to minimise the average time, we have to

e balance T; and py: this is a performance/ precision tradeoff (the faster the first step, the less accu-
rate)

e and compute a tight bound on the overall error .

Computing this tight bound is the most time-consuming part in the design of a correctly-rounded
elementary function. The proof of the correct rounding property only needs a proven bound, but a
loose bound will mean a larger p; than strictly required, which directly impacts average performance.
Compare pp = 1/1000 and pp = 1/500 for T, = 10073, for instance. As a consequence, when there
are multiple computation paths in the algorithm, it makes sense to precompute different values of g; on
these different paths (see for instance the arctangent and the logarithm).

Apart from these considerations, computing the errors is mostly textbook science. Care must be
taken that only absolute error terms (noted J) can be added, although some error terms (like the rounding
error of an IEEE operation) are best expressed as relative (noted €). Remark also that the error needed for
the theorems in[2.7)is a relative error. Managing the relative and absolute error terms is very dependent
on the function, and usually involves keeping upper and lower bounds on the values manipulated
along with the error terms.

Error terms to consider are the following;:

e approximation errors (minimax or Taylor),
¢ rounding error, which fall into two categories:

— roundoff errors in values tabulated as doubles or double-doubles (with the exception of
roundoff errors on the coefficient of a polynomial, which are counted in the appproxima-
tion error),

- roundoff errors in IEEE-compliant operations.
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1.4 An overview of other available mathematical libraries

Many high-quality mathematical libraries are freely available and have been a source of inspiration for
this work.
Most mathematical libraries do not offer correct rounding. They can be classified as

e portable libraries assuming IEEE-754 arithmetic, like fdlibm, written by Sun([3];
e Processor-specific libraries, by Intel[20] [1] and HP[30, 28] among other.

Operating systems often include several mathematical libraries, some of which are derivatives of
one of the previous.
To our knowledge, three libraries currently offer correct rounding:

e The libultim library, also called MathLib, is developed at IBM by Ziv and others [29]. It provides
correct rounding, under the assumption that 800 bits are enough in all case. This approach suffers
two weaknesses. The first is the absence of proof that 800 bits are enough: all there is is a very
high probability. The second is that, as we will see in the sequel, for challenging cases, 800 bits are
much of an overkill, which can increase the execution time up to 20,000 times a normal execution.
This will prevent such a library from being used in real-time applications. Besides, to prevent
this worst case from degrading average performance, there is usually some intermediate levels
of precision in MathLib’s elementary functions, which makes the code larger, more complex, and
more difficult to prove (and indeed this library is scarcely documented).

In addition this library provides correct rounding only to nearest. This is the most used round-
ing mode, but it might not be the most important as far as correct rounding is concerned: correct
rounding provides a precision improvement over current mathematical libraries of only a fraction
of a unit in the last place (ulp). Conversely, the three other rounding modes are needed to guaran-
tee intervals in interval arithmetic. Without correct rounding in these directed rounding modes,
interval arithmetic looses up to one ulp of precision in each computation.

e MPFR is a multiprecision package safer than [ibultilm as it uses arbitrary multiprecision. It pro-
vides most of elementary functions for the four rounding modes defined by the IEEE-754 stan-
dard. However this library is not optimized for double precision arithmetic. In addition, as its
exponent range is much wider than that of IEEE-754, the subtleties of subnormal numbers are
difficult to handle properly using such a multiprecision package.

e The libmcr library, by K.C. Ng, Neil Toda and others at Sun Microsystems, had its first beta
version published in december 2004. Its purpose is to be a reference implementation for correctly
rounded functions in double precision. It has very clean code, offers arbitrary multiple precision
unlike 1ibultim, at the expense of slow performance (due to, for example dynamic allocation of
memory). It offers the directed rounding modes, and rounds in the mode read from the processor
status flag.

1.5 Various policies in crlibm

1.5.1 Naming the functions

Current crlibm doesn’t by default replace your existing 1ibm: the functions in crlibm have the C99
name, suffixed with _rn, _ru, _rd, and _rz for rounding to the nearest, up, down and to zero respectively.
They require the processor to be in round to nearest mode. Starting with version 0.9 we should provide
a compile-time flag which will overload the default 1ibm functions with the crlibm ones with rounding
to nearest.

