
GPR Tools User’s Guide
Release 2020

April 30, 2020

GPR Tools User’s Guide 2020

This page is intentionally left blank.

2 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

CONTENTS

1 Introduction 9

2 GNAT Project Manager 11
2.1 Introduction . 11
2.2 Building with Projects . 12

2.2.1 Source Files and Directories . 13
2.2.2 Duplicate Sources in Projects . 15
2.2.3 Object and Exec Directory . 15
2.2.4 Main Subprograms . 16
2.2.5 Tools Options in Project Files . 17
2.2.6 Compiling with Project Files . 19
2.2.7 Executable File Names . 19
2.2.8 Using Variables to Avoid Duplication . 20
2.2.9 Naming Schemes . 21

2.3 Organizing Projects into Subsystems . 23
2.3.1 Importing Projects . 23
2.3.2 Cyclic Project Dependencies . 25
2.3.3 Sharing between Projects . 25
2.3.4 Global Attributes . 27

2.4 Scenarios in Projects . 27
2.5 Library Projects . 29

2.5.1 Building Libraries . 29
2.5.2 Using Library Projects . 31
2.5.3 Stand-alone Library Projects . 32
2.5.4 Installing a Library with Project Files . 33

2.6 Project Extension . 34
2.6.1 Importing and Project Extension . 35

2.7 Child Projects . 38
2.8 Aggregate Projects . 40

2.8.1 Building all main programs from a single project closure 40
2.8.2 Building a set of projects with a single command . 40
2.8.3 Defining a build environment . 41
2.8.4 Improving builder performance . 42
2.8.5 Syntax of aggregate projects . 42
2.8.6 package Builder in aggregate projects . 45

2.9 Aggregate Library Projects . 47
2.9.1 Building aggregate library projects . 47
2.9.2 Syntax of aggregate library projects . 48

2.10 Project File Reference . 48
2.10.1 Project Declaration . 48

GPR Tools User’s Guide 3 of 139

GPR Tools User’s Guide 2020

2.10.2 Qualified Projects . 50
2.10.3 Declarations . 51
2.10.4 Packages . 51
2.10.5 Expressions . 53
2.10.6 Built-in Functions . 54

The function external . 54
The function external_as_list . 55
Split . 55

2.10.7 Typed String Declaration . 56
2.10.8 Variables . 56
2.10.9 Case Constructions . 57
2.10.10 Attributes . 58

Project Level Attributes . 61
Package Binder Attributes . 66
Package Builder Attributes . 67
Package Check Attributes . 67
Package Clean Attributes . 67
Package Compiler Attributes . 68
Package Cross_Reference Attributes . 71
Package Documentation Attributes . 71
Package Eliminate Attributes . 71
Package Finder Attributes . 71
Package Gnatls Attributes . 72
Package gnatstub Attributes . 72
Package IDE Attributes . 72
Package Install Attributes . 72
Package Linker Attributes . 73
Package Metrics Attribute . 74
Package Naming Attributes . 74
Package Pretty_Printer Attributes . 75
Package Remote Attributes . 75
Package Stack Attributes . 76
Package Synchronize Attributes . 76

2.11 Glossary . 76

3 Building with GPRbuild 79
3.1 Introduction . 79
3.2 Command Line . 80
3.3 Switches . 81
3.4 Initialization . 87
3.5 Compilation of one or several sources . 88
3.6 Compilation Phase . 89
3.7 Post-Compilation Phase . 90
3.8 Linking Phase . 91
3.9 Distributed compilation . 91

3.9.1 Introduction to distributed compilation . 91
3.9.2 Setup build environments . 91
3.9.3 GPRslave . 92

4 GPRbuild Companion Tools 95
4.1 Configuring with GPRconfig . 95

4.1.1 Configuration . 95
4.1.2 Using GPRconfig . 96

Description . 96

4 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Command line arguments . 96
Interactive use . 98

4.1.3 The GPRconfig knowledge base . 98
General file format . 99
Compiler description . 99
GPRconfig external values . 101
GPRconfig variable substitution . 103
Configurations . 104

4.2 Configuration File Reference . 107
4.2.1 Project Level Configuration Attributes . 107

General Attributes . 107
General Library Related Attributes . 108
Archive Related Attributes . 108
Shared Library Related Attributes . 109

4.2.2 Package Naming . 110
4.2.3 Package Builder . 111
4.2.4 Package Compiler . 111

General Compilation Attributes . 112
Mapping File Related Attributes . 112
Config File Related Attributes . 113
Dependency Related Attributes . 114
Search Path Related Attributes . 114

4.2.5 Package Binder . 115
4.2.6 Package Linker . 116

4.3 Cleaning up with GPRclean . 116
4.3.1 Switches for GPRclean . 117

4.4 Installing with GPRinstall . 119
4.4.1 Switches for GPRinstall . 120

4.5 Specifying a Naming Scheme with GPRname . 124
4.5.1 Running gprname . 124
4.5.2 Switches for GPRname . 124
4.5.3 Example of gprname Usage . 126

4.6 The Library Browser GPRls . 126
4.6.1 Running gprls . 126
4.6.2 Switches for GPRls . 127
4.6.3 Examples of gprls Usage . 128

A GNU Free Documentation License 131

Index 137

GPR Tools User’s Guide 5 of 139

GPR Tools User’s Guide 2020

This page is intentionally left blank.

6 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Version 2020
Date: April 30, 2020

AdaCore

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, with
the Front-Cover Texts being “GPRbuild and GPR Companion Tools User’s Guide”, and with no Back-Cover Texts. A
copy of the license is included in the section entitled GNU Free Documentation License.

GPR Tools User’s Guide 7 of 139

GPR Tools User’s Guide 2020

This page is intentionally left blank.

8 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

CHAPTER

ONE

INTRODUCTION

This User’s Guide describes several software tools that use the GNAT project facility to drive their behavior. GNAT
projects are stored in text files with the extension .gpr, commonly called GPR files.

These GPR tools use a common facility, the GNAT Project Manager, that is fully described in GNAT Project Manager.

The main GPR tool is GPRbuild, a multi-language builder for systems organized into subsystems and libraries. This
tool is described in Building with GPRbuild.

The other GPR tools are described in GPRbuild Companion Tools:

• GPRconfig

A configuration project file generator (see Configuring with GPRconfig).

• GPRclean

A tool to remove compilation artifacts created by GPRbuild (see Cleaning up with GPRclean).

• GPRinstall

Executable and library installer using GPR files (see Installing with GPRinstall).

• GPRname

Naming scheme generator (see Specifying a Naming Scheme with GPRname).

• GPRls

Library browser (see The Library Browser GPRls).

GPR Tools User’s Guide 9 of 139

GPR Tools User’s Guide 2020

This page is intentionally left blank.

10 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

CHAPTER

TWO

GNAT PROJECT MANAGER

2.1 Introduction

This chapter describes GNAT’s Project Manager, a facility that allows you to manage complex builds involving a
number of source files, directories, and options for different system configurations. In particular, project files allow
you to specify properties including:

• The directory or set of directories containing the source files, and/or the names of the specific source files
themselves;

• The directory in which the compiler’s output (ALI files, object files, tree files, etc.) is to be placed;

• The directory in which the executable programs are to be placed;

• Switch settings, which can be applied either globally or to individual compilation units, for any of the project-
enabled tools;

• The source files containing the main subprograms to be built;

• The source programming language(s); and

• Source file naming conventions, which can be specified either globally or for individual compilation units (see
Naming Schemes).

Project files also allow you to:

• Change any of the above settings depending on external values, thus enabling the reuse of the projects in various
scenarios (see Scenarios in Projects); and

• Automatically build libraries as part of the build process (see Library Projects).

Project files are written in an Ada-like syntax, using familiar notions such as packages, context clauses, declarations,
default values, assignments, and inheritance (see Project File Reference).

Project files can depend upon other project files in a modular fashion, simplifying complex system integration and
project reuse.

• One project can import other projects containing needed source files. More generally, the Project Manager
lets you structure large development efforts into possibly interrelated subsystems, where build decisions are
delegated to the subsystem level, and thus different compilation environments (switch settings) are used for
different subsystems. See Organizing Projects into Subsystems.

• You can organize GNAT projects in a hierarchy: a project can extend a base project, inheriting its source files
and optionally overriding any of them with alternative versions. See Project Extension.

Several tools support project files, generally in addition to specifying the information on the command line itself. They
share common switches to control the loading of the project (in particular -Pprojectfile to define the applicable
project file and -Xvbl=value to set the value of an external variable).

GPR Tools User’s Guide 11 of 139

GPR Tools User’s Guide 2020

The Project Manager supports a wide range of development strategies, for systems of all sizes. Here are some typical
practices that are easily handled:

• Using a common set of source files and generating object files in different directories via different switch
settings. This can be used for instance to generate separate sets of object files for debugging and for production.

• Using a mostly shared set of source files with different versions of some units or subunits. This can be used for
instance to group and hide all OS dependencies in a small number of implementation units.

Project files can be used to achieve some of the effects of a source versioning system (for example, defining separate
projects for the different sets of sources that comprise different releases) but the Project Manager is independent of
any source configuration management tool that might be used by the developers.

The sections below use an example-driven approach to present and illustrate the various concepts related to projects.

2.2 Building with Projects

In its simplest form a project may be used in a stand-alone fashion to build a single executable, and this section will
focus on such a setup in order to introduce the main ideas. Later sections will extend this basic model to more complex
and realistic configurations.

The following concepts are the foundation of project files, and will be further detailed later in this documentation.
They are summarized here as a reference.

Project file: A text file expressed in an Ada-like syntax, generally with the .gpr extension. It defines build-related
characteristics of an application. The characteristics include the list of sources, the location of those sources,
the location for the generated object files, the name of the main program, and the options for the various tools
involved in the build process.

Project attribute: A specific project characteristic is defined by an attribute clause. Its value is a string or a sequence
of strings. All settings in a project are defined through a list of predefined attributes with precise semantics. See
Attributes.

Package in a project: Global attributes are defined at the top level of a project. Attributes affecting specific tools
are grouped in a package whose name is related to tool’s function. The most common packages are Builder,
Compiler, Binder, and Linker. See Packages.

Project variables: In addition to attributes, a project can use variables to store intermediate values and avoid
duplication in complex expressions. Variables can be initialized with external values coming from the
environment. A frequent use of variables is to define scenarios. See External Values, Scenarios in Projects,
and Variables.

Source files and source directories: A source file is associated with a language through a naming convention. For
instance, foo.c is typically the name of a C source file; bar.ads or bar.1.ada are two common naming
conventions for a file containing an Ada spec. A compilable entity is often composed of a main source file and
potentially several auxiliary ones, such as header files in C. The naming conventions can be user-defined (see
Naming Schemes), and will drive the builder to call the appropriate compiler for the given source file.

Source files are searched for in the source directories associated with the project through the Source_Dirs
attribute. By default, all the files (in these source directories) following the naming conventions associated with
the declared languages are considered to be part of the project. It is also possible to limit the list of source files
using the Source_Files or Source_List_File attributes. Note that those last two attributes only accept basenames
with no directory information.

Object files and object directory: An object file is an intermediate file produced by the compiler from a compilation
unit. It is used by post-compilation tools to produce final executables or libraries. Object files produced in the
context of a given project are stored in a single directory that can be specified by the Object_Dir attribute. In

12 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

order to store objects in two or more object directories, the system must be split into distinct subsystems, each
with its own project file.

The following subsections introduce the attributes of interest for simple build needs. Here is the basic setup that will
be used in the following examples:

The Ada source files pack.ads, pack.adb, and proc.adb are in the common/ directory. The file
proc.adb contains an Ada main subprogram Proc that withs package Pack. We want to compile
these source files with the switch -O2, and place the resulting files in the common/obj/ directory. Here
is the directory structure:

common/
pack.ads
pack.adb
proc.adb

common/obj/
proc.ali, proc.o pack.ali, pack.o, proc.exe

Our project is to be called Build. The name of the file is the name of the project (case-insensitive) with the .gpr
extension, therefore the project file name is build.gpr. This is not mandatory, but a warning is issued when this
convention is not followed.

This is a very simple example, and as stated above, a single project file is sufficient. We will thus create a new file,
build.gpr, that initially contains an empty project declaration:

project Build is
end Build;

Note that repeating the project name after end is mandatory.

2.2.1 Source Files and Directories

When you create a new project, the first task is to specify where the corresponding source files are located. These are
the only settings that are needed by all the tools that will use this project (builder, compiler, binder and linker for the
compilation, IDEs to edit the source files, etc.).

The first step is thus to declare the source directories, which are the directories to be searched to find source files. In
the current example, the common directory is the only source directory.

There are several ways to specify the source directories:

• When the attribute Source_Dirs is not defined, a project contains a single source directory which is the one
where the project file itself resides. In our example, if build.gpr is placed in the common directory, the
project will have the needed implicit source directory.

