
NORMALIZ

VERSION 2.2

WINFRIED BRUNS AND BOGDAN ICHIM
WITH CONTRIBUTIONS BY CHRISTOF SÖGER

ABSTRACT. This manual describes the version 2.2 of NORMALIZ, a program for solv-
ing linear systems of inequalities. It is an upgrade of the program Normaliz, developed
originally by Winfried Bruns and Robert Koch.

CONTENTS

1. Introduction 2

2. Changes relative to version 2.0 2

3. Numerical limitations 4

4. Distribution 4

5. Compilation 4

6. The input file 5

7. Running Normaliz 7

8. The output file 10

9. Optional output files 11

10. Examples 12

11. Magic Squares 16

12. Problem 18

Copyright 18

References 18

1

2 WINFRIED BRUNS AND BOGDAN ICHIM WITH CONTRIBUTIONS BY CHRISTOF SÖGER

1. INTRODUCTION

The program NORMALIZ, version 2.2, is mainly a tool for solving linear systems of in-
equalities or, in other terms, for computing the Hilbert basis of a rational cone. Several
related computation tools are available. If you have previously worked with NORMALIZ
before version 2.0 (“old version” in the following), you can use the same input files for
NORMALIZ, version 2.2. Also the output files are similar since NORMALIZ maintains
the same simple interface as its predecessor. However, the internal structure is different.
Since version 2.0 NORMALIZ has been written in C++, and we have tried to maintain
a clear design. We partly use new algorithms, see [3], obtaining a general increase in
computation speed.

Using NORMALIZ, version 2.2, (in the following simply called NORMALIZ) one may
compute the following:

(1) the Hilbert basis and the support hyperplanes of a rational cone. The cone may be
given by:

(i) a system of generators;
(ii) a linear system of inequations (already in version 2.0);

(iii) a linear system of equations (already in version 2.0);
(4) the lattice points and the support hyperplanes of an integral polytope;
(5) the generators of the integral closure of the Rees algebra of a monomial ideal I ⊆

K[X1, . . . ,Xn] and the generators of the integral closure of I.

If the associated semigroup is homogeneous in a certain sense (see Section 8), then one
may also compute the h-vector and Hilbert polynomial of the semigroup.

For the theory of affine semigroups and the notions of commutative algebra used in the
following we refer the reader to [1] and [2]. For algorithms see [3] and [5].

We also provide a SINGULAR library normaliz.lib and the package Normaliz.m2 for
MACAULAY2 that make NORMALIZ accessible from SINGULAR and MACAULAY2 resp.
Thus SINGULAR or MACAULAY2 can be used as a comfortable environment for the work
with NORMALIZ, and, moreover, NORMALIZ can be applied directly to objects belonging
to the classes of toric rings and monomial ideals.

NORMALIZ has been made accessible from POLYMAKE (thanks to Andreas Paffenholz).

2. CHANGES RELATIVE TO VERSION 2.0

Changes in version 2.1:

User control, input and output:

(1) The command line option -i forces NORMALIZ to ignore a potentially existing
setup file. This is useful if an external program wants to keep complete control
(see Section 7). In case the setup file does not exist, -i keeps NORMALIZ from
issuing a warning message.

NORMALIZ 2.2 3

(2) In addition to the choice of the mode via a single digit in the last line of the input
file, the mode can now be specified by a keyword (see Section 6).

(3) In the homogeneous case NORMALIZ also lists the “height 1” elements in the
Hilbert basis (and writes them to a file with suffix ht1 if requested); see Sections
8 and 10.

(4) The structure of the file with suffix inv (used for the communication with com-
puter algebra systems) has been changed from a SINGULAR command to a neutral
format.

Algorithms

(1) In modes 4 and 5 in which the input is given as a system of homogeneous lin-
ear inequalities or equations resp., it is often (but by no means always) better to
use (a variant of) Pottier’s algorithm. The user can choose this algorithm by the
command line option -d representing “dual” (see Sections 7 and 11).

With the dual algorithm NORMALIZ cannot compute triangulations, multiplic-
ities, and h-vectors.

Access from computer algebra systems

(1) a package for MACAULAY2.
(2) library for SINGULAR extended by functions for torus invariants and valuation

rings.

Changes in version 2.2:

User control, input and output:

(1) New command line option -e to activate test for arithmetic errors.
(2) New command line option -m to save memory at the expense of computation time.

