i1 : n = 3 o1 = 3 |
i2 : R = ZZ/2[vars(0)..vars(n-1)] o2 = R o2 : PolynomialRing |
i3 : J = apply( gens R, x -> x^2 + x) 2 2 2 o3 = {a + a, b + b, c + c} o3 : List |
i4 : QR = R/J o4 = QR o4 : QuotientRing |
i5 : I = ideal(a+b,b) o5 = ideal (a + b, b) o5 : Ideal of QR |
i6 : gbBoolean I o6 = ideal (b, a) o6 : Ideal of QR |
i7 : gens gb I o7 = | b a | 1 2 o7 : Matrix QR <--- QR |