• The attribute Source_Dirs can be set to a list of path names, one for each of the source directories. Such paths
can either be absolute names (for instance "/usr/local/common/" on Unix), or relative to the directory in
which the project file resides (for instance "." if build.gpr is inside common/, or "common" if it is one
level up). Each of the source directories must exist and be readable.

The syntax for directories is platform specific. For portability, however, the project manager will always properly
translate Unix-like path names to the native format of the specific platform. For instance, when the same project
file is to be used both on Unix and Windows, "/" should be used as the directory separator rather than "\".

• The attribute Source_Dirs can automatically include subdirectories using a special syntax inspired by some
Unix shells. If any of the paths in the list ends with “**”, then that path and all its subdirectories (recursively)
are included in the list of source directories. For instance, “**” and “./**” represent the complete directory
tree rooted at the directory in which the project file resides.

GPR Tools User’s Guide 13 of 139

GPR Tools User’s Guide 2020

When using the Source_Dirs construct, you may sometimes find it convenient to also use the attribute
Excluded_Source_Dirs, which is also a list of paths. Each entry specifies a directory whose immediate content,
not including subdirs, is to be excluded. It is also possible to exclude a complete directory subtree using the **
notation.

It is often desirable to remove, from the source directories, directory subtrees rooted at some subdirectories. An
example is the subdirectories created by a Version Control System such as Subversion that creates directory subtrees
rooted at a subdirectory named .svn. To do that, attribute Ignore_Source_Sub_Dirs can be used. It specifies the list
of simple file names or patterns for the roots of these undesirable directory subtrees.

for Source_Dirs use ("./**");
for Ignore_Source_Sub_Dirs use (".svn", "@*");

With the declaration of attribute Ignore_Source_Sub_Dirs above, .svn subtrees as weel as subtrees rooted at
subdirectories with a name starting with ‘@’ are not part of the source directories of the project.

When applied to the simple example, and because we generally prefer to have the project file at the top-level directory
rather than mixed with the sources, we will add the relevant definition for the Source_Dirs attribute to our
build.gpr project file:

project Build is
for Source_Dirs use ("common"); -- <<<<

end Build;

Once the source directories have been specified, you may need to indicate specific source files of interest. By default,
all source files present in the source directories are considered by the Project Manager. When this is not desired, it is
possible to explicitly specify the list of sources to consider. In such a case, only source file base names are indicated
and not their absolute or relative path names. The project manager is in charge of locating the specified source files in
the specified source directories.

• By default, the project manager searches for all source files of all specified languages in all the source directories.

Since the project manager was initially developed for Ada environments, the default language is usually Ada
and the above project file is complete: it defines without ambiguity the sources composing the project: that is,
all the sources in subdirectory common for the default language (Ada) using the default naming convention.

However, when compiling a multi-language application, or a pure C application, the project manager must be
told which languages are of interest, which is done by setting the Languages attribute to a list of strings, each
of which is the name of a language.

Even when only Ada is used, the default naming might not be suitable. Indeed, how does the project manager
distinguish an Ada source file from any other file? Project files can describe the naming scheme used for source
files, and override the default (see Naming Schemes). The default is the standard GNAT extension (.adb for
bodies and .ads for specs), which is what is used in our example, and thus no naming scheme is explicitly
specified. See Naming Schemes.

• Source_Files. In some cases, source directories might contain files that should not be included in a project. One
can specify the explicit list of file names to be considered through the Source_Files attribute. When this attribute
is defined, instead of looking at every file in the source directories, the project manager takes only those names
into consideration and reports errors if they cannot be found in the source directories or do not correspond to the
naming scheme.

• It is sometimes useful to have a project with no sources (most of the time because the attributes defined in the
project file will be reused in other projects, as explained in Organizing Projects into Subsystems. To do this,
the attribute Source_Files is set to the empty list, i.e. (). Alternatively, Source_Dirs can be set to the
empty list, with the same result.

14 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

• Source_List_File. If there is a large number of files, it might be more convenient to use the attribute
Source_List_File, which specifies the full path of a file. This file must contain a list of source file names
(one per line, no directory information) that are searched as if they had been defined through Source_Files.
Such a file can easily be created through external tools.

A warning is issued if both attributes Source_Files and Source_List_File are given explicit values.
In this case, the attribute Source_Files prevails.

• Excluded_Source_Files. Specifying an explicit list of files is not always convenient. Instead it might be
preferable to use the default search rules with specific exceptions. This can be done through the attribute
Excluded_Source_Files (or its synonym Locally_Removed_Files). Its value is the list of file names that
should not be taken into account. This attribute is often used when extending a project, see Project Extension.
A similar attribute Excluded_Source_List_File plays the same role but takes the name of file containing file
names similarly to Source_List_File.

In most simple cases, such as the above example, the default source file search behavior provides the expected
result, and we do not need to add anything after setting Source_Dirs. The Project Manager automatically finds
pack.ads, pack.adb, and proc.adb as source files of the project.

Note that by default a warning is issued when a project has no sources attached to it and this is not explicitly indicated
in the project file.

2.2.2 Duplicate Sources in Projects

If the order of the source directories is known statically, that is if "/**" is not used in the string list for
Source_Dirs, then there may be several files with the same name situated in different directories of the project.
In this case, only the file in the first directory is considered as a source of the project and the others are hidden. If
"/**" is used in the string list for Source_Dirs, it is an error to have several files with the same name in the same
directory "/**" subtree, since there would be an ambiguity as to which one should be used.

If there are two sources with the same name in different directories of the same "/**" subtree, one way to resolve
the problem is to exclude the directory of the file that should not be used as a source of the project.

2.2.3 Object and Exec Directory

Another consideration when designing a project is to decide where the compiler should place the object files. In fact,
the compiler and other tools might create several different kinds of files (for GNAT, there is the object file and the ALI
file). One of the important concepts in projects is that most tools may consider source directories as read-only and thus
do not attempt to create new or temporary files there. Instead, all such files are created in the object directory. (This is
not true for project-aware IDEs, one of whose purposes is to create the source files.)

The object directory is specified through the Object_Dir attribute. Its value is the path to the object directory, either
absolute or relative to the directory containing the project file. This directory must already exist and be readable and
writable, although some tools have a switch to create the directory if needed (See the switch -p for gprbuild).

If the attribute Object_Dir is not specified, it defaults to the directory containing the project file.

For our example, we can specify the object directory in this way (assuming that the project file will reside in the parent
directory of common):

project Build is
for Source_Dirs use ("common");
for Object_Dir use "common/obj"; -- <<<<

end Build;

GPR Tools User’s Guide 15 of 139

GPR Tools User’s Guide 2020

As mentioned earlier, there is a single object directory per project. As a result, if you have an existing system where
the object files are spread across several directories, one option is to move all of them into the same directory if
you want to build it with a single project file. An alternative approach is described below (see Organizing Projects
into Subsystems), allowing each separate object directory to be associated with a corresponding subsystem of the
application.

Incidentally, the directory designated by the Object_Dir attribute may be used by project aware tools other than
the compilation toolchain to store reports or intermediate files.

When the linker is called, it usually creates an executable. By default, this executable is placed in the project’s object
directory. However in some situations it may be convenient to store it in elsewhere. This can be done through the
Exec_Dir attribute, which, like Object_Dir contains a single absolute or relative path and must point to an existing
and writable directory, unless you ask the tool to create it on your behalf. If neither Object_Dir nor Exec_Dir is
specified then the executable is placed in the directory containing the project file.

In our example, let’s specify that the executable is to be placed in the same directory as the project file build.gpr.
The project file is now:

project Build is
for Source_Dirs use ("common");
for Object_Dir use "obj";
for Exec_Dir use "."; -- <<<<

end Build;

2.2.4 Main Subprograms

An important role of a project file is to identify the executable(s) that will be built. It does this by specifying the source
file for the main subprogram (for Ada) or the file that contains the main function (for C).

There can be any number of such main files within a given project, and thus several executables can be built from a
single project file. Of course, a given executable might not (and in general will not) need all the source files referenced
by the project. As opposed to other build mechanisms such as through a Makefile, you do not need to specify the list of
dependencies of each executable. The project-aware builder knows enough of the semantics of the languages to build
and link only the necessary elements.

The list of main files is specified via the Main attribute. It contains a list of file names (no directories). If a project
defines this attribute, it is not necessary to identify main files on the command line when invoking a builder, and editors
like GPS will be able to create extra menus to spawn or debug the corresponding executables.

project Build is
for Source_Dirs use ("common");
for Object_Dir use "obj";
for Exec_Dir use ".";
for Main use ("proc.adb"); -- <<<<

end Build;

If this attribute is defined in the project, then spawning the builder with a command such as

gprbuild -Pbuild

automatically builds all the executables corresponding to the files listed in the Main attribute. It is possible to specify
one or more executables on the command line to build a subset of them.

One or more spaces may be placed between the -P and the project name, and the project name may be a simple name
(no file extension) or a path for the project file. Thus each of the following is equivalent to the command above:

16 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

gprbuild -P build
gprbuild -P build.gpr
gprbuild -P ./build.gpr

2.2.5 Tools Options in Project Files

We now have a project file that fully describes our environment, and it can be used to build the application with a
simple GPRbuild command as shown above. In fact, the empty project that we saw at the beginning (with no attribute
definitions) could already achieve this effect if it was placed in the common directory.

Of course, we might want more control. This section shows you how to specify the compilation switches that the
various tools involved in the building of the executable should use.

Since source names and locations are described in the project file, it is not necessary to use switches on the command
line for this purpose (such as -I for gcc). This removes a major source of command line length overflow. Clearly, the
builders will have to communicate this information one way or another to the underlying compilers and tools they call,
but they usually use various text files, such as response files, for this purpose and thus are not subject to command line
overflow.

Several tools are used to create an executable: the compiler produces object files from the source files; the binder
(when the language is Ada) creates a “source” file that, among other things, takes care of elaboration issues and global
variable initialization; and the linker gathers everything into a single executable. All these tools are known to the
project manager and will be invoked with user-defined switches from the project files. To obtain this effect, a project
file feature known as a package is used.

A project file contains zero or more packages, each of which defines the attributes specific to one tool (or one set of
tools). Project files use an Ada-like syntax for packages. Package names permitted in project files are restricted to a
predefined set (see Packages), and the contents of packages are limited to a small set of constructs and attributes (see
Attributes).

Our example project file below includes several empty packages. At this stage, they could all be omitted since they
are empty, but they show which packages would be involved in the build process.

project Build is
for Source_Dirs use ("common");
for Object_Dir use "obj";
for Exec_Dir use ".";
for Main use ("proc.adb");

package Builder is --<<< for gprbuild
end Builder;

package Compiler is --<<< for the compiler
end Compiler;

package Binder is --<<< for the binder
end Binder;

package Linker is --<<< for the linker
end Linker;

end Build;

Let’s first examine the compiler switches. As stated in the initial description of the example, we want to compile all
files with -O2. This is a compiler switch, although it is typical, on the command line, to pass it to the builder which

GPR Tools User’s Guide 17 of 139

GPR Tools User’s Guide 2020

then passes it to the compiler. We recommend directly using the correct package, which will make the setup easier to
understand.

Several attributes can be used to specify the switches:

Default_Switches:

This illustrates the concept of an indexed attribute. When such an attribute is defined, you must supply
an index in the form of a literal string. In the case of Default_Switches, the index is the name of the
language to which the switches apply (since a different compiler will likely be used for each language,
and each compiler has its own set of switches). The value of the attribute is a list of switches.

In this example, we want to compile all Ada source files with the switch -O2; the resulting Compiler
package is as follows:

package Compiler is
for Default_Switches ("Ada") use ("-O2");

end Compiler;

Switches:

In some cases, we might want to use specific switches for one or more files. For instance, compiling
proc.adb might not be desirable at a high level of optimization. In such a case, the Switches attribute
(indexed by the file name) can be used and will override the switches defined by Default_Switches. The
Compiler package in our project file would become:

package Compiler is
for Default_Switches ("Ada")

use ("-O2");
for Switches ("proc.adb")

use ("-O0");
end Compiler;

Switches may take a pattern as an index, such as in:

package Compiler is
for Default_Switches ("Ada")

use ("-O2");
for Switches ("pkg*")

use ("-O0");
end Compiler;

Sources pkg.adb and pkg-child.adb would be compiled with -O0, not -O2.

Switches can also be given a language name as index instead of a file name in which case it has the same
semantics as Default_Switches. However, indexes with wild cards are never valid for language name.

Local_Configuration_Pragmas:

This attribute may specify the path of a file containing configuration pragmas for use by the Ada compiler,
such as pragma Restrictions (No_Tasking). These pragmas will be used for all the sources of the project.

The switches for the other tools are defined in a similar manner through the Default_Switches and Switches attributes,
respectively in the Builder package (for GPRbuild), the Binder package (binding Ada executables) and the Linker
package (for linking executables).