This option replaces “optimize for speed” in version 2.1.
(3) New command line option -? to print a small help text.
(4) Name of setup file changed from setup.txt to normaliz.cfg.
(5) It is now possible to give the input file with the ending ”.in” (but not recom-

mended).
(6) Option “Abort by user” removed. The program exits if an error is detected.
(7) Renamed “Run mode type” to “Computation type” for clearer distinction to the

(run) mode.
(8) Renamed “Testing number” to “Overflow Test Modulus”, “Lifting constant” to

“Lifting bound” and “Use control data” to “Verbose”.
(9) File extension .hom changed to .ht1.

(10) In mode 2=polytope the vectors in the file .ext are given as extreme rays of the
cone over the polytope (vertices of the polytope in the previous version).

4 WINFRIED BRUNS AND BOGDAN ICHIM WITH CONTRIBUTIONS BY CHRISTOF SÖGER

3. NUMERICAL LIMITATIONS

The program comes in three executables: norm32 works with 32 bit integers, norm64
with 64 bit integers, and normbig uses integers of arbitrary precision. As a general rule,
norm32 is somewhat faster that norm64 (say, by a factor of 1.5), which is significantly
faster than normbig (say, by a factor of 10). We consider norm64 as the standard choice.

We have implemented some arithmetic tests designed to catch errors due to arithmetic
overflow (since version 2.0, see also Sections 7). They are quite good at doing that,
however, some undetected errors may occur when running norm32 and norm64. If you
feel that an arithmetical problem could have arisen, we recommend using normbig, which
is free from errors due to arithmetic overflow.

4. DISTRIBUTION

We provide executables for Windows, Linux and Mac. Download the archive file corre-
sponding to your system Normaliz2.2<systemname>.zip to a directory of your choice
and unzip it. The names of the subdirectories created are self-explanatory.

• In the main directory Normaliz2.2<systemname> you should find the three exe-
cutables, a file named normaliz.cfg and subdirectories.

• In the subdirectory source/ you find the source files, a Makefile and again the
file normaliz.cfg.

• Subdirectory doc/ contains the file you are reading, as well as some documentation
on the algorithms we use.

• In the subdirectory example/ are the input and output files for some examples.
• The subdirectory singular/ contains the SINGULAR library normaliz.lib and

the documentation files nmz_sing.tex and nmz_sing.pdf.
• The subdirectory macaulay2/ contains the MACAULAY2 package Normaliz.m2

and the documentation files nmzM2.tex and nmzM2.pdf.

5. COMPILATION

If for some reason the executables we provide do not work on your system, you may want
to compile the source files. Go to the source/ directory. Then you can use make (see
below) or compile the 32 and 64 bit executables by entering the commands

CompilerName -O3 N32.cc [-o TargetName]

CompilerName -O3 N64.cc [-o TargetName]

where “CompilerName” is the name of your favorite C++ compiler and “TargetName” is
the name of the executable you want to build (this may depend on the operating system).
The option -O3 indicates that you should use the best available optimization.

For example, assuming that you work with the GNU compiler on a Windows system, the
command to enter is

NORMALIZ 2.2 5

g++ -O3 N32.cc -o norm32.exe

while working with the GNU compiler on a Linux system the command to enter is

g++ -O3 N64.cc -o norm64

In order to compile the indefinite precision arithmetic executable it is crucial to have GMP
installed on your system. When installing GMP, you must also build the C++ class wrapper.
This is not produced automatically by GMP at installation. The command which may help
at installing GMP is

./configure --prefix="CompilerPath" --enable-cxx

where “CompilerPath” is the path to your compiler.

Now assuming that you have installed GMP, the command to produce the arbitrary preci-
sion arithmetic executable is

CompilerName -O3 NBig.cc [-o TargetName] -lgmpxx -lgmp

Assuming that you work with the GNU compiler on a Windows system the command to
enter is

g++ -O3 NBig.cc -o normbig.exe -lgmpxx -lgmp

Note that Mac users may need to add the option -m64 at this command line.

We also provide a Makefile. For Linux systems you can compile all 3 executables by
calling

make

in the source/ directory. Of course you need an C++ compiler and for the arbitrary
precision version also GMP. Use

make [norm32|norm64|normbig]

to compile only a single version.

For Windows systems we have also added a Visual C++ solution to the source/ direc-
tory. If you want to use Visual C++ Express (which is freely available from Microsoft)
to compile the source files, the directory source/Visual C++/ contains the solution file
Normaliz.sln. Assuming that you have installed GMP (unfortunately a difficult point),
set the build configuration to ”Release” and build the solution Normaliz. You should find
the executables in the directory source/Visual C++/Release/.