It is interesting to compare this to the behaviour of Sun’s library: First, Sun’s 1ibmcr provides only
one function for each C99 function instead of four in crlibm, and rounds according to the processor’s
current mode. This is probably closer to the expected long-term behaviour of a correctly-rounded math-
ematical library, but with current processors it may have a tremendous impact on performance. Besides,
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the notion of “current processor rounding mode” is no longer relevant on recent processors like the Ita-
nium family, which have up to four different modes at the same time. A second feature of libmcr is
that it overloads by default the system 1ibm.

The policy implemented in current crlibm intends to provide best performance to the two classes
of users who will be requiring correct rounding: Those who want predictible, portable behaviour of
floating-point code, and those who implement interval arithmetic. Of course, we appreciate any feed-
back on this subject.

1.5.2 Policy concerning IEEE-754 flags

Currently, the crlibm functions try to raise the Overflow and Underflow flags properly. Raising the
other flags (especially the Inexact flag) is possible but considered too costly for the expected use, and
will usually not be implemented. We also appreciate feedback on this subject.

1.5.3 Policy concerning conflicts between correct rounding and expected mathe-
matical properties

As remarked in [15], it may happen that the requirement of correct rounding conflicts with a basic math-
ematical property of the function, such as its domain and range. A typical example is the arctangent of a
very large number which, rounded up, will be a number larger than 71/2 (fortunately, o(7/2) < 7t/2).
The policy that will be implemented in crlibm will be

e to give priority to the mathematical property in round to nearest mode (so as not to hurt the
innocent user who may expect such a property to be respected), and

e to give priority to correct rounding in the directed rounding modes, in order to provide trustful
bounds to interval arithmetic.

Again, this policy is open to discussion.

1.6 Organization of the source code

For recent functions implemented using triple-double arithmetic, both quick and accurate phase are
provided in a single source file, e.g. exp-td.c.

For older functions using the SCS library, each function is implemented as two files, one with the
_accurate suffix (for instance trigo_accurate.c), the other named with the _fast suffix (for instance
trigo_fast.c).

The software carry-save multiple-precision library is contained in a subdirectory called scs_1ib.

The common C routines that are detailed in Chapter[2|of this document are defined in crlibm private.c
and crlibm private.h.

Many of the constants used in the C code have been computed thanks to Maple procedures which
are contained in the maple subdirectory. Some of these procedures are explained in Chapter[2} For some
functions, a Maple procedure mimicking the C code, and used for debugging or optimization purpose,
is also available.

The code also includes programs to test the crlibm functions against MPFR, 1ibultim or libmcr, in
terms of correctness and performance. They are located in the tests directory.

Gappa proof scripts are located in the gappa directory.
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Chapter 2

Common notations, theorems and
procedures

2.1 Notations

The following notations will be used throughout this document:
e +, — and x denote the usual mathematical operations.

e @, © and ® denote the corresponding floating-point operations in IEEE-754 double precision, in
the IEEE-754 round to nearest mode.

e o(x), A(x) and 5/ (x) denote the value of x rounded to the nearest, resp. rounded up and down.

e ¢ (usually with some index) denotes a relative error, 6 denotes an absolute error. Upper bounds
on the absolute value of these errors will be denoted & and é.

e £_; —with a negative index - represents an error ¢ such that || < 2.

e For a floating-point number x, the value of the least significant bit of its mantissa is classically
denoted ulp(x).

2.2 Common C procedures for double-precision numbers

2.2.1 Sterbenz Lemma

Theorem 1 (Sterbenz Lemma [37, [19]). If x and y are floating-point numbers, and if y/2 < x < 2y then
x Oy is computed exactly, without any rounding error.

2.2.2 Double-precision numbers in memory

A double precision floating-point number uses 64 bits. The unit of memory in most current architectures
is a 32-bit word. The order in which the two 32 bits words of a double are stored in memory depends
on the architecture. An architecture is said Little Endian if the lower part of the number is stored in
memory at the smallest address; It is the case of the x86 processors. Conversely, an architecture with
the high part of the number stored in memory at the smallest address is said Big Endian; It is the case of
the PowerPC processors.

In crlibm, we extract the higher and lower parts of a double by using an union in memory: the type
db_number. The following code extracts the upper and lower part from a double precision number x.