18 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

2.2.6 Compiling with Project Files

Now that our project file is written, let’s build our executable. Here is the command we would use from the command
line:

gprbuild -Pbuild

This will automatically build the executables specified in the Main attribute: for each, it will compile or recompile the
sources for which the object file does not exist or is not up-to-date; it will then run the binder; and finally run the linker
to create the executable itself.

The GPRbuild builder can automatically manage C files the same way: create the file utils.c in the common
directory, set the attribute Languages to “(Ada, C)”, and re-run

gprbuild -Pbuild

GPRbuild knows how to recompile the C files and will recompile them only if one of their dependencies has changed.
No direct indication on how to build the various elements is given in the project file, which describes the project
properties rather than a set of actions to be executed. Here is the invocation of GPRbuild when building a multi-
language program:

$ gprbuild -Pbuild
gcc -c proc.adb
gcc -c pack.adb
gcc -c utils.c
gprbind proc
...
gcc proc.o -o proc

Notice the three steps described earlier:

• The first three gcc commands correspond to the compilation phase.

• The gprbind command corresponds to the post-compilation phase.

• The last gcc command corresponds to the final link.

The default output of GPRbuild is reasonably simple and easy to understand. In particular, some of the less frequently
used commands are not shown, and some parameters are abbreviated. Thus it is not possible to rerun the effect of the
GPRbuild command by cut-and-pasting its output. The -v option to GPRbuild provides a much more verbose output
which includes, among other information, more complete compilation, post-compilation and link commands.

2.2.7 Executable File Names

By default, the executable name corresponding to a main file is computed from the main source file name. Through
the attribute Executable in package Builder, it is possible to change this default.

For instance, instead of building an executable named "proc" (or "proc.exe" on Windows), we could configure
our project file to build proc1 (respectively proc1.exe) as follows:

project Build is
... -- same as before
package Builder is

for Executable ("proc.adb") use "proc1";
end Builder

end Build;

GPR Tools User’s Guide 19 of 139

GPR Tools User’s Guide 2020

Attribute Executable_Suffix, when specified, changes the suffix of the executable files when no attribute
Executable applies: its value replaces the platform-specific executable suffix. The default executable suffix
is the empty string empty on Unix and ".exe" on Windows.

It is also possible to change the name of the produced executable by using the command line switch -o. However,
when several main programs are defined in the project, it is not possible to use the -o switch; then the only way to
change the names of the executable is through the attributes Executable and Executable_Suffix.

2.2.8 Using Variables to Avoid Duplication

To illustrate some other project capabilities, here is a slightly more complex project using similar sources and a main
program in C:

project C_Main is
for Languages use ("Ada", "C");
for Source_Dirs use ("common");
for Object_Dir use "obj";
for Main use ("main.c");
package Compiler is

C_Switches := ("-pedantic");
for Default_Switches ("C") use C_Switches;
for Default_Switches ("Ada") use ("-gnaty");
for Switches ("main.c") use C_Switches & ("-g");

end Compiler;
end C_Main;

This project has many similarities with the previous one. As expected, its Main attribute now refers to a C source file.
The attribute Exec_Dir is now omitted, thus the resulting executable will be put in the object directory obj.

The most noticeable difference is the use of a variable in the Compiler package to store settings used in several
attributes. This avoids text duplication and eases maintenance (a single place to modify if we want to add new switches
for C files). We will later revisit the use of variables in the context of scenarios (see Scenarios in Projects).

In this example, we see that the file main.c will be compiled with the switches used for all the other C files, plus -g.
In this specific situation the use of a variable could have been replaced by a reference to the Default_Switches
attribute:

for Switches ("c_main.c") use Compiler'Default_Switches ("C") & ("-g");

Note the tick character “’”, which is used to refer to attributes defined in a package.

Here is the output of the GPRbuild command using this project:

$ gprbuild -Pc_main
gcc -c -pedantic -g main.c
gcc -c -gnaty proc.adb
gcc -c -gnaty pack.adb
gcc -c -pedantic utils.c
gprbind main.bexch
...
gcc main.o -o main

The default switches for Ada sources, the default switches for C sources (in the compilation of lib.c), and the
specific switches for main.c have all been taken into account.

20 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

2.2.9 Naming Schemes

Sometimes an Ada software system needs to be ported from one compilation environment to another (such as GNAT),
but the files might not be named using the default GNAT conventions. Instead of changing all the file names, which
for a variety of reasons might not be possible, you can define the relevant file naming scheme in the Naming package
of your project file.

The naming scheme has two distinct goals for the Project Manager: it allows source files to be located when searching
in the source directories, and given a source file name it makes it possible to infer the associated language, and thus
which compiler to use.

Note that the Ada compiler’s use of pragma Source_File_Name is not supported when using project files. You must
use the features described here. You can, however, specify other configuration pragmas.

The following attributes can be defined in package Naming:

Casing:

Its value must be one of "lowercase" (the default if unspecified), "uppercase" or "mixedcase".
It describes the casing of file names with regard to the Ada unit name.

Given an Ada package body My_Unit, the base file name (i.e. minus the extension, which is controlled
by other attributes described below) will respectively be:

• for “lowercase”: “my_unit”

• for “uppercase”: “MY_UNIT”

• for “mixedcase”: any spelling with indifferent casing such as “My_Unit”, “MY_Unit”, “My_UnIT”
etc... The case insensitive name must be unique, otherwise an error will be reported. For example,
there cannot be two source file names such as “My_Unit.adb” and “MY_UnIT.adb”.

On Windows, file names are case insensitive, so this attribute is irrelevant.

Dot_Replacement:

This attribute specifies the string that should replace the "." in unit names. Its default value is "-" so
that a unit Parent.Child is expected to be found in the file parent-child.adb. The replacement
string must satisfy the following requirements to avoid ambiguities in the naming scheme:

• It must not be empty

• It cannot start or end with an alphanumeric character

• It cannot be a single underscore

• It cannot start with an underscore followed by an alphanumeric

• It cannot contain a dot ’.’ unless the entire string is "."

• It cannot include a space or a character that is not printable ASCII

Spec_Suffix and Specification_Suffix:

For Ada, these attributes specify the suffix used in file names that contain specifications. For
other languages, they give the extension for files that contain declarations (header files in C for
instance). The attribute is indexed by the language name. The two attributes are equivalent, but
Specification_Suffix is obsolescent.

If the value of the attribute is the empty string, it indicates to the Project Manager that the
only specifications/header files for the language are those specified with attributes Spec or
Specification_Exceptions.

If Spec_Suffix ("Ada") is not specified, then the default is ".ads".

GPR Tools User’s Guide 21 of 139

GPR Tools User’s Guide 2020

A non empty value must satisfy the following requirements:

• It must include at least one dot

• If Dot_Replacement is a single dot, then it cannot include more than one dot.

Body_Suffix and Implementation_Suffix:

These attributes are equivalent and specify the extension used for file names that contain code (bodies in
Ada). They are indexed by the language name. Implementation_Suffix is obsolescent and fully
replaced by the first attribute.

For each language of a project, one of these two attributes needs to be specified, either in the project itself
or in the configuration project file.

If the value of the attribute is the empty string, it indicates to the Project Manager that the only source
files for the language are those specified with attributes Body or Implementation_Exceptions.

These attributes must satisfy the same requirements as Spec_Suffix. In addition, they must be different
from any of the values in Spec_Suffix. If Body_Suffix ("Ada") is not specified, then the default
is ".adb".

If Body_Suffix ("Ada") and Spec_Suffix ("Ada") end with the same string, then a file name
that ends with the longest of these two suffixes will be a body if the longest suffix is Body_Suffix
("Ada"), or a spec if the longest suffix is Spec_Suffix ("Ada").

If the suffix does not start with a ’.’, a file with a name exactly equal to the suffix will also be part of the
project (for instance if you define the suffix as Makefile.in, a file called Makefile.in will be part
of the project. This capability is usually not of interest when building. However, it might become useful
when a project is also used to find the list of source files in an editor, like the GNAT Programming System
(GPS).

Separate_Suffix:

This attribute is specific to Ada. It denotes the suffix used in file names for files that contain subunits
(separate bodies). If it is not specified, then it defaults to same value as Body_Suffix ("Ada").

The value of this attribute cannot be the empty string.

Otherwise, the same rules apply as for the Body_Suffix attribute.

Spec or Specification:

These attributes are equivalent. The Spec attribute can be used to define the source file name for a given
Ada compilation unit’s spec. The index is the literal name of the Ada unit (case insensitive). The value
is the literal base name of the file that contains this unit’s spec (case sensitive or insensitive depending on
the operating system). This attribute allows the definition of exceptions to the general naming scheme, in
case some files do not follow the usual convention.

When a source file contains several units, the relative position of the unit can be indicated. The first unit
in the file is at position 1.

for Spec ("MyPack.MyChild") use "mypack.mychild.spec";
for Spec ("top") use "foo.a" at 1;
for Spec ("foo") use "foo.a" at 2;

Body or Implementation:

These attribute play the same role as Spec, but for Ada bodies.

Specification_Exceptions and Implementation_Exceptions:

22 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

These attributes define exceptions to the naming scheme for languages other than Ada. They are indexed
by the language name, and contain a list of file names respectively for headers and source code.

As an example of several of these attributes, the following package models the Apex file naming rules:

package Naming is
for Casing use "lowercase";
for Dot_Replacement use ".";
for Spec_Suffix ("Ada") use ".1.ada";
for Body_Suffix ("Ada") use ".2.ada";

end Naming;

2.3 Organizing Projects into Subsystems

A subsystem is a coherent part of the complete system to be built. It is represented by a set of sources and a single
object directory. A system can consist of a single subsystem when it is simple as we have seen in the earlier examples.
Complex systems are usually composed of several interdependent subsystems. A subsystem is dependent on another
subsystem if knowledge of the other one is required to build it, and in particular if visibility on some of the sources of
this other subsystem is required. Each subsystem is usually represented by its own project file.

In this section, we’ll enhance the previous example. Let’s assume some sources of our Build project depend on other
sources. For instance, when building a graphical interface, it is usual to depend upon a graphical library toolkit such
as GtkAda. Furthermore, we also need sources from a logging module we had previously written.

2.3.1 Importing Projects

GtkAda comes with its own project file (appropriately called gtkada.gpr), and we will assume we have already
built a project called logging.gpr for the logging module. With the information provided so far in build.gpr,
building the application would fail with an error indicating that the gtkada and logging units that are relied upon by
the sources of this project cannot be found.

This is solved by defining build.gpr to import the gtkada and logging projects: this is done by adding the following
with clauses at the beginning of our project:

with "gtkada.gpr";
with "a/b/logging.gpr";
project Build is

... -- as before
end Build;

When such a project is compiled, gprbuild will automatically check the imported projects and recompile their sources
when needed. It will also recompile the sources from Build when needed, and finally create the executable.

In some cases, the implementation units needed to recompile a project are not available, or come from some third party
and you do not want to recompile it yourself. In this case, set the attribute Externally_Built to "true", indicating to
the builder that this project can be assumed to be up-to-date, and should not be considered for recompilation. In Ada,
if the sources of this externally built project were compiled with another version of the compiler or with incompatible
options, the binder will issue an error.

The project’s with clause has several effects. It provides source visibility between projects during the compilation
process. It also guarantees that the necessary object files from Logging and GtkAda are available when linking
Build.

GPR Tools User’s Guide 23 of 139

GPR Tools User’s Guide 2020

As can be seen in this example, the syntax for importing projects is similar to the syntax for importing compilation
units in Ada. However, project files use literal strings instead of names, and the with clause identifies project files
rather than packages.

Each literal string after with is the path (absolute or relative) to a project file. The .gpr extension is optional, but
we recommend adding it. If no extension is specified, and no project file with the .gpr extension is found, then the
file is searched for exactly as written in the with clause, that is with no extension.

As mentioned above, the path after a with has to be a literal string, and you cannot use concatenation, or lookup the
value of external variables to change the directories from which a project is loaded. A solution if you need something
like this is to use aggregate projects (see Aggregate Projects).

When a relative path or a base name is used, the project files are searched relative to each of the directories in the
project path. This path includes all the directories found by the following procedure, in decreasing order of priority;
the first matching file is used:

• First, the file is searched relative to the directory that contains the current project file.

• Then it is searched relative to all the directories specified in the environment variables
GPR_PROJECT_PATH_FILE, GPR_PROJECT_PATH and ADA_PROJECT_PATH (in that order) if
they exist. The value of GPR_PROJECT_PATH_FILE, when defined, is the path name of a text file that
contains project directory path names, one per line. GPR_PROJECT_PATH and ADA_PROJECT_PATH, when
defined, contain project directory path names separated by directory separators. ADA_PROJECT_PATH is used
for compatibility, it is recommended to use GPR_PROJECT_PATH_FILE or GPR_PROJECT_PATH.