The executables for Windows have been compiled with Visual C++.

6. THE INPUT FILE

Each input is in fact a matrix, the rows of the matrix are interpreted according to a param-
eter called mode. The input file <projectname>.in is structured as follows.

6 WINFRIED BRUNS AND BOGDAN ICHIM WITH CONTRIBUTIONS BY CHRISTOF SÖGER

The first line contains the number of rows, the second line contains the number of columns
n, which is always the dimension of the ambient lattice.

The next lines contain the rows of the matrix. The last line contains a single digit between
0 and 5, the mode. Alternatively you can use a label for the mode. The following list
shows the modes, their labels and a short description of what NORMALIZ will compute
in “Computation type” normal. (See Section 7 for other computation types. They restrict
or extend the data computed by Normaliz.)

Modes in which the rows of the input matrix represent generators x1, . . . ,xm ∈ Zn (of a
cone, polytope or monomial ideal):

0 integral_closure: Computes the Hilbert basis of the rational cone generated by
x1, . . . ,xm with respect to the ambient lattice Zn;

1 normalization: The same as 0, but with respect to the sublattice of Zn generated
by x1, . . . ,xm;

2 polytope: Computes the integral points in the polytope spanned by x1, . . . ,xm and
its Ehrhart semigroup;

3 rees_algebra: Computes the integral closure of the Rees algebra of the ideal I
generated by the monomials with exponent vectors x1, . . . ,xm.

Modes in which the rows of the input matrix A represents a system of constraints:

4 hyperplanes: Computes the Hilbert basis of the rational cone in Rm given by the
system of homogeneous inequalities; Ax≥ 0

5 equations: Computes Hilbert basis of the rational cone given by the nonnegative
solutions of the homogeneous system Ax = 0.

Note that the output of NORMALIZ depends on the lattices involved. Therefore we define
the ambient lattice A, the semigroup S and the effective lattice E as follows:

mode 0: A = Zn where n is the number contained in the second line of the input file;
S is the subsemigroup of A generated by the vectors in the input file;
E is the smallest direct summand of A containing the subgroup gp(S)⊂A generated
by S.

mode 1: A and S as for mode 0, but E = gp(S).

mode 2 (polytopal application): A = Zn+1;
S is generated by the vectors (x,1) for the vectors x in the input file;
E as in mode 0.

mode 3 (Rees application): A = Zn+1;
S is generated by the unit vectors e1, . . . ,en (representing the indeterminates of the
polynomial ring) and the vectors (x,1) for the vectors x in the input file;
E = Zn+1.

mode 4 (system of inequations): A and E as for mode 0, S is the semigroup of the solu-
tions of the system of linear inequations Mx ≥ 0, where M is the input matrix. In
this mode the input matrix must be of maximal rank.

NORMALIZ 2.2 7

mode 5 (system of equations): A and E as for mode 0, S is the semigroup of the non-
negative solutions of the system of linear equations Mx = 0, where M is the input
matrix.

In each case the integral closure of S in E is computed (in computation type normal).
On its way to the Hilbert basis NORMALIZ computes auxiliary data. These will also be
printed to the output file or files in the directory of the project (see section 8).

7. RUNNING NORMALIZ

The syntax for calling NORMALIZ is

norm64 [-acdfhimnpsv] [<projectname>]

where the options and <projectname> are optional. On a Linux/Mac system it might
be necessary to use ./norm64 instead of norm64. If no <projectname> is given, the
program will enter an “interactive mode”. In this case the program will ask you for the
name of the project and after the computations the program will ask you again to press
some key in order to quit. NORMALIZ will look for <projectname>.in as input file.

For example, if you input the command

norm64 -c -p -a rafa2416

then the program will take the file rafa2416.in as input, control data will be printed on
screen, the support hyperplanes, the triangulation, the multiplicity, the h-vector and the
Hilbert polynomial will be computed and all the possible output files will be produced.

There is also the possibility to set options via the config file normaliz.cfg. The fol-
lowing table shows the options in the config file, their possible values and the matching
command line parameter.