Listing 2.1: Extract upper and lower part of a double precision number x

1 /* HI and LO are defined automatically by autoconf/automake. x/
2
3| db_number xx;
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int x_hi, x_lo;
xx.d = x;

x_hi = xx.i[HI]
x_lo = xx.i[LO]

2.2.3 Conversion from floating-point to integer

Theorem 2 (Conversion floating-point to integer). The following algorithm, taken from [4l], converts a
double-precision floating-point number d into a 32-bit integer i with rounding to nearest mode.
It works for all the doubles whose nearest integer fits on a 32-bit machine signed integer.

Listing 2.2: Conversion from FP to int

#define DOUBLE2INT(i, d)
{double t=(d+6755399441055744.0); i=LO(t);}

This algorithm adds the constant 252 + 25! to the floating-point number to put the integer part of x,
in the lower part of the floating-point number. We use 2°2 + 2% and not 2°2, because the value 2°! is
used to contain possible carry propagations with negative numbers.

2.24 Conversion from floating-point to 64-bit integer

Theorem 3 (Conversion floating-point to a long long integer). The following algorithm, is derived from the
previous.
It works for any double whose nearest integer is smaller than 2°1 — 1.

Listing 2.3: Conversion from FP to long long int

#define DOUBLE2LONGINT(i, d)

\
\
db_number t; \
t.d = (d+6755399441055744.0) ; \
if (d >= 0) /x sign extend x*/ \

i = t.] & 0x0007FFFFFFFFFFFFLL; \
else \

i = (t.1 & Ox0007FFFFFFFFFFFFLL) | (O0xFFF8000000000000LL); \

2.2.5 Methods to raise IEEE-754 flags

The IEEE standard imposes, in certain cases, to raise flags and/or exceptions for the 4 operators (4, X,
=, \/ ). Therefore, it is legitimate to require the same for elementary functions.

In ISO C99, the following instructions raise exceptions and flags:

e underflow : the multiplication smallest X smallest where smallest correspond to the smallest
subnormal number,

e overflow : the multiplication £largest x largest where largest correspond to the largest normal-
ized number,

e division by zero : the division +1.0/0.0,

e inexact : the addition (x + smallest) — smallest where x is the result and smallest the smallest
subnormal number,

e invalid : the division +0.0/0.0.
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2.3 Common C procedures for double-double arithmetic

Hardware operators are usualy limited to double precision. To perform operations with more precision,
then software solutions need to be used. One among them is to represent a floating point number as
the sum of two non-overlapping floating-point numbers (or double-double numbers).

The algorithms are given as plain C functions, but it may be preferable, for performance issue, to im-

plement them as macros, as in 1ibultim. The code offers both versions, selected by the DEKKER_AS_FUNCTIONS

constant which is set by default to 1 (functions).
A more recent proof is available in [25].
2.3.1 Exact sum algorithm Add12
This algorithm is also known as the Fast2Sum algorithm in the litterature.

Theorem 4 (Exact sum [22, [7]). Let a and b be floating-point numbers, then the following method computes
two floating-point numbers s and r, such that s +r = a + b exactly, and s is the floating-point number which is
closest to a + b.

Listing 2.4: Add12Cond

void Add12Cond(double s, double xr, a, b)

double z;
s =a + b;
if (ABS(a) > ABS(b)){

z =S —a;

r=5b-— z;
telse {

z =5 —0b;
r=a— z;

Here ABS is a macro that returns the absolute value of a floating-point number. This algorithm requires 4 floating-
point additions and 2 floating point tests (some of which are hidden in the ABS macro).

Note that if it is more efficient on a given architecture, the test can be replaced with a test on the exponents of
aand b.

If we are able to prove that the exponent of a is always greater than that of b, then the previous
algorithm to perform an exact addition of 2 floating-point numbers becomes :

Listing 2.5: Add12

void Addl12(double *s, double xr, a, b)
double z;

s =a + b;
z =8 — a;
r=>b— z;

}

The cost of this algorithm is 3 floating-point additions.

2.3.2 Exact product algorithm Mul12

This algorithm is sometimes also known as the Dekker algorithm [16]. It was proven by Dekker but the
proof predates the IEEE-754 standard and is difficult to read. An easier proof is available in [19] (see
Th. 14).