• Finally, it is searched relative to the default project directories. The following locations are searched, in the
specified order:

– <compiler_prefix>/<target>/<runtime>/share/gpr

– <compiler_prefix>/<target>/<runtime>/lib/gnat

– <compiler_prefix>/<target>/share/gpr

– <compiler_prefix>/<target>/lib/gnat

– <compiler_prefix>/share/gpr/

– <compiler_prefix>/lib/gnat/

The first two paths are only added if the explicit runtime is specified either via --RTS switch or via Runtime
attribute. <target> can be communicated via --target switch or Target attribute, otherwise default target will be
used. <compiler_prefix> is typically discovered automatically based on target, runtime and language information.

In our example, gtkada.gpr is found in the predefined directory if it was installed at the same root as GNAT.

Some tools also support extending the project path from the command line, generally through the -aP. You can see
the value of the project path by using the gprls -v command.

Any symbolic link will be fully resolved in the directory of the importing project file before the imported project file
is examined.

Any source file in the imported project can be used by the sources of the importing project, transitively. Thus if A
imports B, which imports C, the sources of A may depend on the sources of C, even if A does not import C explicitly.
However, this is not recommended, because if and when B ceases to import C, some sources in A will no longer
compile. GPRbuild has a switch --no-indirect-imports that will report such indirect dependencies.

Project import closure

The project import closure for a given project proj is the set of projects consisting of proj itself, together with each
project that is directly or indirectly imported by proj. The import may be from either a with or, as will be explained
below, a limited with.

24 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Note: One very important aspect of a project import closure is that a given source can only belong to one project
in this set (otherwise the project manager would not know which settings apply to it and when to recompile it). Thus
different project files do not usually share source directories, or, when they do, they need to specify precisely which
project owns which sources using the attribute Source_Files or equivalent. By contrast, two projects can each own a
source with the same base file name as long as they reside in different directories. The latter is not true for Ada sources
because of the correlation between source files and Ada units.

2.3.2 Cyclic Project Dependencies

In general, cyclic import dependencies are forbidden: if project A withs project B (directly or indirectly) then B
is not allowed to with A. However, there are cases when cyclic dependencies at the project level are necessary, as
dependencies at the source level may exist both ways between A‘s sources and B‘s sources. For these cases, another
form of import between projects is supplied: the limited with. A project A that imports a project B with a simple
with may also be imported, directly or indirectly, by B through a limited with.

The difference between a simple with and limited with is that the name of a project imported with a limited
with cannot be used in the importing project. In particular, its packages cannot be renamed and its variables cannot
be referenced.

with "b.gpr";
with "c.gpr";
project A is

for Exec_Dir use B'Exec_Dir; -- OK
end A;

limited with "a.gpr"; -- Cyclic dependency: A -> B -> A
project B is

for Exec_Dir use A'Exec_Dir; -- not OK
end B;

with "d.gpr";
project C is
end C;

limited with "a.gpr"; -- Cyclic dependency: A -> C -> D -> A
project D is

for Exec_Dir use A'Exec_Dir; -- not OK
end D;

2.3.3 Sharing between Projects

When building an application, it is common to have similar needs in several of the projects corresponding to the
subsystems under construction. For instance, they might all have the same compilation switches.

As seen above (see Tools Options in Project Files), setting compilation switches for all sources of a subsystem is
simple: it is just a matter of adding a Compiler’Default_Switches attribute to each project file with the same
value. However, that would entail duplication of data, and both places would need to be changed in order to recompile
the whole application with different switches. This may be a serious issue if there are many subsystems and thus many
project files to edit.

There are two main approaches to avoiding this duplication:

GPR Tools User’s Guide 25 of 139

GPR Tools User’s Guide 2020

• Since build.gpr imports logging.gpr, we could change the former to reference the attribute in Logging,
either through a package renaming, or by referencing the attribute. The following example shows both cases:

project Logging is
package Compiler is

for Switches ("Ada")
use ("-O2");

end Compiler;
package Binder is

for Switches ("Ada")
use ("-E");

end Binder;
end Logging;

with "logging.gpr";
project Build is

package Compiler renames Logging.Compiler;
package Binder is

for Switches ("Ada") use Logging.Binder'Switches ("Ada");
end Binder;

end Build;

The solution used for Compiler gets the same value for all attributes of the package, but you cannot modify
anything from the package (adding extra switches or some exceptions). The solution for the Binder package is
more flexible, but more verbose.

If you need to refer to the value of a variable in an imported project, rather than an attribute, the syntax is similar
but uses a "." rather than an apostrophe. For instance:

with "imported";
project Main is

Var1 := Imported.Var;
end Main;

• The second approach is to define the switches in a separate project. That project does not contain any source
files (thus, as opposed to the first example, none of the projects plays a special role), and will only be used to
define the attributes. Such a project is typically named shared.gpr.

abstract project Shared is
for Source_Files use (); -- no sources
package Compiler is

for Switches ("Ada")
use ("-O2");

end Compiler;
end Shared;

with "shared.gpr";
project Logging is

package Compiler renames Shared.Compiler;
end Logging;

with "shared.gpr";
project Build is

package Compiler renames Shared.Compiler;
end Build;

As with the first example, we could have chosen to set the attributes one by one rather than to rename a package.

26 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

The reason we explicitly indicate that Shared has no sources is so that it can be created in any directory, and we
are sure it shares no sources with Build or Logging, which would be invalid.

Note the additional use of the abstract qualifier in shared.gpr. This qualifier is optional, but helps convey the
message that we do not intend this project to have source files (see Qualified Projects for additional information
about project qualifiers).

2.3.4 Global Attributes

We have already seen many examples of attributes used to specify a particular option for one of the tools involved in
the build process. Most of those attributes are project specific. That is to say, they only affect the invocation of tools
on the sources of the project where they are defined.

There are a few additional attributes that, when defined for a “main” project proj, also apply to all other projects in the
project import closure of proj. A main project is a project explicitly specified on the command line.

Such attributes are known as global attributes; here are several that are commonly used:

Builder’Global_Configuration_Pragmas:

This attribute specifies a file that contains configuration pragmas to use when building
executables. These pragmas apply to all executables built from this project import closure.
As noted earlier, additional pragmas can be specified on a per-project basis by setting the
Compiler’Local_Configuration_Pragmas attribute.

Builder’Global_Compilation_Switches:

This attribute is a list of compiler switches that apply when compiling any source file in the project import
closure. These switches are used in addition to the ones defined in the Compiler package, which only
apply to the sources of the corresponding project. This attribute is indexed by the name of the language.

Using such global capabilities is convenient, but care is needed since it can also lead to unexpected behavior. An
example is when several subsystems are shared among different main projects but the different global attributes are
not compatible. Note that using aggregate projects can be a safer and more powerful alternative to global attributes.

2.4 Scenarios in Projects

Various project properties can be modified based on scenarios. These are user-defined modes (the values of project
variables and attributes) that determine the behavior of a project, based on the values of externally defined variables.
Typical examples are the setup of platform-specific compiler options, or the use of a debug and a release mode (the
former would activate the generation of debug information, while the latter would request an increased level of code
optimization).

Let’s enhance our example to support debug and release modes. The issue is to let the user choose which kind of
system to build: use -g as a compiler switch in debug mode and -O2 in release mode. We will also set up the projects
so that we do not share the same object directory in both modes; otherwise switching from one to the other might
trigger more recompilations than needed or mix objects from the two modes.

One approach is to create two different project files, say build_debug.gpr and build_release.gpr, that set
the appropriate attributes as explained in previous sections. This solution does not scale well, because in the presence
of multiple projects depending on each other, you will also have to duplicate the complete set of projects and adapt the
project files accordingly.

Instead, project files support the notion of scenarios controlled by the values of externally defined variables. Such
values can come from several sources (in decreasing order of priority):

GPR Tools User’s Guide 27 of 139

GPR Tools User’s Guide 2020

Command line: When launching gprbuild, the user can pass -X switches to define the external variables. In our case,
the command line might look like

gprbuild -Pbuild.gpr -Xmode=release

which defines the external variable named mode and sets its value to "release".

Environment variables: When the external value does not come from the command line, it can come from the value
of an environment variable of the appropriate name. In our case, if an environment variable named mode exists,
its value will be used.

Tool mode: In the special case of the GPR_TOOL variable, if its value has not been specified via the commandline or
as an environment variable, the various tools set this variable to a value proper to each tool. gprbuild sets this
value to gprbuild. See the documentation of other tools to find out which value they set this variable to.

External function second parameter. Once an external variable is defined, its value needs to be obtained by the
project. The general form is to use the predefined function external, which returns the current value of
the external variable. For instance, we could set up the object directory to point to either obj/debug or
obj/release by changing our project to

project Build is
for Object_Dir use "obj/" & external ("mode", "debug");
... -- as before

end Build;

The second parameter to external is optional, and is the default value to use if mode is not set from
the command line or the environment. If the second parameter is not supplied, and there is no external or
environment variable named by the first parameter, then an error is reported.

In order to set the switches according to the different scenarios, other constructs are needed, such as typed variables
and case constructions.

A typed variable is a variable that can take only a limited number of values, similar to variable from an enumeration
type in Ada. Such a variable can then be used in a case construction, resulting in conditional sections in the project.
The following example shows how this can be done:

project Build is
type Mode_Type is ("debug", "release"); -- all possible values
Mode : Mode_Type := external ("mode", "debug"); -- a typed variable

package Compiler is
case Mode is

when "debug" =>
for Switches ("Ada")

use ("-g");
when "release" =>

for Switches ("Ada")
use ("-O2");

end case;
end Compiler;

end Build;

This project is larger than the ones we have seen previously, but it has become much more flexible. The Mode_Type
type defines the only valid values for the Mode variable. If any other value is read from the environment, an error is
reported and the project is considered as invalid.

The Mode variable is initialized with an external value defaulting to "debug". This default could be omitted and that
would force the user to define the value. Finally, we can use a case construction to set the switches depending on the

28 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

scenario the user has chosen.

Most aspects of a project can depend on scenarios. The notable exception is the identity of an imported project (via a
with or limited with clause), which cannot depend on a scenario.

Scenarios work analogously across projects in a project import closure. You can either duplicate a variable similar to
Mode in each of the projects (as long as the first argument to external is always the same and the type is the same),
or simply set the variable in the shared.gpr project (see Sharing between Projects).

2.5 Library Projects

So far, we have seen examples of projects that create executables. However, it is also possible to create libraries instead.
A library is a specific type of subsystem where, for convenience, objects are grouped together using system-specific
means such as archives or Windows DLLs.

Library projects provide a system- and language-independent way of building both static and dynamic libraries. They
also support the concept of standalone libraries (SAL) which offer two significant properties: the elaboration (e.g.
initialization) of the library is either automatic or very simple; a change in the implementation part of the library
implies minimal post-compilation actions on the complete system and potentially no action at all for the rest of the
system in the case of dynamic SALs.

There is a restriction on shared library projects: by default, they are only allowed to import other shared library
projects. They are not allowed to import non-library projects or static library projects.

The GNAT Project Manager takes complete care of the library build, rebuild and installation tasks, including
recompilation of the source files for which objects do not exist or are not up to date, assembly of the library archive,
and installation of the library (i.e., copying associated source, object and ALI files to the specified location).

2.5.1 Building Libraries

Let’s enhance our example and transform the logging subsystem into a library. In order to do so, a few changes need to
be made to logging.gpr. Some attributes need to be defined: at least Library_Name and Library_Dir; in addition,
some other attributes can be used to specify specific aspects of the library. For readability, it is also recommended
(although not mandatory), to use the qualifier library in front of the project keyword.

Library_Name:

This attribute is the name of the library to be built. There is no restriction on the name of a library imposed
by the project manager, except for stand-alone libraries whose names must follow the syntax of Ada
identifiers; however, there may be system-specific restrictions on the name. In general, we recommend
using only alphanumeric characters (and possibly single underscores), to help portability.

Library_Dir:

This attribute is the path (absolute or relative) of the directory where the library is to be installed. In the
process of building a library, the sources are compiled and the object files are placed in the explicitly-
or implicitly specified Object_Dir directory. When all sources of a library are compiled, some of the
compilation artifacts, including the library itself, are copied to the library_dir directory. This directory
must exist and be writable. It must also be different from the object directory so that cleanup activities in
the Library_Dir do not affect recompilation needs.

Here is the new version of logging.gpr that makes it a library:

library project Logging is -- "library" is optional
for Library_Name use "logging"; -- will create "liblogging.a" on Unix
for Object_Dir use "obj";

GPR Tools User’s Guide 29 of 139

GPR Tools User’s Guide 2020

for Library_Dir use "lib"; -- different from object_dir
end Logging;

Once the above two attributes are defined, the library project is valid and is sufficient for building a library with default
characteristics. Other library-related attributes can be used to change the defaults:

Library_Kind:

The value of this attribute must be either "static", "static-pic", "dynamic" or
"relocatable" (the last is a synonym for "dynamic"). It indicates which kind of library
should be built (the default is to build a static library, that is an archive of object files that can potentially
be linked into a static executable). A static-pic library is also an archive, but the code is Position
Independent Code, usually compiled with the switch -fPIC. When the library is set to be dynamic, a
separate image is created that will be loaded independently, usually at the start of the main program
execution. Support for dynamic libraries is very platform specific, for instance on Windows it takes the
form of a DLL while on GNU/Linux, it is a dynamic elf image whose suffix is usually .so. Library
project files, on the other hand, can be written in a platform independent way so that the same project file
can be used to build a library on different operating systems.