8 WINFRIED BRUNS AND BOGDAN ICHIM WITH CONTRIBUTIONS BY CHRISTOF SÖGER

name possible values parameter
Run tests for arithmetic overflow YES -e

NO (default)
Overflow test modulus natural number (default 10403)
Lifting bound natural number (default 9000)
Verbose YES -c

NO (default)
Save memory YES -m

NO (default)
Computation type support hyperplanes -s

triangulation -v

normal (default) -n

hilbert polynomial -p

hilbert basis polynomial -h

dual -d

Write .out file YES (default), NO
Write .inv, .ext, .esp, .typ, .egn, YES, NO (default)
.gen, .sup, .tri, .ht1 file

In addition to the command line parameters in the table above, there are three more:

-i: the setup file will be ignored
-f: the write .out, .gen, .inv, .typ, .sup file options are set to YES, the oth-

ers to NO
-a: all write file options are set to YES

Note: (a) Command line options will override the options written in the config file.

(b) Do not change the order of the lines in the config file — in the present version the
program evaluates the lines in the given order!

Note also that the config file must be in your working directory. This allows you to use
different directories for different computations, and you can save the settings for each
directory in the config file.

“Run tests for arithmetic overflow”: When set to YES the arithmetic tests will be per-
formed, in order to assure that no arithmetic errors do occur. This may slow down the
computations. Depending on the particular example, it may double the running time. For
normbig, this option is set to NO to get some extra speed, since in this case no arithmetic
errors can occur.

“Overflow test modulus”: If you see that on some particular example the arithmetic tests
are falling, you may try to change this number. Up to now we do not have such an
example.

“Lifting bound”: The lifting bound is a number used to do a random lifting of the cone.
Large numbers assure the success of the lifting, but may lead to arithmetic overflow. If
while running the program you get an error message which says that lifting has failed,
you should increase this number.

NORMALIZ 2.2 9

“Verbose”: This will give you some access to ‘control’ data during the computation. It is
designed for users who run complex examples and wish to see how far the program has
come (and if it is still running at all). When set to YES data will be printed on screen. You
may want to set this to NO, for example if you call NORMALIZ from another program.

“Save memory”: When set to YES some computed data will not be saved in memory.
These have do be computed again in some cases, increasing the run time of the program.

“Computation type”: This is for sure the most important option to consider. It controls
the computations performed by the program. The following choices are possible:

(1) support hyperplanes: Only the support hyperplanes are computed.
(2) triangulation: Computes the support hyperplanes, the triangulation and the mul-

tiplicity.
(3) normal: Computes the support hyperplanes, the triangulation, the multiplicity and

the Hilbert basis.
(4) hilbert polynomial: Computes the support hyperplanes, the triangulation, the

multiplicity, the h-vector and the Hilbert polynomial.
(5) hilbert basis polynomial: Performs all implemented computations.
(6) dual: Computes the Hilbert basis using Pottier’s algorithm [6]. It is available only

in mode ”4” and ”5” (see Section 6).

If you run some complex example, it may be important to choose the right option here
since it may greatly affect the running time. On some particular example it may take sec-
onds to run the program in the triangulation mode and hours (days, years ...) with the
hilbert basis polynomial mode. Try the examples big.in and huge.in (provided
in the directory example/) to get a feeling for the computation time.

The remainder are “write” options: When set to YES the output file with the correspond-
ing termination will be produced. Note that the information needed to write the output file
should be available after computations (this depends on the option “Computation type”),
or no output file will be produced. See also Section 9 for information on the possible
output files.

Finally some remarks for users who want to run complex examples. Computing the
Hilbert basis may be the most time consuming part. If you intend to compute the Hilbert
basis, it may be useful to get an estimate of the running time first. If the example is
homogeneous (see Section 8) this is possible by making a “multiplicity test”. First run
normbig with the option “Computation type” set to triangulation (parameter -v in the
command line). This runs fast and the multiplicity is computed. Well, the multiplicity is
the number of vectors that have to be reduced in order to compute the Hilbert basis. For
example an input file with multiplicity around 10.000.000 may take some hours to com-
pute with normbig. Also note that there are two stages of reduction, one local (fast), and
one global (slow), and that information about the local and global reduction is printed on
the screen if option “Verbose”is set to YES. Next you may try to compute your example
with norm64, which is much faster than normbig. Set option “Run tests for arithmetic
overflow” to YES, since arithmetic overflow is possible when running norm64. If norm64
fails because of arithmetic overflow, run normbig.

10 WINFRIED BRUNS AND BOGDAN ICHIM WITH CONTRIBUTIONS BY CHRISTOF SÖGER

FortuneCookie is an interesting example. You should compute it with normbig, at least
if the “Computation type” is set to hilbert basis polynomial.

