
Contents

1 Introduction to Parrot 2

2 Overview 10

3 Submitting bug reports and patches 14

1

Chapter 1

Introduction to Parrot

Welcome to Parrot

This document provides a gentle introduction to the Parrot virtual machine
for anyone considering writing code for Parrot by hand, writing a compiler
that targets Parrot, getting involved with Parrot development or simply
wondering what on earth Parrot is.

What is Parrot?

Virtual Machines

Parrot is a virtual machine. To understand what a virtual machine is,
consider what happens when you write a program in a language such as
Perl, then run it with the applicable interpreter (in the case of Perl, the perl
executable). First, the program you have written in a high level language is
turned into simple instructions, for example fetch the value of the variable
named x, add 2 to this value, store this value in the variable named y, etc.
A single line of code in a high level language may be converted into tens of
these simple instructions. This stage is called compilation.

The second stage involves executing these simple instructions. Some
languages (for example, C) are often compiled to instructions that are un-
derstood by the CPU and as such can be executed by the hardware. Other
languages, such as Perl, Python and Java, are usually compiled to CPU-
independent instructions. A virtual machine (sometimes known as an inter-
preter) is required to execute those instructions.

While the central role of a virtual machine is to efficiently execute in-
structions, it also performs a number of other functions. One of these is to
abstract away the details of the hardware and operating system that a pro-
gram is running on. Once a program has been compiled to run on a virtual
machine, it will run on any platform that the VM has been implemented

2

on. VMs may also provide security by allowing more fine-grained limita-
tions to be placed on a program, memory management functionality and
support for high level language features (such as objects, data structures,
types, subroutines, etc).

Design goals

Parrot is designed with the needs of dynamically typed languages (such as
Perl and Python) in mind, and should be able to run programs written in
these languages more efficiently than VMs developed with static languages
in mind (JVM, .NET). Parrot is also designed to provide interoperability
between languages that compile to it. In theory, you will be able to write a
class in Perl, subclass it in Python and then instantiate and use that subclass
in a Tcl program.

Historically, Parrot started out as the runtime for Perl 6. Unlike Perl 5,
the Perl 6 compiler and runtime (VM) are to be much more clearly separated.
The name Parrot was chosen after the 2001 April Fool’s Joke which had Perl
and Python collaborating on the next version of their languages. The name
reflects the intention to build a VM to run not just Perl 6, but also many
other languages.

Parrot concepts and jargon

Instruction formats

Parrot can currently accept instructions to execute in four forms. PIR (Par-
rot Intermediate Representation) is designed to be written by people and
generated by compilers. It hides away some low-level details, such as the
way parameters are passed to functions. PASM (Parrot Assembly) is a level
below PIR - it is still human readable/writable and can be generated by a
compiler, but the author has to take care of details such as calling conven-
tions and register allocation. PAST (Parrot Abstract Syntax Tree) enables
Parrot to accept an abstract syntax tree style input - useful for those writing
compilers.

All of the above forms of input are automatically converted inside Par-
rot to PBC (Parrot Bytecode). This is much like machine code, but under-
stood by the Parrot interpreter. It is not intended to be human-readable
or human-writable, but unlike the other forms execution can start immedi-
ately, without the need for an assembly phase. Parrot bytecode is platform
independent.

3

The instruction set

The Parrot instruction set includes arithmetic and logical operators, com-
pare and branch/jump (for implementing loops, if. . . then constructs, etc),
finding and storing global and lexical variables, working with classes and
objects, calling subroutines and methods along with their parameters, I/O,
threads and more.

Registers and fundamental data types

The Parrot VM is register based. This means that, like a hardware CPU,
it has a number of fast-access units of storage called registers. There are 4
types of register in Parrot: integers (I), numbers (N), strings (S) and PMCs
(P). There are N of each of these, named I0,I1,..N0.., etc. Integer registers
are the same size as a word on the machine Parrot is running on and number
registers also map to a native floating point type. The amount of registers
needed is determined per subroutine at compile-time.

PMCs

PMC stands for Polymorphic Container. PMCs represent any complex data
structure or type, including aggregate data types (arrays, hash tables, etc).
A PMC can implement its own behavior for arithmetic, logical and string
operations performed on it, allowing for language-specific behavior to be
introduced. PMCs can be built in to the Parrot executable or dynamically
loaded when they are needed.