If you need to build both a static and a dynamic library, we recommend using two different object
directories, since in some cases some extra code needs to be generated for the latter. For such cases,
one can either define two different project files, or a single one that uses scenarios to indicate the various
kinds of library to be built and their corresponding object_dir.

Library_ALI_Dir:

This attribute may be specified to indicate the directory where the ALI files of the library are installed.
By default, they are copied into the Library_Dir directory, but as for the executables where we have
a separate Exec_Dir attribute, you might want to put them in a separate directory since there may be
hundreds of such files. The same restrictions as for the Library_Dir attribute apply.

Library_Version:

This attribute is platform dependent, and has no effect on Windows. On Unix, it is used only for dynamic
libraries as the internal name of the library (the “soname”). If the library file name (built from the
Library_Name) is different from the Library_Version, then the library file will be a symbolic
link to the actual file whose name will be Library_Version. This follows the usual installation
schemes for dynamic libraries on many Unix systems.

project Logging is
Version := "1";
for Library_Dir use "lib";
for Library_Name use "logging";
for Library_Kind use "dynamic";
for Library_Version use "liblogging.so." & Version;

end Logging;

After the compilation, the directory lib will contain both a liblogging.so.1 library and a symbolic
link to it called liblogging.so.

Library_GCC:

This attribute is the name of the tool to use instead of gcc to link shared libraries. A common use of this
attribute is to define a wrapper script that accomplishes specific actions before calling gcc (which itself
calls the linker to build the library image).

Library_Options:

30 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

This attribute may be used to specify additional switches (“last switches”) when linking a shared library
or a static standalone library. In the case of a simple static library, the values for this attribute are restricted
to paths to object files. Those paths may be absolute or relative to the object directory.

Leading_Library_Options:

This attribute, which is taken into account only by GPRbuild, may be used to specify leading options
(“first switches”) when linking a shared library.

2.5.2 Using Library Projects

When the builder detects that a project file is a library project file, it recompiles all sources of the project that need
recompilation and rebuilds the library if any of the sources have been recompiled. It then groups all object files into
a single file, which is a shared or a static library. This library can later on be linked with multiple executables. Note
that the use of shared libraries reduces the size of the final executable and can also reduce the memory footprint at
execution time when the library is shared among several executables.

GPRbuild also allows building multi-language libraries when specifying sources from multiple languages.

A non-library project NLP can import a library project LP. When the builder is invoked on NLP, it always rebuilds
LP even if all of the latter’s files are up to date. For instance, let’s assume in our example that logging has the
following sources: log1.ads, log1.adb, log2.ads and log2.adb. If log1.adb has been modified, then
the library liblogging will be rebuilt when compiling all the sources of Build even if proc.ads, pack.ads
and pack.adb do not include a "with Log1".

To ensure that all the sources in the Logging library are up to date, and that all the sources of Build are also up to
date, the following two commands need to be used:

gprbuild -Plogging.gpr
gprbuild -Pbuild.gpr

All ALI files will also be copied from the object directory to the library directory. To build executables, GPRbuild
will use the library rather than the individual object files.

Library projects can also be useful to specify a library that needs to be used but, for some reason, cannot be rebuilt.
Such a situation may arise when some of the library sources are not available. Such library projects need to use the
Externally_Built attribute as in the example below:

library project Extern_Lib is
for Languages use ("Ada", "C");
for Source_Dirs use ("lib_src");
for Library_Dir use "lib2";
for Library_Kind use "dynamic";
for Library_Name use "l2";
for Externally_Built use "true"; -- <<<<

end Extern_Lib;

In the case of externally built libraries, the Object_Dir attribute does not need to be specified because it will never
be used.

The main effect of using such an externally built library project is mostly to affect the linker command in order to
reference the desired library. It can also be achieved by using Linker’Linker_Options or Linker’Switches
in the project corresponding to the subsystem needing this external library. This latter method is more straightforward
in simple cases but when several subsystems depend upon the same external library, finding the proper place for the
Linker’Linker_Options might not be easy and if it is not placed properly, the final link command is likely
to present ordering issues. In such a situation, it is better to use the externally built library project so that all other

GPR Tools User’s Guide 31 of 139

GPR Tools User’s Guide 2020

subsystems depending on it can declare this dependency through a project with clause, which in turn will trigger the
builder to find the proper order of libraries in the final link command.

2.5.3 Stand-alone Library Projects

A stand-alone library is a library that contains the necessary code to elaborate the Ada units that are included in the
library. A stand-alone library is a convenient way to add an Ada subsystem to a more global system whose main is
not in Ada since it makes the elaboration of the Ada part mostly transparent. However, stand-alone libraries are also
useful when the main is in Ada: they provide a means for minimizing relinking and redeployment of complex systems
when localized changes are made.

The name of a stand-alone library, specified with attribute Library_Name, must have the syntax of an Ada identifier.

The most prominent characteristic of a stand-alone library is that it offers a distinction between interface units
and implementation units. Only the former are visible to units outside the library. A stand-alone library project
is thus characterized by a third attribute, usually Library_Interface, in addition to the two attributes that
make a project a Library Project (Library_Name and Library_Dir). This third attribute may also be Interfaces.
Library_Interface only works when the interface is in Ada and takes a list of units as parameter. Interfaces
works for any supported language and takes a list of sources as parameter.

Library_Interface:

This attribute defines an explicit subset of the units of the project. Units from projects importing this
library project may only “with” units whose sources are listed in the Library_Interface. Other sources are
considered implementation units.

for Library_Dir use "lib";
for Library_Name use "logging";
for Library_Interface use ("lib1", "lib2"); -- unit names

Interfaces

This attribute defines an explicit subset of the source files of a project. Sources from projects importing
this project, can only depend on sources from this subset. This attribute can be used on non library
projects. It can also be used as a replacement for attribute Library_Interface, in which case, units
have to be replaced by source files. For multi-language library projects, it is the only way to make the
project a Stand-Alone Library project whose interface is not purely Ada.

Library_Standalone:

This attribute defines the kind of stand-alone library to build. Values are either standard (the default),
no or encapsulated. When standard is used the code to elaborate and finalize the library is
embedded, when encapsulated is used the library can furthermore depend only on static libraries
(including the GNAT runtime). This attribute can be set to no to make it clear that the library should
not be stand-alone in which case the Library_Interface should not defined. Note that this attribute
only applies to shared libraries, so Library_Kind must be set to dynamic or relocatable.

for Library_Dir use "lib";
for Library_Name use "logging";
for Library_Kind use "dynamic";
for Library_Interface use ("lib1", "lib2"); -- unit names
for Library_Standalone use "encapsulated";

In order to include the elaboration code in the stand-alone library, the binder is invoked on the closure of the library
units creating a package whose name depends on the library name (b~logging.ads/b in the example). This
binder-generated package includes initialization and finalization procedures whose names depend on the library

32 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

name (logginginit and loggingfinal in the example). The object corresponding to this package is included
in the library.

Library_Auto_Init:

A dynamic stand-alone Library is automatically initialized if automatic initialization of stand-alone
Libraries is supported on the platform and if attribute Library_Auto_Init is not specified or is
specified with the value "true". Whether a static stand-alone Library is automatically initialized is
platform dependent. Specifying "false" for the Library_Auto_Init attribute prevents automatic
initialization.

When a non-automatically initialized stand-alone library is used in an executable, its initialization
procedure must be called before any service of the library is used. When the main subprogram is in
Ada, it may mean that the initialization procedure has to be called during elaboration of another package.

Library_Dir:

For a stand-alone library, only the ALI files of the interface units (those that are listed in attribute
Library_Interface) are copied to the library directory. As a consequence, only the interface units may
be imported from Ada units outside of the library. If other units are imported, the binding phase will fail.

Binder’Default_Switches:

When a stand-alone library is bound, the switches that are specified in the attribute
Binder’Default_Switches ("Ada") are used in the call to gnatbind.

Library_Src_Dir:

This attribute defines the location (absolute or relative to the project directory) where the sources of the
interface units are copied at installation time. These sources includes the specs of the interface units along
with the closure of sources necessary to compile them successfully. That may include bodies and subunits,
when pragmas Inline are used, or when there are generic units in specs. This directory cannot point to
the object directory or one of the source directories, but it can point to the library directory, which is the
default value for this attribute.

Library_Symbol_Policy:

This attribute controls the export of symbols on some platforms (like Windows, GNU/Linux). It is not
supported on all platforms (where it will just have no effect). It may have one of the following values:

• "restricted": The exported symbols will be restricted to the one from the interface of the
stand-alone library. This is either computed automatically or using the Library_Symbol_File
if specified.

• "unrestricted": All symbols from the stand-alone library are exported.

Library_Symbol_File

This attribute may define the name of the symbol file to be used when building a stand-alone library when
the symbol policy is "restricted", on platforms that support symbol control. This file must contain
one symbol per line and only those symbols will be exported from the stand-alone library.

2.5.4 Installing a Library with Project Files

When using project files, a usable version of the library is created in the directory specified by the Library_Dir
attribute of the library project file. Thus no further action is needed in order to make use of the libraries that are built
as part of the general application build.

You may want to install a library in a context different from where the library is built. This situation arises with
third party suppliers, who may want to distribute a library in binary form where the user is not expected to be able to

GPR Tools User’s Guide 33 of 139

GPR Tools User’s Guide 2020

recompile the library. The simplest option in this case is to provide a project file slightly different from the one used
to build the library, by using the Externally_Built attribute. See Using Library Projects.

Another option is to use gprinstall to install the library in a different context than the build location. The gprinstall
tool automatically generates a project to use this library, and also copies the minimum set of sources needed to use the
library to the install location. See Package Install Attributes.

2.6 Project Extension

During development of a large system, it is sometimes necessary to use modified versions of some of the source files,
without changing the original sources. This can be achieved through the project extension facility.

Suppose that our example Build project is built every night for the whole team, in some shared directory. A developer
usually needs to work on a small part of the system, and might not want to have a copy of all the sources and all the
object files since that could require too much disk space and too much time to recompile everything. A better approach
is to override some of the source files in a separate directory, while still using the object files generated at night for the
non-overridden shared sources.

Another use case is a large software system with multiple implementations of a common interface; in Ada terms,
multiple versions of a package body for the same spec, or perhaps different versions of a package spec that have the
same visible part but different private parts. For example, one package might be safe for use in tasking programs,
while another might be used only in sequential applications.

A third example is different versions of the same system. For instance, assume that a Common project is used by
two development branches. One of the branches has now been frozen, and no further change can be done to it or to
Common. However, on the other development branch the sources in Common are still evolving. A new version of the
subsystem is needed, which reuses as much as possible from the original.

Each of these can be implemented in GNAT using project extension:

If one project extends another project (the base project) then by default all source files of the base project
are inherited by the extending project, but the latter can override any of the base project’s source files with
a new version, and can also add new files or remove unnecessary ones. A project can extend at most one
base project.

This facility is somewhat analogous to class extension (with single inheritance) in object-oriented programming.
Project extension hierarchies are permitted (an extending project may itself serve as a base project and be extended),
and a project that extends a project can also import other projects.

An extending project implicitly inherits all the sources and objects from its base project. It is possible to create a new
version of some of the sources in one of the additional source directories of the extending project. Those new versions
hide the original versions. As noted above, adding new sources or removing existing ones is also possible. Here is an
example of how to extend the project Build from previous examples:

project Work extends "../bld/build.gpr" is
end Work;

The project after the extends keyword is the base project being extended. As usual, it can be specified using an
absolute path, or a path relative to any of the directories in the project path. The Work project does not specify source
or object directories, so the default values for these attributes will be used; that is, the current directory (where project
Work is placed). We can compile that project with

gprbuild -Pwork

34 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

If no sources have been placed in the current directory, this command has no effect, since this project does not change
the sources it inherited from Build and thus all the object files in Build and its dependencies are still valid and are
reused automatically.

Suppose we now want to supply an alternative version of pack.adb but use the existing versions of pack.ads and
proc.adb. We can create the new file in the Work project’s directory (for example by copying the one from the
Build project and making changes to it). If new packages are needed at the same time, we simply create new files in
the source directory of the extending project.

When we recompile, GPRbuild will now automatically recompile this file (thus creating pack.o in the current
directory) and any file that depends on it (thus creating proc.o). Finally, the executable is also linked locally.

Note that we could have obtained the desired behavior using project import rather than project inheritance. Some
project proj would contain the sources for pack.ads and proc.adb, and Work would import proj and add
pack.adb. In this situation proj cannot contain the original version of pack.adb since otherwise two versions of
the same unit would be in project import closure of proj, which is not allowed. In general we do not recommended
placing the spec and body of a unit in different projects, since this affects their autonomy and reusability.

