next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                        2 2         2 2    2                 2          
o2 = ideal (c*e*w - o, p w  - c*o, i v  - d h, i*k*p*r - 1, b c*l*x - 1,
     ------------------------------------------------------------------------
        2 2    2   2 2 2 2
     a*c h  - k , a b q s  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 4 2 4 3    4 3 3 3 3   3 2 2 4 3 3    3 3 2 3   4 3 4 3 3 4  
o3 = ideal (c d g m o  - a b j l p , a c m r t x  - d f s u , e g l n s w  -
     ------------------------------------------------------------------------
      3 3 2 4   3 3 3 3 3 3 4    4 3 3
     a f m o , b c d e h t x  - a q v )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.