8. THE OUTPUT FILE

First note that the data you will find in the output file depend on the option “Computation
type”. For example, if “Computation type” is set to normal, you can not find the h-vector
and the coefficients of the Hilbert polynomial because they are not computed.

In mode ≤ 1 and mode ≥ 4 the output file <projectname>.out may contain the follow-
ing data:

• the generators of the integral closure of S in E;
• the extreme rays of the cone C generated by S;
• rankgp(S);
• the index of gp(S) in E;
• if rankE = rankA the (unique) support hyperplanes of C;
• if S is homogeneous the height 1 generators of the integral closure;
• if S is homogeneous the multiplicity;
• if S is homogeneous, the h-vector and the coefficients of the Hilbert polynomial.

The extreme rays are given by the elements in S that define the extreme rays.

The support hyperplanes are not listed if rankE < rankA. However, in this case the
support hyperplanes of the cone generated by S in RE is available in an optional output
file (see Section 9).

We call S homogeneous if there is an integer-valued linear form ϕ on E such that all
the generators v of S given in the input file satisfy ϕ(v) = 1. For instance, the exam-
ples rafa2416, squaref1, rproj2, small, medium, big and huge from the directory
example are homogeneous. (Sometimes ϕ must be multiplied by a positive integer be-
fore the lifting from A to E ! Therefore you may get a value > 1 when evaluating the
linear form in the output file on the height 1 elements.)

We ask for S to be homogeneous when printing the height 1 generators of the integral
closure (that is ϕ(g) = 1), the multiplicity, the h-vector and the coefficients of the Hilbert
polynomial to the output file.

Note that it can very well happen that the computation of the integral closure of S runs
without problems, but an overflow occurs in the Hilbert polynomial computation. You
may use normbig with “Computation type” set to hilbert polynomial to check the re-
sults obtained with norm32 or norm64 (this is relatively fast, and a good test for arithmetic
problems).

If “mode = 2”, the following data may be found in the output file:

• the generators of the semigroup determined by the polytope, called Ehrhart semi-
group in the following;

• the lattice points of the polytope;

NORMALIZ 2.2 11

• the extreme points;
• the support hyperplanes if it is of full dimension;
• the normalized volume;
• the h-vector and the coefficients of the Ehrhart polynomial.

In “mode = 3”, the output file may contain the following:

• the generators of the integral closure R̄ of the Rees algebra;
• the extreme rays;
• the generators of the integral closure of the ideal;
• the support hyperplanes;
• the height 1 generators of the integral closure if it is homogeneous;
• the multiplicity of the semigroup if it is homogeneous;
• if the ideal is primary to the irrelevant maximal ideal, the multiplicity of the ideal

(not to be confused with the multiplicity of the semigroup);
• the h-vector and the coefficients of the Hilbert polynomial of R̄ .

9. OPTIONAL OUTPUT FILES

When the “write” options are set to YES, NORMALIZ writes additional output files whose
names are of type <projectname>.<type>. The format of the files (with the exception
of inv) is completely analogous to that of the input file, except that there is no last line
denoting the mode.

The following files may be written, provided certain conditions are satisfied and the infor-
mation that should go into them is available (we denote the files simply by their types):

inv The file inv contains all the information from the file out that is not contained in
any of the other files.

ext The file ext contains the extreme rays, provided they have been computed.
gen The generators of the integral closure are written to this file (provided they have

been computed).
sup If rankA = rankE, then the support hyperplanes are written.
egn,esp These are defined as gen and sup, however with respect to the lattice E and a

basis of E. Note that these data provide a description of the integral closure of S in
the form E∩C.

typ This is the product of the matrices corresponding to egn and esp. In this case, the
support hyperplanes of the cone C are evaluated (as linear forms) on the generators.
The resulting matrix, with the generators corresponding to the rows and the support
hyperplanes corresponding to the columns, is written to this file. Note that this file
replaces the files val and evl from the old version. This the only significant change
to the output we did in the new version.

tri The file tri contains a triangulation of the cone C computed by NORMALIZ. The
first line contains the number of simplicial cones in the triangulation, and the next
line contains the number m + 1 where m = rankE. Each of the following lines
specifies a simplicial cone ∆: the first m numbers are the indices (with respect to

12 WINFRIED BRUNS AND BOGDAN ICHIM WITH CONTRIBUTIONS BY CHRISTOF SÖGER

the order in the input file) of those generators of S that span ∆, and the last entry is
the multiplicity of ∆ in E, i. e. the absolute value of the determinant of the matrix
of the spanning vectors (as elements of E).

ht1 If S is homogeneous, the file ht1 contains the height 1 elements of the cone.