In a project file that extends another project, it is possible to indicate that an inherited source is not part of the sources
of the extending project. This is necessary, for example, when a package spec has been overridden in such a way that
a body is forbidden. In this case, it is necessary to indicate that the inherited body is not part of the sources of the
project, otherwise there will be a compilation error.

Two attributes are available for this purpose:

• Excluded_Source_Files, whose value is a list of file names, and

• Excluded_Source_List_File, whose value is the path of a text file containing one file name per line.

project Work extends "../bld/build.gpr" is
for Source_Files use ("pack.ads");
-- New spec of Pkg does not need a completion
for Excluded_Source_Files use ("pack.adb");

end Work;

All tool packages that are not declared in the extending project are inherited from the base project, with their attributes,
with the exception of Linker’Linker_Options which is never inherited. In particular, an extending project
retains all the switches specified in its base project.

At the project level, if they are not declared in the extending project, some attributes are inherited from the base project.
They are: Languages, Main (for a root non library project) and Library_Name (for a project extending a library
project).

2.6.1 Importing and Project Extension

One of the fundamental restrictions for project extension is the following:

A project is not allowed to import, directly or indirectly, both an extending project P and also some
project that P extends either directly or indirectly

In the absence of this rule, two imports might access different versions of the same source file, or different sets of tool
switches for the same source file (one from the base project and the other from an extending project).

As an example of this problem, consider the following set of project files:

• a.gpr which contains the source files foo.ads and foo.adb, among others

• b.gpr which imports a.gpr (one of its source files withs foo)

• c.gpr which imports b.gpr

GPR Tools User’s Guide 35 of 139

GPR Tools User’s Guide 2020

Suppose we want to extend the projects as follows:

• a_ext.gpr extends a.gpr and overrides foo.adb

• c_ext.gpr extends c.gpr, overriding one of its source files

Since c_ext.gpr needs to access sources in b.gpr, it will import b.gpr

Finally, main.gpr needs to access the overridden source files in a_ext.gpr and c_ext.gpr and thus will import
these two projects.

This project structure is shown in figure 2.1.

Figure 2.1: Example of Source File Ambiguity from imports/extends Violation

This violates the restriction above, since main.gpr imports the extending project a_ext.gpr and also (indirectly
through c_ext.gpr and b.gpr) the project a.gpr that a_ext.gpr extends. The problem is that the import
path through c_ext.gpr and b.gpr would build with the version of foo.adb from a.gpr, whereas the import
path through a_ext.gpr would use that project’s version of foo.adb. The error will be detected and reported by
gprbuild.

A solution is to introduce an “empty” extension of b.gpr, which is imported by c_ext.gpr and imports
a_ext.gpr:

with "a_ext.gpr";
project B_Ext extends "b.gpr" is
end B_Ext;

This project structure is shown in figure 2.2.

There is now no ambiguity over which version of foo.adb to use; it will be the one from a_ext.gpr.

36 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Figure 2.2: Using “Empty” Project Extension to Avoid imports/extends Violation

When extending a large system spanning multiple projects, it is often inconvenient to extend every project in the
project import closure that is impacted by a small change introduced in a low layer. In such cases, it is possible to
create an implicit extension of an entire hierarchy using the extends all relationship.

When a project P is extended using extends all inheritance, all projects that are imported by P, both directly and
indirectly, are considered virtually extended. That is, the project manager creates implicit projects that extend every
project in the project import closure; all these implicit projects do not control sources on their own and use the object
directory of the extends all project.

It is possible to explicitly extend one or more projects in the import closure in order to adapt the sources. These
extending projects must be imported by the extends all project, which will replace the corresponding virtual
projects with the explicit ones.

When building such a project closure extension, the project manager will ensure recompilation of both the modified
sources and the sources in implicit extending projects that depend on them.

To illustrate the extends all feature, here’s a slight variation on the earlier examples. We have a Main project
that imports project C, which imports B, which imports A. The source files in Main refer to compilation units whose
sources are in C and A. (Recall that imports is transitive, so A is implicitly accessible in Main.)

This project structure is shown in figure 2.3.

Suppose that we want to extend a.gpr, overriding one of its source files, and create a new version of main.gpr
that can access the overridden file in the extending project a_ext.gpr and otherwise use the sources in b.gpr and
c.gpr.

Instead of explicitly defining empty projects to extend b.gpr and c.gpr, we can create a new project
main_ext.gpr that does an extends all of main.gpr and imports a_ext.gpr. The extends_all will
implicitly create the empty projects b_ext.gpr and c_ext.gpr as well as the relevant import relationships:

GPR Tools User’s Guide 37 of 139

GPR Tools User’s Guide 2020

Figure 2.3: Simple Project Structure before Extension

• c_ext.gpr will import b_ext.gpr, which will import a_ext.gpr

• main_ext.gpr will implicitly import c_ext.gpr since main.gpr imports c.gpr.

The resulting project structure is shown in figure 2.4, where the italicized labels, dashed arrows, and dashed boxes
indicate what was added implicitly as an effect of the extends_all.

When project main_ext.gpr is built, the entire modified project space is considered for recompilation, including
the sources from b.gpr and c.gpr that are affected by the changes to a.gpr.

2.7 Child Projects

In order to more clearly express the relationship between a project Q and some other project P that Q either imports or
extends, you can use the notation P.Q to declare Q as a child of P. The project P is then referred to as the parent of
Q. This is useful, for example, when the purpose of the child is to serve as a testing subsystem for the parent.

The visibility of the child on the sources and other properties of the parent is determined by whether the child imports
or extends the parent. No additional visibility is obtained by declaring the project as a child; the parent.child notation
serves solely as a naming convention to convey to the reader the closeness of the relationship between the projects.

For example:

-- math_proj.gpr
project Math_Proj is

...
end Math_Proj;

38 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Figure 2.4: Project Structure with extends_all

with "math_proj.gpr";
project Math_Proj.Tests is -- Legal; child imports parent

...
end Math_Proj.Tests;

project Math_Proj.High_Performance
extends "math_proj.gpr" is -- Legal; child extends parent
...

end Math_Proj.High_Performance;

project GUI_Proj.Tests is -- Illegal
...

end GUI_Proj.Tests;

Child projects may in turn be the parents of other projects, so in general a project hierarchy can be created. A project
may be the parent of many child projects, but a child project can only have one parent.

Note that child projects have slightly different semantics from their Ada language analog (child units). An Ada child
unit implicitly withs its parent, whereas a child project must have an explicit with clause (or else extend its parent).
The need to explicitly with or extend the parent project helps avoid the error of unintentionally creating a child of
some project that happens to be on the project path.

GPR Tools User’s Guide 39 of 139

GPR Tools User’s Guide 2020

2.8 Aggregate Projects

Aggregate projects are an extension of the project paradigm, and are designed to handle a few specific situations that
cannot be solved directly using standard projects. This section will present several such use cases.

2.8.1 Building all main programs from a single project closure

A large application is typically organized into modules and submodules, which are conveniently represented as a
project graph (the project import closure): a “root” project A withs the projects for modules B and C, which in turn
with projects for submodules.

Very often, modules will build their own executables (for testing purposes for instance) or libraries (for easier reuse in
various contexts).

However, if you build your project through GPRbuild, using a syntax similar to

gprbuild -PA.gpr

this will only rebuild the main programs of project A, not those of the imported projects B and C. Therefore you have
to spawn several GPRbuild commands, one per project, to build all executables. This is somewhat inconvenient, but
more importantly is inefficient because GPRbuild needs to do duplicate work to ensure that sources are up-to-date,
and cannot easily compile things in parallel when using the -j switch.

Also, libraries are always rebuilt when building a project.

To solve this problem you can define an aggregate project Agg that groups A, B and C:

aggregate project Agg is
for Project_Files use ("a.gpr", "b.gpr", "c.gpr");

end Agg;

Then, when you build with

gprbuild -PAgg.gpr

this will build all main programs from A, B and C.

If B or C do not define any main program (through their Main attribute), all their sources are built. When you do not
group them in an aggregate project, only those sources that are needed by A will be built.

If you add a main to a project P not already explicitly referenced in the aggregate project, you will need to add p.gpr
in the list of project files for the aggregate project, or the main will not be built when building the aggregate project.

2.8.2 Building a set of projects with a single command

Another application of aggregate projects is when you have multiple applications and libraries that are built
independently (but can be built in parallel). For instance, you might have a project graph rooted at A, and another
one (which might share some subprojects) rooted at B.

Using only GPRbuild, you could do

gprbuild -PA.gpr
gprbuild -PB.gpr

40 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

to build both. But again, GPRbuild has to do some duplicate work for those files that are shared between the two, and
cannot truly build things in parallel efficiently.

If the two projects are really independent, share no sources other than through a common subproject, and have no
source files with a common basename, you could create a project C that imports A and B. But these restrictions are
often too strong, and one has to build them independently. An aggregate project does not have these limitations and
can aggregate two project graphs that have common sources:

aggregate project Agg is
for Project_Files use ("a.gpr", "b.gpr");

end Agg;

This scenario is particularly useful in environments like VxWorks 653 where the applications running in the multiple
partitions can be built in parallel through a single GPRbuild command. This also works well with Annex E of the Ada
Language Reference Manual.

2.8.3 Defining a build environment

The environment variables at the time you launch GPRbuild will influence the view these tools have of the project
(for example PATH to find the compiler, ADA_PROJECT_PATH or GPR_PROJECT_PATH to find the projects, and
environment variables that are referenced in project files through the external built-in function). Several command
line switches can be used to override those (-X or -aP), but on some systems and with some projects, this might make
the command line too long, and on all systems often make it hard to read.

An aggregate project can be used to set the environment for all projects built through that aggregate. One of the
benefits is that you can put the aggregate project under configuration management, and make sure all your users have
a consistent environment when building. For example:

aggregate project Agg is
for Project_Files use ("A.gpr", "B.gpr");
for Project_Path use ("../dir1", "../dir1/dir2");
for External ("BUILD") use "PRODUCTION";

package Builder is
for Global_Compilation_Switches ("Ada") use ("-g");

end Builder;
end Agg;

Another use of aggregate projects is to simulate the referencing of external variables in with clauses, For technical
reasons the following project file is not allowed:

with external("SETUP") & "path/prj.gpr"; -- ILLEGAL
project MyProject is

...
end MyProject;

However, you can use aggregate projects to obtain an equivalent effect:

aggregate project Agg is
for Project_Path use (external("SETUP") & "path");
for Project_Files use ("myproject.gpr");

end Agg;

GPR Tools User’s Guide 41 of 139

GPR Tools User’s Guide 2020

with "prj.gpr"; -- searched on Agg'Project_Path
project MyProject is

...
end MyProject;

2.8.4 Improving builder performance

The loading of aggregate projects is optimized in GPRbuild, so that all files are searched for only once on the disk
(thus reducing the number of system calls and yielding faster compilation times, especially on systems with sources
on remote servers). As part of the loading, GPRbuild computes how and where a source file should be compiled, and
even if it is located several times in the aggregated projects it will be compiled only once.

Since there is no ambiguity as to which switches should be used, files can be compiled in parallel (through the usual -j
switch) and this can be done while maximizing the use of CPUs (compared to launching multiple GPRbuild commands
in parallel).

2.8.5 Syntax of aggregate projects

An aggregate project follows the general syntax of project files. The recommended extension is still .gpr. However,
a special aggregate qualifier must appear before the keyword project.

An aggregate project cannot with any other project (standard or aggregate), except an abstract project (which can
be used to share attribute values). Also, aggregate projects cannot be extended or imported though a with clause by
any other project. Building other aggregate projects from an aggregate project is done through the Project_Files
attribute (see below).

An aggregate project does not have any source files directly (only through other standard projects). Therefore a number
of the standard attributes and packages are forbidden in an aggregate project. Here is a (non exhaustive) list:

• Languages

• Source_Files, Source_List_File and other attributes dealing with list of sources.

• Source_Dirs and Exec_Dir

• Library_Dir, Library_Name and other library-related attributes

• Main

• Roots

• Externally_Built

• Inherit_Source_Path

• Excluded_Source_Dirs

• Locally_Removed_Files

• Excluded_Source_Files

• Excluded_Source_List_File

• Interfaces

The Object_Dir attribute is allowed and used by some analysis tools such as gnatcheck to store intermediate files
and aggregated results. The attribute value is just ignored by the compilation toolchain, for which every artifact of
interest is best associated with the leaf non aggregate projects and stored in the corresponding Object_Dir.

42 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

The only package that is allowed (and optional) is Builder. Other packages (in particular Compiler, Binder
and Linker) are forbidden.

The following three attributes can be used only in an aggregate project:

Project_Files:

This attribute is compulsory. It specifies a list of constituent .gpr files that are grouped in the aggregate.
The list may be empty. The project files can be any projects except configuration or abstract projects;
they can be other aggregate projects. When grouping standard projects, you can have both the root of a
project import closure (and you do not need to specify all its imported projects), and any project within
the closure.