Garbage Collection

Parrot provides garbage collection, meaning that Parrot programs do not
need to free memory explicitly; it will be freed when it is no longer in use
(that is, no longer referenced) whenever the garbage collector runs.

Obtaining, building and testing Parrot

Where to get Parrot

See http://www.parrot.org/download for several ways to get a recent version
of parrot.

Building Parrot

The first step to building Parrot is to run the Configure.pl program, which
looks at your platform and decides how Parrot should be built. This is done
by typing:

perl Configure.pl

4

Once this is complete, run the make program Configure.pl prompts you
with. When this completes, you will have a working parrot executable.

Please report any problems that you encounter while building Parrot so
the developers can fix them. You can do this by creating a login and opening
a new ticket at https://trac.parrot.org. Please include the myconfig file that
was generated as part of the build process and any errors that you observed.

The Parrot test suite

Parrot has an extensive regression test suite. This can be run by typing:
make test

Substituting make for the name of the make program on your platform. The
output will look something like this:
C:\Perl\bin\perl.exe t\harness --gc-debug

t\library*.t t\op*.t t\pmc*.t t\run*.t t\native_pbc*.t

imcc\t**.t t\dynpmc*.t t\p6rules*.t t\src*.t t\perl*.t

t\library\dumper...............ok

t\library\getopt_long..........ok

...

All tests successful, 4 test and 71 subtests skipped.

Files=163, Tests=2719, 192 wallclock secs (0.00 cusr + 0.00 csys = 0.00 CPU)

It is possible that a number of tests may fail. If this is a small number, then
it is probably little to worry about, especially if you have the latest Parrot
sources from the SVN repository. However, please do not let this discourage
you from reporting test failures, using the same method as described for
reporting build problems.

Some simple Parrot programs

Hello world!

Create a file called hello.pir that contains the following code.
.sub main

say "Hello world!"

.end

Then run it by typing:
parrot hello.pir

As expected, this will display the text Hello world! on the console, fol-
lowed by a new line.

Let’s take the program apart. .sub main states that the instructions
that follow make up a subroutine named main, until a .end is encountered.
The second line contains the print instruction. In this case, we are calling
the variant of the instruction that accepts a constant string. The assembler
takes care of deciding which variant of the instruction to use for us.

5

Using registers

We can modify hello.pir to first store the string Hello world! in a register
and then use that register with the print instruction.

.sub main

$S0 = "Hello world!"

say $S0

.end

PIR does not allow us to set a register directly. We need to prefix the
register name with $ when referring to a register. The compiler will map
$S0 to one of the available string registers, for example S0, and set the value.
This example also uses the syntactic sugar provided by the = operator. = is
simply a more readable way of using the set opcode.

To make PIR even more readable, named registers can be used. These
are later mapped to real numbered registers.

.sub main

.local string hello

hello = "Hello world!"

say hello

.end

The .local directive indicates that the named register is only needed inside
the current subroutine (that is, between .sub and .end). Following .local
is a type. This can be int (for I registers), float (for N registers), string
(for S registers), pmc (for P registers) or the name of a PMC type.

PIR vs. PASM

PASM does not handle register allocation or provide support for named reg-
isters. It also does not have the .sub and .end directives, instead replacing
them with a label at the start of the instructions.

Summing squares

This example introduces some more instructions and PIR syntax. Lines
starting with a # are comments.

.sub main

State the number of squares to sum.

.local int maxnum

maxnum = 10

We’ll use some named registers. Note that we can declare many

registers of the same type on one line.

.local int i, total, temp

total = 0

Loop to do the sum.

i = 1

loop:

temp = i * i

total += temp

6

inc i

if i <= maxnum goto loop

Output result.

print "The sum of the first "

print maxnum

print " squares is "

print total

print ".\n"

.end

PIR provides a bit of syntactic sugar that makes it look more high level than
assembly. For example:

.local pmc temp, i

temp = i * i

Is just another way of writing the more assembly-ish:
.local pmc temp, i

mul temp, i, i

And:
.local pmc i, maxnum

if i <= maxnum goto loop

...

loop:

Is the same as:
.local pmc i, maxnum

le i, maxnum, loop

...

loop:

And:
.local pmc temp, total

total += temp

Is the same as:
.local pmc temp, total

add total, temp

As a rule, whenever a Parrot instruction modifies the contents of a register,
that will be the first register when writing the instruction in assembly form.