10. EXAMPLES

Note: When you run NORMALIZ yourself on one of the examples in the distribution, it
may happen that the lists of the vectors in the output appear in a different order since the
order sometimes depends on random choices of the program.

The file rproj2.in contains the following (here typeset in 2 columns):

16
7
1 0 0 0 0 0 0 1 0 1 0 1 0 1
0 1 0 0 0 0 0 1 0 0 1 0 1 1
0 0 1 0 0 0 0 1 0 0 0 1 1 1
0 0 0 1 0 0 0 0 1 1 0 0 1 1
0 0 0 0 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 1 0 0 1 0 0 1 1 1
1 1 1 0 0 0 1 0 0 1 1 1 0 1
1 1 0 1 0 0 1 0 0 1 1 0 1 1

0

This means that we wish to compute the integral closure of the semigroup generated by
the 16 vectors

[1,0,0,0,0,0,0] , [0,1,0,0,0,0,0] , . . . , [0,0,1,1,0,1,1]

in dimension 7. We compute it in the ambient lattice Z7, which is indicated by the final
digit 0.

Running norm64 (option “Computation type” set to "hilbert basis polynomial")
produces the file rproj2.outwhich has the following content (here typeset in 2 columns):

17 generators of integral closure: 16 extreme rays
1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 1 1 0 0 0 1 1 1 1 0 0 0 1
1 1 0 1 0 0 1 1 1 0 1 0 0 1
1 0 1 0 1 0 1 1 0 1 0 1 0 1
1 0 0 1 0 1 1 1 0 0 1 0 1 1
1 0 0 0 1 1 1 1 0 0 0 1 1 1
0 1 1 0 0 1 1 0 1 1 0 0 1 1
0 1 0 1 1 0 1 0 1 0 1 1 0 1

NORMALIZ 2.2 13

0 1 0 0 1 1 1 0 1 0 0 1 1 1
0 0 1 1 1 0 1 0 0 1 1 1 0 1
0 0 1 1 0 1 1 0 0 1 1 0 1 1
1 1 1 1 1 1 2

(original) semigroup has rank 7 (maximal)
(original) semigroup is of index 1

24 support hyperplanes: 16 height 1 generators of
integral closure:
0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 -1 0 0 0 0 1 0 0
0 1 0 0 1 1 -1 1 0 1 0 1 0 1
0 1 1 0 0 1 -1 1 0 0 0 1 1 1
0 0 1 1 1 0 -1 0 1 0 0 1 1 1
0 0 1 1 0 1 -1 0 0 0 1 0 0 0
0 1 1 1 1 1 -2 1 1 0 1 0 0 1
1 0 0 0 0 0 0 1 0 0 1 0 1 1
1 1 1 1 1 1 -3 0 0 1 1 0 1 1
1 0 0 1 0 1 -1 0 1 0 1 1 0 1
1 0 0 0 1 1 -1 0 0 1 1 1 0 1
1 0 1 0 1 0 -1
1 0 1 1 1 1 -2
1 1 0 1 0 0 -1
1 1 1 0 0 0 -1
1 1 1 1 0 1 -2
1 1 1 0 1 1 -2
1 1 1 1 1 0 -2
1 1 0 1 1 1 -2

(original) semigroup is homogeneous via the linear form:
1 1 1 1 1 1 -2

multiplicity = 72

h-vector = 1 9 31 25 6 0 0

Hilbert polynomial : 1/1 97/30 71/15 49/12 13/6 41/60 1/10

From this, we see that there are 17 generators of the integral closure of the semigroup in
Z7 and 16 extreme rays, that the semigroup has index 1 in Z7, and that the corresponding
support hyperplanes are given by the linear forms [0,0,0,1,0,0,0], [0,0,0,0,1,0,0], . . . ,

14 WINFRIED BRUNS AND BOGDAN ICHIM WITH CONTRIBUTIONS BY CHRISTOF SÖGER

[1,1,0,1,1,1,−2]. We are also given the information that the semigroup is homogeneous
and that its multiplicity is 72.

Since we are in the homogeneous case the height 1 generators of integral closure, the
h-vector and Hilbert polynomial are also computed. The h-vector of S̄ is

(h0,h1, . . . ,h6) = (1,9,31,25,6,0,0) ,

and the Hilbert polynomial of S̄ is given by

PS̄(t) =
1
1

+
97
30

t +
71
15

t2 +
49
12

t3 +
13
6

t4 +
41
60

t5 +
1
10

t6 .