Theorem 5 (Restricted exact product). Let a and b be two double-precision floating-point numbers, with 53
bits of mantissa. Let c = 2lF1 4 1. Assuming that a < 2%70 and b < 2°7°, the following procedure computes the
two floating-point numbers rh and rl such that vh +rl = a+bwithrh =a ® b:

Listing 2.6: Mul12

1‘void Muli2(double xrh, double xrl, double u, double v){
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const double ¢ = 134217729.; /x 142727 x/

2
3 double up, ul, u2, vp, vl, v2;
4

5 up = uxc; vp = vxC;

6| ul = (u—up)+up; vl = (v—vp)+op;
7 u2 = u—ul; v2 = v—ol;

8

9 *rh UX0;

10 *rl (((ulxvl—xrh)+(ul*xv2))+(u2*vl))+(u2*v2);

The cost of this algorithm is 10 floating-point additions and 7 floating-point multiplications.
The condition a < 2°70 and b < 2%70 prevents overflows when multiplying by c. If it cannot be
proved statically, then we have to first test 4 and b, and prescale them so that the condition is true.

Theorem 6 (Exact product). Let a and b be two double-precision floating-point numbers, with 53 bits of man-

tissa. Let ¢ = 2171 1. The following procedure computes the two floating-point numbers rh and rl such that
th+rl =a+bwithrh =a®b:

Listing 2.7: Mul12Cond

void Mull2Cond(double xrh, double xrl, double a, double b){
const double two_ 970 = 0.997920154767359905828186356518419283¢e292;

1

2

3 const double two_em53 = 0.11102230246251565404236316680908203125¢ —15;
4 const double two_e53 = 9007199254740992.;

5 double u, v;

6

7 if (a>two_970) u = axtwo_emb3;

8 else u=a;

9 if (b>two_970) v = bxtwo_em53;

10 else v =20;

2| Mull2(rh, rl, u, v);

14 if (a>two.970) {xrh %= two_e53; =rl x= two_e53;}
15 if (b>two.970) {xrh %= two_e53; =rl %= two_e53;}

The cost in the worst case is then 4 tests over integers, 10 floating-point additions and 13 floating-
point multiplications.

Finally, note that a fused multiply-and-add provides the Mul12 and Mul12Cond in only two instruc-
tions [8]. Here is the example code for the Itanium processor.

Listing 2.8: Mul12 on the Itanium

#define Mull2Cond(rh,rl ,u,v)

*rh = uxv;
/x The following means: xrl = FMS(uxv—xrh) x/
_casm__ __volatile__("fms %0 = %1, %2, %3\n ;;\n”
: "=f"(xrl)
77 (u), "f7(v), "f”(xrh)

’

e —
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10| #define Mull2 Mull12Cond

The crlibm distribution attempts to use the FMA for systems on which it is availables (currently
Itanium and PowerPC).

2.3.3 Double-double addition Add22

This algorithm, also due to Dekker [16], computes the sum of two double-double numbers as a double-
double, with a relative error smaller than 27103 (there is a proof in [16], a more recent one can be found
in in [25]).

Listing 2.9: Add22Cond

1| void Add22Cond(double *zh, double xzl, double xh, double xl, double yh, double yl)
2/ {

3| double r,s;
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h+yh;

ABS(xh) > ABS(yh))? (xh—r+yh+yl+xl) : (yh—r+xh+xl+yl);
r+s;

r — (xzh) + s;

N N
—
I n—~x

Here ABS is a macro that returns the absolute value of a floating-point number. Again, if this test
can be resolved at compile-time, we get the faster Add22 procedure:

Listing 2.10: Add22

void Add22(double xzh, double xzl, double xh, double xl, double yh, double yl)
double r,s;

r = xh+yh;

s = xh—r+yh+yl+xl;
*zh r+s;

xz1 r — (xzh) + s;

}

2.3.4 Double-double multiplication Mul22

This algorithm, also due to Dekker [16], computes the product of two double-double numbers as a
double-double, with a relative error smaller than 27192, under the condition x, < 2°7 and y;, < 2°7°
(there is a proof in [16], a more recent one can be found in in [25]).