The basic idea is to specify all those projects that have main programs you want to build and link, or
libraries you want to build. You can specify projects that do not use the Main attribute or the Library_*
attributes, and the result will be to build all their source files (not just the ones needed by other projects).

The file can include paths (absolute or relative). Paths are relative to the location of the aggregate
project file itself (if you use a base name, the .gpr file is expected in the same directory as the
aggregate project file). The environment variables ADA_PROJECT_PATH, GPR_PROJECT_PATH and
GPR_PROJECT_PATH_FILE are not used to find the project files. The extension .gpr is mandatory,
since this attribute contains file names, not project names.

Paths can also include the "*" and "**" globbing patterns. The latter indicates that any subdirectory
(recursively) will be searched for matching files. The "**" pattern can only occur at the last position
in the directory part (i.e. "a/**/*.gpr" is supported, but not "**/a/*.gpr"). Starting the pattern
with "**" is equivalent to starting with "./**".

At present the pattern "*" is only allowed in the filename part, not in the directory part. This is mostly
for efficiency reasons to limit the number of system calls that are needed.

Here are a few examples:

for Project_Files use ("a.gpr", "subdir/b.gpr");
-- two specific projects relative to the directory of agg.gpr

for Project_Files use ("**/*.gpr");
-- all projects recursively, except in the current directory

for Project_Files use ("**/*.gpr", "*.gpr");
-- all projects recursively

Project_Path:

This attribute can be used to specify a list of directories in which to search for project files in with
clauses.

When you specify a project in Project_Files (say x/y/a.gpr), and a.gpr imports a project
b.gpr, only b.gpr is searched in the project path. The file a.gpr must be exactly at dir of the
aggregate/x/y/a.gpr.

This attribute, however, does not affect the search for the aggregated project files specified with
Project_Files.

Each aggregate project has its own Project_Path (thus if agg1.gpr includes agg2.gpr, they can
potentially both have a different Project_Path).

This project path is defined as the concatenation, in this order, of:

• the current directory;

• followed by the command line -aP switches;

GPR Tools User’s Guide 43 of 139

GPR Tools User’s Guide 2020

• then the directories from the GPR_PROJECT_PATH and ADA_PROJECT_PATH environment
variables;

• then the directories from the Project_Path attribute;

• and finally the predefined directories.

In the example above, the project path for agg2.gpr is not influenced by the attribute
agg1’Project_Path, nor is agg1 influenced by agg2’Project_Path.

This can potentially lead to errors. Consider the example in figure 2.5.

Figure 2.5: Example of Project_Path Error

When looking for p.gpr, both aggregates find the same physical file on the disk. However, it might
happen that with their different project paths, both aggregate projects would in fact find a different r.gpr.
Since we have a common project p.gpr withing two different r.gpr, this will be reported as an error
by the builder.

Directories are relative to the location of the aggregate project file.

Example:

for Project_Path use ("/usr/local/gpr", "gpr/");

External:

This attribute can be used to set the value of environment variables as retrieved through the external
function in projects. It does not affect the environment variables themselves (so for instance you cannot
use it to change the value of your PATH as seen from the spawned compiler).

44 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

This attribute affects the external values as seen in the rest of the aggregate project, and in the aggregated
projects.

The exact value of an external variable comes from one of three sources (each level overrides the previous
levels):

• An External attribute in aggregate project, for instance for External (“BUILD_MODE”) use
“DEBUG”;

• Environment variables. These override the value given by the attribute, so that users can override
the value set in the (presumably shared with others team members) aggregate project.

• The -X command line switch to gprbuild. This always takes precedence.

This attribute is only taken into account in the main aggregate project (i.e. the one specified on the
command line to GPRbuild), and ignored in other aggregate projects. It is invalid in standard projects.
The goal is to have a consistent value in all projects that are built through the aggregate, which would not
be the case in a “diamond” situation: A groups the aggregate projects B and C, which both (either directly
or indirectly) build the project P. If B and C could set different values for the environment variables, we
would have two different views of P, which in particular might impact the list of source files in P.

2.8.6 package Builder in aggregate projects

As mentioned above, only the package Builder can be specified in an aggregate project. In this package, only the
following attributes are valid:

Switches:

This attribute gives the list of switches to use for GPRbuild. Because no mains can be specified for
aggregate projects, the only possible index for attribute Switches is others. All other indexes will be
ignored.

Example:

for Switches (others) use ("-v", "-k", "-j8");

These switches are only read from the main aggregate project (the one passed on the command line), and
ignored in all other aggregate projects or projects.

It can only contain builder switches, not compiler switches.

Global_Compilation_Switches

This attribute gives the list of compiler switches for the various languages. For instance,

for Global_Compilation_Switches ("Ada") use ("O1", "-g");
for Global_Compilation_Switches ("C") use ("-O2");

This attribute is only taken into account in the aggregate project specified on the command line, not in
other aggregate projects.

In the projects grouped by that aggregate, the attribute Builder’Global_Compilation_Switches
is also ignored. However, the attribute Compiler’Default_Switches will be taken into account
(but that of the aggregate has higher priority). The attribute Compiler’Switches is also taken into
account and can be used to override the switches for a specific file. As a result, it always has priority.

The rules are meant to avoid ambiguities when compiling. For instance, aggregate project Agg groups the
projects A and B, which both depend on C. Here is an example for all of these projects:

GPR Tools User’s Guide 45 of 139

GPR Tools User’s Guide 2020

aggregate project Agg is
for Project_Files use ("a.gpr", "b.gpr");
package Builder is

for Global_Compilation_Switches ("Ada") use ("-O2");
end Builder;

end Agg;

with "c.gpr";
project A is

package Builder is
for Global_Compilation_Switches ("Ada") use ("-O1");
-- ignored

end Builder;

package Compiler is
for Default_Switches ("Ada")

use ("-O1", "-g");
for Switches ("a_file1.adb")

use ("-O0");
end Compiler;

end A;

with "c.gpr";
project B is

package Compiler is
for Default_Switches ("Ada") use ("-O0");

end Compiler;
end B;

project C is
package Compiler is

for Default_Switches ("Ada")
use ("-O3",

"-gnatn");
for Switches ("c_file1.adb")

use ("-O0", "-g");
end Compiler;

end C;

The following switches are used:

• all files from project A except a_file1.adb are compiled with -O2 -g, since the aggregate
project has priority.

• the file a_file1.adb is compiled with :option”-O0, since Compiler’Switches has priority

• all files from project B are compiled with -O2, since the aggregate project has priority

• all files from C are compiled with -O2 -gnatn, except for c_file1.adb which is compiled
with -O0 -g

Even though C is seen through two paths (through A and through B), the switches used by the compiler
are unambiguous.

Global_Configuration_Pragmas

46 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

This attribute can be used to specify a file containing configuration pragmas, to be passed to the Ada
compiler. Since we ignore the package Builder in other aggregate projects and projects, only those
pragmas defined in the main aggregate project will be taken into account.

Projects can locally add to those by using the Compiler’Local_Configuration_Pragmas
attribute if they need.

Global_Config_File

This attribute, indexed with a language name, can be used to specify a config when compiling sources of
the language. For Ada, these files are configuration pragmas files.

For projects that are built through the aggregate mechanism, the package Builder is ignored, except for the
Executable attribute which specifies the name of the executables resulting from the link of the main programs,
and for the Executable_Suffix.

2.9 Aggregate Library Projects

Aggregate library projects make it possible to build a single library using object files built using other standard or
library projects. This gives the flexibility to describe an application as having multiple modules (for example a GUI,
database access, and other) using different project files (so possibly built with different compiler options) and yet
create a single library (static or relocatable) out of the corresponding object files.

2.9.1 Building aggregate library projects

For example, we can define an aggregate project Agg that groups A, B and C:

aggregate library project Agg is
for Project_Files use ("a.gpr", "b.gpr", "c.gpr");
for Library_Name use "agg";
for Library_Dir use "lagg";

end Agg;

Then, when you build with:

gprbuild agg.gpr

this will build all units from projects A, B and C and will create a static library named libagg.a in the lagg
directory. An aggregate library project has the same set of restrictions as a standard library project.

Note that a shared aggregate library project cannot aggregate a static library project. In platforms where a compiler
option is required to create relocatable object files, a Builder package in the aggregate library project may be
used:

aggregate library project Agg is
for Project_Files use ("a.gpr", "b.gpr", "c.gpr");
for Library_Name use ("agg");
for Library_Dir use ("lagg");
for Library_Kind use "relocatable";

package Builder is
for Global_Compilation_Switches ("Ada") use ("-fPIC");

end Builder;
end Agg;

GPR Tools User’s Guide 47 of 139

GPR Tools User’s Guide 2020

With the above aggregate library Builder package, the -fPIC option will be passed to the compiler when building
any source code from projects a.gpr, b.gpr and c.gpr.

2.9.2 Syntax of aggregate library projects

An aggregate library project follows the general syntax of project files. The recommended extension is still .gpr.
However, a special aggregate library qualifier must appear before the keyword project.

An aggregate library project cannot with any other project (standard or aggregate), except an abstract project which
can be used to share attribute values.

An aggregate library project does not have any source files directly (only through other standard projects). Therefore a
number of the standard attributes and packages are forbidden in an aggregate library project. Here is a (non-exhaustive)
list:

• Languages

• Source_Files, Source_List_File and other attributes dealing with a list of sources.

• Source_Dirs and Exec_Dir

• Main

• Roots

• Externally_Built

• Inherit_Source_Path

• Excluded_Source_Dirs

• Locally_Removed_Files

• Excluded_Source_Files

• Excluded_Source_List_File

The only package that is allowed (and optional) is Builder.

The Project_Files attribute is used to describe the aggregated projects whose object files have to be in-
cluded into the aggregate library. The environment variables ADA_PROJECT_PATH, GPR_PROJECT_PATH and
GPR_PROJECT_PATH_FILE are not used to find the project files.

As for regular (not library) aggregate projects, the Object_Dir attribute is allowed and used by some analysis tools
in the same fashion.

2.10 Project File Reference

This section describes the syntactic structure of project files, explains the various constructs that can be used, and
summarizes the available attributes.

The syntax is presented in a notation similar to what is used in the Ada Language Reference Manual. Curly braces
‘{‘ and ‘}’ indicate 0 or more occurrences of the enclosed construct, and square brackets ‘[’ and ‘]’ indicate 0 or 1
occurrence of the enclosed construct. Reserved words are enclosed between apostrophes.

2.10.1 Project Declaration

Project files have an Ada-like syntax. The minimal project file is:

48 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

project Empty is
end Empty;

The identifier Empty is the name of the project. This project name must be present after the reserved word end at the
end of the project file, followed by a semicolon.

Identifiers (i.e., the user-defined names such as project or variable names) have the same syntax as Ada identifiers:
they must start with a letter, and be followed by zero or more letters, digits or underscore characters; it is also illegal
to have two underscores next to each other. Identifiers are always case-insensitive ("Name" is the same as "name").

simple_name ::= identifier
name ::= simple_name { . simple_name }

Strings are used for values of attributes or as indexes for these attributes. They are in general case sensitive, except
when noted otherwise (in particular, strings representing file names will be case insensitive on some systems, so that
"file.adb" and "File.adb" both represent the same file).

Reserved words are the standard Ada 95 reserved words, plus several others listed below, and cannot be used for
identifiers. In particular, the following Ada 95 reserved words are currently used in project files:

abstract all at case
end for is limited
null others package renames
type use when with

The additional project file reserved words are:

extends external external_as_list project

Note that aggregate and library are qualifiers that may appear before the keyword project, but they are not
themselves keywords.

To avoid possible compatibility issues in the future, we recommend that the reserved words introduced by Ada 2005
and Ada 2012 not be used as identifiers in project files. Note also that new reserved words may be added to the project
file syntax in a later release.

Comments in project files have the same syntax as in Ada, two consecutive hyphens through the end of the line.

A project may be an independent project, entirely defined by a single project file. Any source file in an independent
project depends only on the predefined library and other source files in the same project. Alternatively, a project may
depend on other projects in various ways:

• by importing them through context clauses (with clauses), or

• by extending at most one other project (its base project).

A given project may exhibit either or both of these dependencies; for example:

with "imported_proj.gpr";
project My_Project extends "base_proj.gpr" is
end My_Project;

The import dependencies form a directed graph, potentially cyclic when using limited with. The subgraph reflecting
the extends relationship is a tree (hierarchy).

A path name denotes a project file. It can be absolute or relative. An absolute path name includes a sequence of
directories, in the syntax of the host operating system, that uniquely identifies the project file in the file system. A

GPR Tools User’s Guide 49 of 139

GPR Tools User’s Guide 2020

relative path name identifies the project file, relative to the directory that contains the current project, or relative to
a directory listed in the environment variables ADA_PROJECT_PATH and GPR_PROJECT_PATH. Path names are
case sensitive if file names in the host operating system are case sensitive. As a special case, the directory separator
can always be ’/’ even on Windows systems, so that project files can be made portable across architectures. The
syntax of the environment variables ADA_PROJECT_PATH and GPR_PROJECT_PATH is a list of directory names
separated by colons on Unix and semicolons on Windows.