As is usual in assembly languages, loops and selection are implemented
in terms of conditional branch statements and labels, as shown above. As-
sembly programming is one place where using goto is not bad form!

Recursively computing factorial

In this example we define a factorial function and recursively call it to com-
pute factorial.

7

.sub factorial

Get input parameter.

.param int n

return (n > 1 ? n * factorial(n - 1) : 1)

.local int result

if n > 1 goto recurse

result = 1

goto return

recurse:

$I0 = n - 1

result = factorial($I0)

result *= n

return:

.return (result)

.end

.sub main :main

.local int f, i

We’ll do factorial 0 to 10.

i = 0

loop:

f = factorial(i)

print "Factorial of "

print i

print " is "

print f

print ".\n"

inc i

if i <= 10 goto loop

.end

The first line, .param int n, specifies that this subroutine takes one integer
parameter and that we’d like to refer to the register it was passed in by the
name n for the rest of the sub.

Much of what follows has been seen in previous examples, apart from
the line reading:

.local int result

result = factorial($I0)

The last line of PIR actually represents a few lines of PASM. The assembler
builds a PMC that describes the signature, including which register the
arguments are held in. A similar process happens for providing the registers
that the return values should be placed in. Finally, the factorial sub is
invoked.

Right before the .end of the factorial sub, a .return directive is used
to specify that the value held in the register named result is to be copied
to the register that the caller is expecting the return value in.

The call to factorial in main works in just the same was as the recursive
call to factorial within the sub factorial itself. The only remaining bit of

8

new syntax is the :main, written after .sub main. By default, PIR assumes
that execution begins with the first sub in the file. This behavior can be
changed by marking the sub to start in with :main.

Compiling to PBC

To compile PIR to bytecode, use the -o flag and specify an output file with
the extension .pbc.

parrot -o factorial.pbc factorial.pir

Where next?

Documentation

What documentation you read next depends upon what you are looking
to do with Parrot. The opcodes reference and built-in PMCs reference are
useful to dip into for pretty much everyone. If you intend to write or compile
to PIR then there are a number of documents about PIR that are worth a
read. For compiler writers, the Compiler FAQ is essential reading. If you
want to get involved with Parrot development, the PDDs (Parrot Design
Documents) contain some details of the internals of Parrot; a few other
documents fill in the gaps. One way of helping Parrot development is to
write tests, and there is a document entitled Testing Parrot that will help
with this.

The Parrot Mailing List

Much Parrot development and discussion takes place on the parrot-dev mail-
ing list. You can subscribe by filling out the form at http://lists.parrot.org/mailman/listinfo/parrot-
dev or read the NNTP archive at http://groups.google.com/group/parrot-
dev/.

IRC

The Parrot IRC channel is hosted on irc.parrot.org and is named #parrot.
Alternative IRC servers are at irc.pobox.com and irc.rhizomatic.net.

9

Chapter 2

Overview

The Parrot Interpreter

This document is an introduction to the structure of and the concepts used
by the Parrot shared bytecode compiler/interpreter system. We will primar-
ily concern ourselves with the interpreter, since this is the target platform
for which all compiler frontends should compile their code.

The Software CPU

Like all interpreter systems of its kind, the Parrot interpreter is a virtual
machine; this is another way of saying that it is a software CPU. However,
unlike other VMs, the Parrot interpreter is designed to more closely mirror
hardware CPUs.

For instance, the Parrot VM will have a register architecture, rather
than a stack architecture. It will also have extremely low-level operations,
more similar to Java’s than the medium-level ops of Perl and Python and
the like.

The reasoning for this decision is primarily that by resembling the under-
lying hardware to some extent, it’s possible to compile down Parrot bytecode
to efficient native machine language.

Moreover, many programs in high-level languages consist of nested func-
tion and method calls, sometimes with lexical variables to hold intermediate
results. Under non-JIT settings, a stack-based VM will be popping and then
pushing the same operands many times, while a register-based VM will sim-
ply allocate the right amount of registers and operate on them, which can
significantly reduce the amount of operations and CPU time.

To be more specific about the software CPU, it will contain a large num-
ber of registers. The current design provides for four groups of N registers;
each group will hold a different data type: integers, floating-point numbers,
strings, and PMCs. (Polymorphic Containers, detailed below.)