Listing 2.11: Mul22

void Mul22(double *zh, double xzl, double xh, double xl, double yh, double yl)

double mh, ml;
const double ¢ = 134217729.; /x 0x41A00000, 0x02000000 x/
double up, ul, u2, vp, vl, v2;
up = xhxc; vp = yhxc;
ul = (xh—up)+up; vl = (yh—vp)+vp;
u2 = xh—ul; v2 = yh—vl;
mh = xhsyh;
ml = (((uls*vl-mh)+(ul*v2))+(u2xvl))+(u2xv2);
ml += xhxyl + xlxyh;
*zh = mh+ml;
xz]1 = mh — (xzh) + ml;
}

Note that the bulk of this algorithm is a Mul12(mh,ml,xh,yh). Of course there is a conditional
version of this procedure but we have not needed it so far.

2.3.5 The multiplication procedure Mul122

Algorithm 1 (Mul122).

In: a double precision number a and a double-double number by, + b,
Out: a double-double number ry, + 1,

Preconditions on the arguments:

by < 27 |y
Algorithm:
(tl,tZ) < Mul12 (11, bh)
t3 «—a®b

Iy <~ t) Di3
(rh/ 1’[) < Add12 (tll t4)
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Theorem 7 (Relative error of algorithm Mul122).
Let be a and by, + by the values taken by the arguments of algorithm 1 Mul122
So the following holds for the values returned vy, and r;:

rh+rl:(a-(bh+bl))~(1+£)

where ¢ is bounded as follows:
|8| < 2—102

The values returned ry, and r; will not overlap at all.

2.3.6 Double-double Horner step procedures
The multiply-and-add operator MulAdd212

Algorithm 2 (MulAdd212).

In: a double-double number cj, + c;, a double precision number a and a double-double number by, + b,
Out: a double-double number ry, + 1,

Preconditions on the arguments:

] < 279 |y
o] < 27 g
la- (bp+b)] < 272 |y +cf

Algorithm:

(t1,t2) < Mull2 (a,by,)
(ts, t4) < Add12 (Ch, f])
t5 < bl Xa
tg < 1Dty
ty < t5 D tg
tg <ty Dy
(rp, 71) < Add12 (t3,tg)

Theorem 8 (Relative error of algorithm 2] MulAdd212).
Let be cy, + c;, a and by, + by the arguments of algorithm 2] MulAdd212 verifying the given preconditions.
So the following egality will hold for the returned values rj, and 1,

mtrn=(ent+ec)+a (bp+b)) (1+e)

where € is bounded by:
|€| < 2—100

The returned values ry, and r) will not overlap at all.

The multiply-and-add operator MulAdd22

Algorithm 3 (MulAdd22).

In: three double-double numbers cj, + c;, ay, + a; and b, + b,
Out: a double-double number ry, + 1,

Preconditions on the arguments:

2*53

la| < |ay|

| < 279 |y

ol < 27 g
(ap+ap) - (by+b)| < 272 |ep+q

Algorithm:
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(tl, tz) < Mul12 (ﬂh, bh)
(i’3, i’4) +— Add1i2 (Ch, tl)
t5 < a, @b

te < a; @by,

ty < th D¢y

tg <ty Pty

tg < t5 D tg

t1g < tg D to

(ryp,77) < Add12 (t3,t10)

Theorem 9 (Relative error of algorithm MulAdd22).
Let be ¢y, + ¢}, a, + a; and by, + by the arguments of algorithm B|MulAdd22 verifying the given preconditions.
So the following egality will hold for the returned values 1y, and 1,

1= ((cp+cp) + (ap+ar) - (by + b)) - (1+¢)

where € is bounded by:
|€| < 27100

The returned values ry, and r; will not overlap at all.

2.3.7 Multiplication of a double-double by an integer

Use Cody and Waite algorithm. See for instance the log and the trigonometric argument reduction

(chapter 3] p. B1I).

24 Common C procedures for triple-double arithmetic

These procedures are used to reach accuracies of about 150 bits. They are detailed and proven in [25].