Here is another example from the file polytop.in:

4
3
0 0 0
2 0 0
0 3 0
0 0 5
polytope

The lattice points of the integral polytope with the 4 vertices

[0,0,0] , [2,0,0] , [0,3,0] and [0,0,5]

in R3 are to be computed. (Note the last line, indicating the polytopal mode 2.)

Running norm64 (option “Computation type” set to "hilbert basis polynomial")
produces the file polytop.out:

19 generators of Ehrhart ring: 18 lattice points in polytope:
0 0 0 1 0 0 0
2 0 0 1 2 0 0
0 3 0 1 0 3 0
0 0 5 1 0 0 5
0 0 1 1 0 0 1
0 0 2 1 0 0 2
0 0 3 1 0 0 3
0 0 4 1 0 0 4
0 1 0 1 0 1 0
0 1 1 1 0 1 1
0 1 2 1 0 1 2
0 1 3 1 0 1 3
0 2 0 1 0 2 0
0 2 1 1 0 2 1
1 0 0 1 1 0 0
1 0 1 1 1 0 1
1 0 2 1 1 0 2
1 1 0 1 1 1 0
1 2 4 2

NORMALIZ 2.2 15

4 extreme points of polytope: 4 support hyperplanes:
0 0 0 -15 -10 -6 >= -30
2 0 0 1 0 0 >= 0
0 3 0 0 1 0 >= 0
0 0 5 0 0 1 >= 0

normalized volume = 30

h-vector = 1 14 15 0

Ehrhart polynomial : 1/1 4/1 8/1 5/1

The desired lattice points are the 18 ones listed above. To complete the picture, we also
provide all the generators of the Ehrhart ring of the polytope. (There are 19 of them in
this example.) Furthermore, the original polytope is the solution of the system of the 4
inequalities

x3 ≥ 0 , x2 ≥ 0 , x1 ≥ 0 and 15x1 +10x2 +6x3 ≤ 30 ,

and has normalized volume 30.

The last two lines provide the information that the h-vector of the Ehrhart ring is

(h0,h1,h2,h3) = (1,14,15,0) ,

and its Ehrhart polynomial is

P(t) = 1+4t +8t2 +5t3 .

Next, let us discuss the example rees.in:

10
6
1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
1 0 0 1 0 1
1 0 0 0 1 1
0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 0 1 1
0 0 1 1 1 0
0 0 1 1 0 1
rees_algebra

Comparing with the data in rproj2.in shows that rees is the origin of rproj2.

Here we want to compute the integral closure of the Rees algebra of the ideal generated by
the monomials corresponding to the above 10 exponent vectors. (Note again the last line,
containing 3 in this case.) The output in rees.out coincides with that in rproj2.out,
up to notions and the supplementary information on the integral closure of the ideal:

16 WINFRIED BRUNS AND BOGDAN ICHIM WITH CONTRIBUTIONS BY CHRISTOF SÖGER

10 generators of integral closure of the ideal:
1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
1 0 0 1 0 1
1 0 0 0 1 1
0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 0 1 1
0 0 1 1 1 0
0 0 1 1 0 1

A brief look at rproj2.out shows that exactly the generators with the last coordinate 1
have been extracted. (So the ideal is integrally closed. This is not surprising because we
have chosen squarefree monomials.)

The file dual.in looks like:

24
7
0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 1 1 1 1 -3
0 0 0 0 0 1 0 1 0 0 1 0 1 -1
0 0 0 0 0 0 1 1 0 0 0 1 1 -1
0 0 1 0 0 0 0 1 0 1 0 1 0 -1
0 1 0 0 0 0 0 1 0 1 1 1 1 -2
0 1 0 1 1 0 -1 1 1 0 1 0 0 -1
0 1 0 0 1 1 -1 1 1 1 0 0 0 -1
0 1 1 0 0 1 -1 1 1 1 1 0 1 -2
0 0 1 1 1 0 -1 1 1 1 0 1 1 -2
0 0 1 1 0 1 -1 1 1 1 1 1 0 -2
0 1 1 1 1 1 -2 1 1 0 1 1 1 -2

hyperplanes

The last line, contains 4 in this case. This means that we wish to compute the Hilbert
basis of the dual of the cone spanned by the 24 generators. The entries we have chosen
are exactly the support hyperplanes from the file rproj2.out. The output in dual.out

coincides with that in rproj2.out.