10

Registers will be stored in register frames, which can be pushed and
popped onto the register stack. For instance, a subroutine or a block might
need its own register frame.

The Operations

The Parrot interpreter has a large number of very low level instructions, and
it is expected that high-level languages will compile down to a medium-level
language before outputting pure Parrot machine code.

Operations will be represented by several bytes of Parrot machine code;
the first INTVAL will specify the operation number, and the remaining ar-
guments will be operator-specific. Operations will usually be targeted at
a specific data type and register type; so, for instance, the dec i c takes
two INTVALs as arguments, and decrements contents of the integer register
designated by the first INTVAL by the value in the second INTVAL. Naturally,
operations which act on FLOATVAL registers will use FLOATVALs for constants;
however, since the first argument is almost always a register number rather
than actual data, even operations on string and PMC registers will take an
INTVAL as the first argument.

As in Perl, Parrot ops will return the pointer to the next operation in
the bytecode stream. Although ops will have a predetermined number and
size of arguments, it’s cheaper to have the individual ops skip over their
arguments returning the next operation, rather than looking up in a table
the number of bytes to skip over for a given opcode.

There will be global and private opcode tables; that is to say, an area of
the bytecode can define a set of custom operations that it will use. These
areas will roughly map to the subroutines of the original source; each pre-
compiled module will have its own opcode table.

For a closer look at Parrot ops, see docs/pdds/pdd06 pasm.pod.

PMCs

PMCs are roughly equivalent to the SV, AV and HV (and more complex types)
defined in Perl 5, and almost exactly equivalent to PythonObject types in
Python. They are a completely abstracted data type; they may be string,
integer, code or anything else. As we will see shortly, they can be expected
to behave in certain ways when instructed to perform certain operations -
such as incrementing by one, converting their value to an integer, and so on.

The fact of their abstraction allows us to treat PMCs as, roughly speak-
ing, a standard API for dealing with data. If we’re executing Perl code, we
can manufacture PMCs that behave like Perl scalars, and the operations
we perform on them will do Perlish things; if we execute Python code, we

11

can manufacture PMCs with Python operations, and the same underlying
bytecode will now perform Pythonic activities.

For documentation on the specific PMCs that ship with Parrot, see the
docs/pmc directory.

Vtables

The way we achieve this abstraction is to assign to each PMC a set of
function pointers that determine how it ought to behave when asked to
do various things. In a sense, you can regard a PMC as an object in an
abstract virtual class; the PMC needs a set of methods to be defined in
order to respond to method calls. These sets of methods are called vtables.

A vtable is, more strictly speaking, a structure which expects to be filled
with function pointers. The PMC contains a pointer to the vtable structure
which implements its behavior. Hence, when we ask a PMC for its length,
we’re essentially calling the length method on the PMC; this is implemented
by looking up the length slot in the vtable that the PMC points to, and
calling the resulting function pointer with the PMC as argument: essentially,

(pmc->vtable->length)(pmc);

If our PMC is a string and has a vtable which implements Perl-like string
operations, this will return the length of the string. If, on the other hand,
the PMC is an array, we might get back the number of elements in the array.
(If that’s what we want it to do.)

Similarly, if we call the increment operator on a Perl string, we should
get the next string in alphabetic sequence; if we call it on a Python value, we
may well get an error to the effect that Python doesn’t have an increment
operator suggesting a bug in the compiler front-end. Or it might use a
“super-compatible Python vtable” doing the right thing anyway to allow
sharing data between Python programs and other languages more easily.

At any rate, the point is that vtables allow us to separate out the basic
operations common to all programming languages - addition, length, con-
catenation, and so on - from the specific behavior demanded by individual
languages. Perl 6 will be Perl by passing Parrot a set of Perlish vtables;
Parrot will equally be able to run Python, Tcl, Ruby or whatever by linking
in a set of vtables which implement the behaviors of values in those lan-
guages. Combining this with the custom opcode tables mentioned above,
you should be able to see how Parrot is essentially a language independent
base for building runtimes for bytecompiled languages.

One interesting thing about vtables is that you can construct them dy-
namically. You can find out more about vtables in docs/vtables.pod.