Algorithm 4 (Renormalization).
In: ay,, ay, a; € T verifying the following preconditions:
Preconditions:

o None of the numbers ay, ay,, a; is subnormal
e ay et ay, do not overlap in more than 51 bits
e ay, et aj do not overlap in more than 51 bits

which means formally:

am| < 277 |ay]
la| < 272, |am|
ly| < 27 |ay

Out: 1y, 1,1 € F

(tip, ty) < Add12 (ay,a))

(rnotar) 4= Add12(ay, ty)

(rm,11) < Add12(ty, tyy)
Theorem 10 (Correctness of the renormalization algorithm@] Renormalize3).
For all arguments verifying the preconditions of procedure Renormalize3, the values returned ty, 1, and r; will
not overlap unless they are all equal to 0 and their sum will be exactly the sum of the values in argument ay, a,
et a;. This implies:

1] <2721y

I <27 ||
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24.1 The addition operator Add33

Algorithm 5 (Add33).

In: two triple-double numbers, ay, + ay, + a; and by, + by, + by
Out: a triple-double number ry, + vy, + 17

Preconditions on the arguments:

bn| < %|ﬂh|
lam| < 27% - |ay|
| < 27 ay
bul < 27F-|by|
b < 2P by
a, > 4

ay, > 1

,Bo > 4

ﬁu > 1

Algorithm:

(rp, t1) < Add12 (ay, by,)
(t2, t3) <~ Addi2 (le, bm)
(t7, ty) < Add12 (fl,fz)
te < a; D b;
ts b3 D1y
tg < t5 D tg
(Tm, 1’1) <+~ Add12 (t7, tg)
Theorem 11 (Relative error of algorithm 5| Add33).
Let be ay, + ay, + a; and by, + by, + by the triple-double arguments of algorithm 5| Add33 verifying the given

preconditions.
So the following egality will hold for the returned values ry, 1,y and 1

"h+rm + 11 = ((ap +am +a) + (by + by + b)) - (1 +¢)
where € is bounded by:
|£| <92~ min(ao+ay,Bo+Pu) —47 _|_27min(aca,/30)f98

The returned values 1y, and r; will not overlap at all and the overlap of ry, and ry, will be bounded by the following
expression:
|7’m| < zfmin(zxo,ﬁg)+5 . |7’h|

2.4.2 The addition operator Add233

Algorithm 6 (Add233).

In: a double-double number aj, + a; and a triple-double number by, + by, + b
Out: a triple-double number ry, + vy, + 17

Preconditions on the arguments:

by < 277 |ay]

a| < 277 |ayl
b < 270 by
b < 2P by

Algorithm:
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(rp, t1) < Add12 (ay, by,)
(tg, t3) <+~ Addi2 (lll, bm)
(ts,t5)  Add12 (¢, t))
te < t3D b
ty < tg D5
(T’m, Tl) +— Add12 (t4, t7)

Theorem 12 (Relative error of algorithm [f| Add233).

Let be aj, + a; and by, + by, + by the values taken in argument of algorithm [6| Add233. Let the preconditions hold
for this values.

So the following holds for the values returned by the algorithm 1y, v, and ry

o+ 1w +11= ((a + am +a;) + (by +bm + b)) - (1 +¢)

where ¢ is bounded by
le| < 2 Po—Pu=52 | p—Po=104 4 =153

The values ry, and r; will not overlap at all and the overlap of ry, and 1y, will be bounded by:
[l < 277 ||
with
¥ > min (45, Bo — 4, Bo + Bu — 2)
2.4.3 The addition operator Add133

Algorithm 7 (Add133).

In: a double precision number a and a triple-double number by, + by, + b
Out: a triple-double number ry, + vy, + 17

Preconditions on the arguments:

ol < 272-Ja]
bul < 2P0 |y
bl < 2P bl

Algorithm:

(T’h, tl) «— Addi2 (ﬂ, bh)

(tg, t3) <+~ Addi2 (tl,bm)
ty 3D b

(Tm, rl) <+~ Add12 (t2, t4)

Theorem 13 (Relative error of algorithm /] Add133).

Let be a and by, + by, + by the values taken in argument of algorithm[7) Add133. Let the preconditions hold for
this values.

So the following holds for the values returned by the algorithm ry, 1y, and 1y

thttm+rr=(a+ (b +bu+0b)) - (1+e)

where € is bounded by
‘£| < 27/307‘511752 _‘_27154

The values 1y, and r; will not overlap at all and the overlap of ry, and r,, will be bounded by:
] < 277 - ||

with
vy > min (47, Bo — 2, Bo + Bu — 1)
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24.4 The multiplication procedure Mul33

Algorithm 8 (Mul33).