Finally, the mode 5 is presented in the next section.

11. MAGIC SQUARES

Suppose that you have the following square

a b c
d e f
h i j

NORMALIZ 2.2 17

and the problem is to find nonnegative values for a, b, . . . , j such that the 3 numbers in
all rows, all columns, and both diagonals sum to the same constant M (called the magic
constant). This leads to a linear system of equations

x1 + x2 + x3 = x4 + x5 + x6;
x1 + x2 + x3 = x7 + x8 + x9;
x1 + x2 + x3 = x1 + x4 + x7;
x1 + x2 + x3 = x2 + x5 + x8;
x1 + x2 + x3 = x3 + x6 + x9;
x1 + x2 + x3 = x1 + x5 + x9;
x1 + x2 + x3 = x3 + x5 + x7.

The associated system of equations in this case is contained in the file 3x3magic.in. The
output file contains the information you need to write the solution:

5 generators of integral closure:
1 2 0 0 1 2 2 0 1
2 0 1 0 1 2 1 2 0
0 2 1 2 1 0 1 0 2
1 0 2 2 1 0 0 2 1
1 1 1 1 1 1 1 1 1

The generators of the integral closure are in fact generators of the solution cone for the
given problem. Each row describes a solution. That means that the 5 squares

1 2 0
0 1 2
2 0 1

2 0 1
0 1 2
1 2 0

0 2 1
2 1 0
1 0 2

1 0 2
2 1 0
0 2 1

1 1 1
1 1 1
1 1 1

are solution for the problem, and all other solutions are linear combinations of these
squares with nonnegative integer coefficients.

The next question one may rise is: Given a constant M , how many magic square are with
magic constant M ? First all generators have magic constant 3, so there are no magic
squares if M 6= 3t. If M = 3t, then the answer (in this particular case) is given by the
Hilbert polynomial

P(t) = 1+2t +2t2 .

There are certain cases in mode 4 and 5 when computing the Hilbert basis with Pottier’s al-
gorithm is faster than the algorithm previously implemented by us (for example the magic
squares). This is why we have added also the Pottier’s algorithm as ”Run mode type”
dual. The following table contains test data we have obtained for computing the Hilbert
basis (time is given in seconds).

18 WINFRIED BRUNS AND BOGDAN ICHIM WITH CONTRIBUTIONS BY CHRISTOF SÖGER

normal dual
dual.in 0.005 0.004
cut.in 0.5 6.6
rafad.in 580 ∞

4x4.in 0.01 0.003
6x6.in ∞ 97000

12. PROBLEM

In the present version NORMALIZ cannot deal adequately with the zero cone. It is very
unlikely that the zero cone comes up in modes 0, 1, 2 or 3, but in modes 4 and 5 this may
very well happen. In this case you will get strange error messages.

COPYRIGHT

NORMALIZ 2.2 is free software licensed under the GNU General Public License, version
3. You can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR-
TICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the
program. If not, see http://www.gnu.org/licenses/.

Please refer to NORMALIZ in the following manner in any publication for which it has
been used:

W. Bruns and B. Ichim NORMALIZ. Computing normalizations of affine semigroups.
With contributions by C. Söger. Available from http://www.math.uos.de/normaliz.

REFERENCES

[1] W.Bruns and J. Gubeladze. Polytopes, rings, and K-theory. Springer 2009.
[2] W.Bruns and J. Herzog. Cohen-Macaulay Rings. Rev. ed. Cambridge University Press 1998.
[3] W.Bruns and B. Ichim. Algorithms for rational cones and affine monoids. In preparation.
[4] W.Bruns, R. Koch et al. NORMALIZ, Computing normalizations of affine semigroups. (1998–2006).
[5] W.Bruns and R. Koch. Computing the integral closure of an affine semigroup. Uni. Iaggelonicae Acta

Math. 39 (2001), 59–70.
[6] L. Pottier. The Euclide algorithm in dimension n. Research report, ISSAC 96, ACM Press 1996.

UNIVERSITÄT OSNABRÜCK, FB MATHEMATIK/INFORMATIK, 49069 OSNABRÜCK, GERMANY

E-mail address: winfried@math.uos.de

NORMALIZ 2.2 19

INSTITUTE OF MATHEMATICS ”SIMION STOILOW” OF THE ROMANIAN ACADEMY, 010702 BUCHAREST,
ROMANIA

E-mail address: bogdan.ichim@imar.ro