12

String Handling

Parrot provides a programmer-friendly view of strings. The Parrot string
handling subsection handles all the work of memory allocation, expansion,
and so on behind the scenes. It also deals with some of the encoding
headaches that can plague Unicode-aware languages.

This is done primarily by a similar vtable system to that used by PMCs;
each encoding will specify functions such as the maximum number of bytes
to allocate for a character, the length of a string in characters, the offset
of a given character in a string, and so on. They will, of course, provide
a transcoding function either to the other encodings or just to Unicode for
use as a pivot.

The string handling API is explained in docs/strings.pod.

Bytecode format

We have already explained the format of the main stream of bytecode; opera-
tions will be followed by arguments packed in such a format as the individual
operations require. This makes up the third section of a Parrot bytecode
file; frozen representations of Parrot programs have the following structure.

Firstly, a magic number is presented to identify the bytecode file as
Parrot code. Next comes the fixup segment, which contains pointers to
global variable storage and other memory locations required by the main
opcode segment. On disk, the actual pointers will be zeroed out, and the
bytecode loader will replace them by the memory addresses allocated by the
running instance of the interpreter.

Similarly, the next segment defines all string and PMC constants used
in the code. The loader will reconstruct these constants, fixing references
to the constants in the opcode segment with the addresses of the newly
reconstructed data.

As we know, the opcode segment is next. This is optionally followed by
a code segment for debugging purposes, which contains a munged form of
the original program file.

The bytecode format is fully documented in docs/parrotbyte.pod.

13

Chapter 3

Submitting bug reports and
patches

ABSTRACT

How to submit bug reports, patches and new files to Parrot.

How To Submit A Bug Report

If you encounter an error while working with Parrot and don’t understand
what is causing it, create a bug report using the parrotbug utility. The
simplest way to use it is to run

% ./parrotbug

in the distribution’s root directory, and follow the prompts.
However, if you do know how to fix the problem you encountered, then

think about submitting a patch, or (see below) getting commit privileges.

How To Create A Patch

Try to keep your patches specific to a single change, and ensure that your
change does not break any tests. Do this by running make test. If there is
no test for the fixed bug, please provide one.

In the following examples, parrot contains the Parrot distribution, and
workingdir contains parrot. The name workingdir is just a placeholder for
whatever the distribution’s parent directory is called on your machine.

workingdir

|

+--> parrot

|

+--> LICENSE

|

+--> src

14

|

+--> tools

|

+--> ...

svn

If you are working with a checked out copy of parrot then please gen-
erate your patch with svn diff.

cd parrot

svn status

svn diff > my_contribution.patch

Single diff

If you are working from a released distribution of Parrot and the
change you wish to make affects only one or two files, then you can
supply a diff for each file. The diff should be created in parrot.
Please be sure to create a unified diff, with diff -u.

cd parrot

diff -u docs/submissions.pod docs/submissions.new > submissions.patch

Win32 users will probably need to specify -ub.

Recursive diff

If the change is more wide-ranging, then create an identical copy of
parrot in workingdir and rename it parrot.new. Modify parrot.new
and run a recursive diff on the two directories to create your patch.
The diff should be created in workingdir.

cd workingdir

diff -ur --exclude=’.svn’ parrot parrot.new > docs.patch

Mac OS X users should also specify --exclude=.DS Store.

CREDITS

Each and every patch is an important contribution to Parrot and it’s
important that these efforts are recognized. To that end, the CRED-
ITS file contains an informal list of contributors and their contribu-
tions made to Parrot. Patch submitters are encouraged to include a
new or updated entry for themselves in CREDITS as part of their
patch.

The format for entries in CREDITS is defined at the top of the file.

How To Submit A Patch

1. Go to Parrot’s ticket tracking system at https://trac.parrot.org/parrot/.
Log in, or create an account if you don’t have one yet.

2. If there is already a ticket for the bug or feature that your patch relates
to, just attach the patch directly to the ticket.

3. Otherwise select “New Ticket” at the top of the site. https://trac.parrot.org/parrot/newticket

15

4. Give a clear and concise Summary. You do NOT need to prefix the
Summary with a [PATCH] identifier. Instead, in the lower-right corner
of the newticket page, select status new in the Patch status drop-down
box.

5. The Description should contain an explanation of the purpose of the
patch, and a list of all files affected with summary of the changes made
in each file. Optionally, the output of the diffstat(1) utility when
run on your patch(s) may be included at the bottom of the message
body.