In: two triple-double numbers aj, + a,, + a; and by, 4 by, + by
Out: a triple-double number ry, + vy, + 17

Preconditions on the arguments:

anl < 27|y
] < 275 an|
bl < 2P0 by
bl < 2P by
with
a, > 2
ay, > 2
o = 2
Pu = 2
Algorithm:

(rp, t1) < Mull2 (ay, by)

(tp, t3) < Mull2 (ay, bm)
(t4,t5)  Mull2 (ay, by,)

(te, t7) <= Mull2 (ay, by,)

tg < a, @b

tg < a;® by,

f10 < am R by

t1 < 4 ® by,

tp < tg B tg

ti3 <= t1o Dty

(t14, t15) <+~ Addi12 (tl, té)

tig <ty D15

ti7 <~ tin Dtz

t1g < t1e D tiy

(t19,t20) < Add12 (f14, t1g)
(t7_1, tzz) <~ Add22 (tz, t3, t4, t5)
(Vm, 7’1) +— Add22 (t21/ oo, to, i’z())

Theorem 14 (Relative error of algorithm [§{Mul33).
Let be a, + ay, + a; and by, + by, + by the values taken by the arguments of algorithm 8 Mul33
So the following holds for the values returned ry, 1y, and ry:

ot rm 1= ((ap + am +ar) - (by + b + by)) - (1 +¢)

where € is bounded as follows:
|£| 2—151

27997%
=99,
2—49—040—04,,
2—49=Po—Pu
9—50—a—Bo—Pu
2—50—a0—au—ﬁ0
7~ 101-a0—Bo
27527%7041,7‘8,,7,81,

o+ 4+ A
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The values returned ry, and r; will not overlap at all and the overlap of vy, and 1y, will be bounded as follows:
|| <277 - |

with
Yo = min(4810‘o —41,80 —4, 0, + ay —4/}30 +,Bu — 4,00 + o —4)

2.4.5 The multiplication procedure Mul23

Algorithm 9 (Mul23).

In: fwo double-double numbers ay, + a; and by, + b;
Out: a triple-double number ry, + vy, + 17
Preconditions on the arguments:

275 |y
275 |y

|a]
|b|

IAIA

Algorithm:

(rp, t1) < Mull2 (ay, by)
(t2,t3)  Mull2 (a, b))

(i’4, i’5) — Muli2 (lZl, bh)

te «— a0

(ty, tg) < Add22 (i’z, t3, 14, i’5)
(g, t19) < Add12 (i1, t)

(T’m, 1’1) +— Add22 (t7, tg, to, th)

Theorem 15 (Relative error of algorithm@] Mul23).
Let be ay, + a; and by, + b; the values taken by arguments of algorithm [ Mul23
So the following holds for the values returned ry, vy, and ry:

mtrmtr=((ap+a) (by+b))-(1+e)

where € is bounded as follows:
|€| S 2—149

The values returned ry, and r; will not overlap at all and the overlap of vy, and 1y, will be bounded as follows:

[rm| <274 |1y

2.4.6 The multiplication procedure Mul233

Algorithm 10 (Mul233).

In: a double-double number ay, + a; and a triple-double number by, + by, + b
Out: a triple-double number ry, + vy, + 17

Preconditions on the arguments:

| < 27 |y
bw| < 27F0 |y
il < 27Pe bl
with
Bo > 2
Pu = 1
Algorithm:
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(T’h, tl) < Mul12 (ah, bh)

(tg, 3) < Mul12 (llh,b )

(ts,t5) <+ Mull2 (a,, b))

(te, t7) < Mull2 (a, bh)

(tg, tg) < Mull2 (a;, b )

to < 4 @ b;

(tllrtlZ) +— Add22 (tz, t3, ty4, t5)
(t13, t14) +— Add22 (té, ty, tg, tg)
(t15, t16) +— Add22 (tn, t1o, 113, t14)
(ti7, t1g) = Add12(ty, t10)
(rm,71) < Add22 (t17, 118, 115, t6)

Theorem 16 (Relative error of algorithm [10]Mul233).

Let be ay, + a; and by, + by, + by the values in argument of algorithm[I0|Mul233 such that the given preconditions
hold.

So the following will hold for the values 1y, ry, and r; returned

thtrm+1=((ap +ar) - (b +bm+1bp)) - (1+e)

where € is bounded as follows:

99—Bo 99—Bo—Bu 152
le| < A ¥ R < 2797bo 4 2=97—Po—Pu 4 p—150
- 1-2- 53 — 2 /30+1 2— ﬁo ﬁu+1 -

The values ry, and r; will not overlap at all and the following bound will be verified for the overlap of 1y, and 1y,:
[l < 277 ||

where
v > min (48, 8o — 4, Bo + Bu —4)

2.4.7 The multiplication procedure Mul133

Algorithm 11 (Mul133).

In: a double number a and a triple-double number by, + by, + b
Out: a triple-double number ry, + vy, + 17

Preconditions on the arguments:

b < 270 by
b < 2P by
with
Bo > 2
Bu > 2
Algorithm:
(T’h, i’z) < Mul12 (a, bh)
(t3,t4) < Mull2 (a, by,)
t5 «— a® b
(tg, t7) — Addi12 (i’z, i’3>
g <~ t4 D5
fip < t7Dtg

(T’m, 7"1) +— Addi12 (i’g, th)
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Theorem 17 (Relative error of algorithm [11{Mul133).

Let be a and by, + by, + by the values in argument of algorithm (11| Mul133 such that the given preconditions
hold.

So the following will hold for the values ry, ry, and r) returned

T’h‘|‘7’m+7’l:(ﬂ'(bh+bm+bl))'(1+€)

where € is bounded as follows:
le| < 27 101=Bo 4 p—49—Fo—Pu 4 9156

The values 1y, and r; will not overlap at all and the following bound will be verified for the overlap of rj, and 1y,:
‘rm| <277, |rh|
where
v > min (47, Bo — 5, Bo + Bu — 5)
2.4.8 The multiplication procedure Mul123

Algorithm 12 (Mul123).

In: a double number a and a double-double number by, + b,
Out: a triple-double number t}, + ry + 1,

Preconditions on the arguments:

bl < 27|
Algorithm:
(T’h, tl) < Mul12 (ﬂ, bh)
(t2,13) + Mull2 (a, b))
(t5, t4) +— Addi12 (tl,tz)

g 13 R 1y
(Vm, rl) +— Addi12 (t5, t6)

Theorem 18 (Relative error of algorithm Mul123).
Let be a and by, + by the values in argument of algorithm[I2Mul123 such that the given preconditions hold.
So the following will hold for the values 1y, ry, and r; returned

mtrmtr=(a-(bp+b)) (1+e)

where € is bounded as follows:
|€| < 2—154

The values 1y, and r; will not overlap at all and the following bound will be verified for the overlap of rj, and 1y,:
[rm| <277 - |y
where
v > 47
2.4.9 Final rounding to the nearest even

Algorithm 13 (Final rounding to the nearest (even)).

In: a triple-double number xj, + xp, + x;

Out: a double precision number x' returned by the algorithm
Preconditions on the arguments:

o xj, and Xy, as well as x,, and x; do not overlap

o Xy =0 (Xm + )
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e X, #0,x #0and x; #0

o o (x+xm) & {x;, 20,57 } = | (0 + xm) — 0 (3 + xm)| # 3 - ulp (0 (x4 + X))

Algorithm:

tleth
tr) <~ x, © t1
t3(—t2®%
t4<—x;[
t5 < 14 © Xy,
te — t5® %

if (x;; # —t3) and (x; # tg) then
return (x; ® xp)
else
if (x ® x; > 0.0) then
if (x; ® x; > 0.0) then
return x;°
else
return x,
end if
else
return xj
end if

end if

Theorem 19 (Correctness of the final rounding procedure [13).

Let be A the algorithmsaid “ Final rounding to the nearest (even)”. Let be xy, + x + x; triple-double number
for which the preconditions of algorithm A hold. Let us notate x" the double precision number returned by the
procedure.

So

x" = o (xp + xm + x7)

i.e. A is a correct rounding procedure for round-to-nearest-ties-to-even mode.

2.410 Final rounding for the directed modes

Theorem 20 (Directed final rounding of a triple-double number).

Let be x, + xy, + x; € F + F + F a non-overlapping triple-double number.
Let be o a directed rounding mode.

Let be A th