6. Set the Type of the ticket to “patch”. Set other relevant drop-down
menus, such as Version (the version of Parrot where you encountered
the problem), Platform, or Severity. As mentioned above, select status
new in the Patch status drop-down box.

7. Check the box for “I have files to attach to this ticket”. Double-check
that you’ve actually done this, because it’s easy to forget.

DO NOT paste the patch file content into the Description.

8. Click the “Create ticket” button. On the next page attach your patch
file(s).

Applying Patches

You may wish to apply a patch submitted by someone else before the patch
is incorporated into SVN.

For single diff patches or svn patches, copy the patch file to parrot, and
run:

cd parrot

patch -p0 < some.patch

For recursive diff patches, copy the patch file to workingdir, and run:
cd workingdir

patch -p0 < some.patch

In order to be on the safe side run ’make test’ before actually committing
the changes.

Configuration of files to ignore

Sometimes new files will be created in the configuration and build process
of Parrot. These files should not show up when checking the distribution
with

svn status

or
perl tools/dev/manicheck.pl

16

The list of these ignore files can be set up with:
svn propedit svn:ignore <PATH>

In order to keep the two different checks synchronized, the MANIFEST and
MANIFEST.SKIP file should be regenerated with:

perl tools/dev/mk_manifest_and_skip.pl

How To Submit Something New

If you have a new feature to add to Parrot, such as a new test.

1. Add your new file path(s), relative to parrot, to the file MANIFEST.
Create a patch for the MANIFEST file according to the instructions
in How To Submit A Patch.

2. If you have a new test script ending in .t, some mailers may become
confused and consider it an application/x-troff. One way around this
(for *nix users) is to diff the file against /dev/null like this:

cd parrot

diff -u /dev/null newfile.t > newfile.patch

3. Go to Parrot’s ticket tracking system at https://trac.parrot.org/parrot/.
Log in, or create an account if you don’t have one yet.

4. Select “New Ticket” https://trac.parrot.org/parrot/newticket.

5. Give a clear and concise Summary.

Prefix it with a [NEW] identifier.

6. The Description should contain an explanation of the purpose of the
feature you are adding. Optionally, include the output of the diffstat(1)
utility when run on your patch(es).

7. Set the Type of the ticket to “patch”. Set other relevant drop-down
menus, such as Version, Platform, or Severity.

8. Check the box for “I have files to attach to this ticket”

Double-check that you’ve actually done this, because it’s easy to forget.

DO NOT paste the content of the new file or files into the body of
the message.

9. Click the “Create ticket” button. On the next page attach the patch
for MANIFEST and your new file(s).

17

What Happens Next?

If you created a new ticket for the submission, you will be taken to the
page for the new ticket and can check on the progress of your submission
there. This identifier should be used in all correspondence concerning the
submission.

Everyone on Trac sees the submission and can comment on it. A devel-
oper with SVN commit authority can commit it to SVN once it is clear that
it is the right thing to do.

However developers with SVN commit authority may not commit your
changes immediately if they are large or complex, as we need time for peer
review.

A list of active tickets can be found here: http://trac.parrot.org/parrot/report/1
A list of all the unresolved patches is at: http://trac.parrot.org/parrot/report/15

Patches for the Parrot website

The http://www.parrot.org website is hosted in a Drupal CMS. Submit
changes through the usual ticket interface in Trac.

Getting Commit Privileges

If you are interested in getting commit privileges to Parrot, here is the
procedure:

1. Submit several high quality patches (and have them committed) via
the process described in this document. This process may take weeks
or months.

2. Obtain a Trac account at https://trac.parrot.org/parrot

3. Submit a Parrot Contributor License Agreement; this document signifies
that you have the authority to license your work to Parrot Founda-
tion for inclusion in their projects. You may need to discuss this with
your employer if you contribute to Parrot on work time or with work
resources, or depending on your employment agreement.

http://www.parrot.org/files/parrot cla.pdf

4. Request commit access via the parrot-dev mailing list, or via IRC
(#parrot on irc.parrot.org). The existing committers will discuss your
request in the next couple of weeks.

If approved, a metacommitter will update the permissions to allow you
to commit to Parrot; see RESPONSIBLE PARTIES for the current list.
Welcome aboard!

Thanks for your help!

18