A given project name can appear only once in a context clause, and may not appear in different context clauses for the
same project.

It is illegal for a project imported by a context clause to refer, directly or indirectly, to the project in which this context
clause appears (the dependency graph cannot contain cycles), except when one of the with clauses in the cycle is a
limited with.

A project’s immediate sources are the source files directly defined by that project, either implicitly by residing in the
project source directories, or explicitly through any of the source-related attributes. More generally, a project’s sources
are the immediate sources of the project together with the immediate sources (unless overridden) of any project on
which it depends directly or indirectly.

project ::= context_clause project_declaration

context_clause ::= {with_clause}
with_clause ::= ['limited'] 'with' path_name { , path_name } ;
path_name ::= string_literal

project_declaration ::= simple_project_declaration | project_extension

simple_project_declaration ::=
[qualifier] 'project' <project_>name 'is'
{declarative_item}

'end' <project_>name ;

project_extension ::=
[qualifier] 'project' <project_>name 'extends' ['all'] <base_project_>name 'is'
{declarative_item}

'end' <project_>name ;

qualifier ::=
'abstract' | identifier [identifier]

2.10.2 Qualified Projects

Immediately preceding the reserved project, a qualifier may be specified which identifies the nature of the project.
The following qualifiers are allowed:

standard: A standard project is a non-library project with source files. This is the default (implicit) qualifier.

abstract: A project with no source files. Such a project must either have no declaration for attributes Source_Dirs,
Source_Files, Languages or Source_List_File, or one of Source_Dirs, Source_Files, or
Languages must be declared as empty. If it extends another project, the base project must also be an abstract
project.

aggregate: A project whose sources are aggregated from other project files.

aggregate library: A library whose sources are aggregated from other project or library project files.

library: A library project must define both of the attributes Library_Name and Library_Dir.

50 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

configuration: A configuration project cannot be in a project tree. It describes compilers and other tools to gprbuild.

2.10.3 Declarations

Declarations introduce new entities that denote types, variables, attributes, and packages. Some declarations can only
appear immediately within a project declaration. Others can appear within a project or within a package.

declarative_item ::= simple_declarative_item
| typed_string_declaration
| package_declaration

simple_declarative_item ::= variable_declaration
| typed_variable_declaration
| attribute_declaration
| case_construction
| empty_declaration

empty_declaration ::= 'null' ;

An empty declaration is allowed anywhere a declaration is allowed. It has no effect.

2.10.4 Packages

A project file may contain packages, which group attributes (typically all the attributes that are used by one of the
GNAT tools).

A package with a given name may only appear once in a project file. The following packages are currently supported
in project files (See Attributes for the list of attributes that each can contain).

Binder This package specifies characteristics useful when invoking the binder either directly via the gnat driver or
when using GPRbuild. See Main Subprograms.

Builder This package specifies the compilation options used when building an executable or a library for a project.
Most of the options should be set in one of Compiler, Binder or Linker packages, but there are some
general options that should be defined in this package. See Main Subprograms, and Executable File Names in
particular.

Check This package specifies the options used when calling the coding standard verification tool gnatcheck. Its
attributes Default_Switches and Switches have the same semantics as for the package Builder. The
first string should always be -rules to specify that all the other options belong to the -rules section of the
parameters to gnatcheck.

Clean This package specifies the options used when cleaning a project or a project tree using the tools gnatclean or
gprclean.

Compiler This package specifies the compilation options used by the compiler for each language. See Tools Options
in Project Files.

Cross_Reference This package specifies the options used when calling the library tool gnatxref via the gnat driver.
Its attributes Default_Switches and Switches have the same semantics as for the package Builder.

Documentation This package specifies the options used when calling the tool gnatdoc.

Eliminate This package specifies the options used when calling the tool gnatelim. Its attributes
Default_Switches and Switches have the same semantics as for the package Builder.

Finder This package specifies the options used when calling the search tool gnatfind via the gnat driver. Its attributes
Default_Switches and Switches have the same semantics as for the package Builder.

GPR Tools User’s Guide 51 of 139

GPR Tools User’s Guide 2020

Gnatls This package specifies the options to use when invoking gnatls via the gnat driver.

Gnatstub This package specifies the options used when calling the tool gnatstub. Its attributes
Default_Switches and Switches have the same semantics as for the package Builder.

IDE This package specifies the options used when starting an integrated development environment, for instance GPS
or GNATbench.

Install This package specifies the options used when installing a project with gprinstall. See Package Install
Attributes.

Linker This package specifies the options used by the linker. See Main Subprograms.

Metrics This package specifies the options used when calling the tool gnatmetric. Its attributes
Default_Switches and Switches have the same semantics as for the package Builder.

Naming This package specifies the naming conventions that apply to the source files in a project. In particular, these
conventions are used to automatically find all source files in the source directories, or given a file name to find
out its language for proper processing. See Naming Schemes.

Pretty_Printer This package specifies the options used when calling the formatting tool gnatpp. Its attributes
Default_Switches and Switches have the same semantics as for the package Builder.

Remote This package is used by GPRbuild to describe how distributed compilation should be done.

Stack This package specifies the options used when calling the tool gnatstack. Its attributes Default_Switches and
Switches have the same semantics as for the package Builder.

Synchronize This package specifies the options used when calling the tool gnatsync via the gnat driver.

In its simplest form, a package may be empty:

project Simple is
package Builder is
end Builder;

end Simple;

A package may contain attribute declarations, variable declarations and case constructions, as will be described
below.

When there is ambiguity between a project name and a package name, the name always designates the project. To
avoid possible confusion, it is always a good idea to avoid naming a project with one of the names allowed for packages
or any name that starts with gnat.

Package renaming

A package may be defined by a renaming declaration. The new package renames a package declared in a different
project file, and has the same attributes as the package it renames. The name of the renamed package must be the
same as the name of the renaming package. The project must contain a package declaration with this name, and the
project must appear in the context clause of the current project, or be its base or parent project. It is not possible to
add or override attributes to the renaming project. If you need to do so, you should use an extending declaration (see
below).

Packages that are renamed in other project files often come from project files that have no sources: they are just used
as templates. Any modification in the template will be reflected automatically in all the project files that rename a
package from the template. This is a very common way to share settings between projects.

52 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Package extension

A package can also be defined by an extending declaration. This is similar to a renaming declaration, except that it
is possible to add or override attributes.

package_declaration ::= package_spec | package_renaming | package_extension

package_spec ::=
'package' <package_>simple_name 'is'

{ simple_declarative_item }
'end' package_identifier ;

package_renaming ::=
'package' <package_>simple_name 'renames'

<project_>simple_name.package_identifier ;

package_extension ::=
'package' <package_>simple_name 'extends'

<project_>simple_name.package_identifier 'is'
{ simple_declarative_item }

'end' package_identifier ;

2.10.5 Expressions

An expression is any value that can be assigned to an attribute or a variable. It is either a literal value, or a construct
requiring run-time computation by the Project Manager. In a project file, the computed value of an expression is either
a string or a list of strings.

A string value is one of:

• A literal string, for instance "comm/my_proj.gpr"

• The name of a variable that evaluates to a string (see Variables)

• The name of an attribute that evaluates to a string (see Attributes)

• An external reference (see External_Values)

• A concatenation of the above, as in "prefix_" & Var.

A list of strings is one of the following:

• A parenthesized comma-separated list of zero or more string expressions, for instance (File_Name,
"gnat.adc", File_Name & ".orig") or ().

• The name of a variable that evaluates to a list of strings

• The name of an attribute that evaluates to a list of strings

• A concatenation of a list of strings and a string (as defined above), for instance ("A", "B") & "C"

• A concatenation of two lists of strings

The following is the grammar for expressions

string_literal ::= "{string_element}" -- Same as Ada

string_expression ::= string_literal
| <variable_>name
| external_value

GPR Tools User’s Guide 53 of 139

GPR Tools User’s Guide 2020

| attribute_reference
| (string_expression { & string_expression })

string_list ::= (string_expression { , string_expression })
| <string_variable>_name
| <string_>attribute_reference

term ::= string_expression | string_list

expression ::= term { & term } -- Concatenation

Concatenation involves strings and list of strings. As soon as a list of strings is involved, the result of the concatenation
is a list of strings. The following Ada declarations show the existing operators:

function "&" (X : String; Y : String) return String;
function "&" (X : String_List; Y : String) return String_List;
function "&" (X : String_List; Y : String_List) return String_List;

Here are some specific examples:

List := () & File_Name; -- One string in this list
List2 := List & (File_Name & ".orig"); -- Two strings
Big_List := List & Lists2; -- Three strings
Illegal := "gnat.adc" & List2; -- Illegal, must start with list

2.10.6 Built-in Functions

Built-in functions may be used in expression. The names of built-in functions are not reserved words and may also be
used as variable names. In an expression, a built-in function is recognized if its name is immediately followed by an
open parenthesis (‘(‘).

The function external

An external value is an expression whose value is obtained from the command that invoked the processing of the
current project file (typically a gprbuild command).

The syntax of a single string external value is:

external_value ::= 'external' (string_literal [, string_literal])

The first string_literal is the name of the external variable, whose value (a string) may be specified by an environment
variable with this name, or on the command line via the -Xname=value option. The command line takes precedence
if the name is defined in both contexts, thus allowing the user to locally override an environment variable. The second
string_literal, if present, is the default to use if there is no specification for this external value either on the command
line or in the environment. If the value of the external variable is not obtained from an environment variable or the
command line, and the invocation of the external function does not supply a second parameter, then an error is
reported.

An external reference may be part of a string expression or of a string list expression, and can therefore appear in a
variable declaration or an attribute declaration. This construct is typically used to initialize typed variables, which are
then used in case constructions to control the value assigned to attributes in various scenarios. Thus such variables are
often called scenario variables.

54 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

The function external_as_list

An external value is an expression whose value is obtained from the command that invoked the processing of the
current project file (typically a gprbuild command).

The syntax for a string list external value is:

external_value ::= 'external_as_list' (string_literal , string_literal)

The first string_literal is the name of the external variable, with the same interpretation as for the external function;
it is looked up first on the command line (as the name in a -Xname=value option) and, if not so specified, then as
an environment variable. If it is not defined by either of these, then the function returns an empty list. The second
string_literal is the separator between each component of the string list. An empty list is returned if the separator is an
empty string or if the external value is only one separator.

Any separator at the beginning or at the end of the external value is discarded. Then, if there is no separator in the
external value, the result is a string list with only one string. Otherwise, any string between the beginning and the first
separator, between two consecutive separators and between the last separator and the end are components of the string
list.

Note the following differences between external and external_as_list:

• The external_as_list function has no default value for the external variable

• The external_as_list function returns an empty list, and does not report an error, when the value of the
external variable is undefined.

These differences reflect the different use cases for the two functions. External variables evaluated by the external
function are often used for configuration control, and misspellings should be detected as errors rather than silently
returning the empty string. If the user intended an empty string as the result when the external variable was undefined,
then this could easily be obtained:

external ("SOME_VAR", "")

In contrast, the external_as_list function more typically is used for external variables that may or may not have
definitions (for example, lists of options or paths) and then the desired result in the undefined case is an empty list, not
a reported error.

Here is an example of the external_as_list function:

external_as_list ("SWITCHES", ",")

If the external value of SWITCHES is "-O2,-g", the result is ("-O2", "-g").

If the external value is ",-O2,-g,", the result is also ("-O2", "-g").

if the external value is "-gnatv", the result is ("-gnatv").

If the external value is "„", the result is ("").

If the external value is ",", the result is (), the empty string list.

Split

Function Split takes two single string parameters and return a string list.

Example:

GPR Tools User’s Guide 55 of 139

GPR Tools User’s Guide 2020

Split ("-gnatf,-gnatv", ",")

=> ("-gnatf", "gnatv")

The first string argument is the string to be split. The second argument is the separator. Each occurrence of the
separator in the first argument is a place where it is split. If the first argument is an empty string or contains only
occurrences of the separator, then the result is an empty string list. If the argument does not contains any occurrence
of the separator, then the result is a list with only one string: the first argument. Empty strings are not included in the
result.

Split ("-gnatf -gnatv", " ")

=> ("-gnatf", "gnatv")

2.10.7 Typed String Declaration

A type declaration introduces a discrete set of string literals. If a string variable is declared to have this type, its value
is restricted to the given set of literals. These are the only named types in project files. A type declaration may only
appear at the project level, not inside a package.

typed_string_declaration ::=
'type' <typed_string_>simple_name 'is' (string_literal {, string_literal});

The string literals in the list are case sensitive and must all be different. They may include any graphic characters
allowed in Ada, including spaces. Here is an example of a string type declaration:

type OS is ("GNU/Linux", "Unix", "Windows", "VMS");

Variables of a string type are called typed variables; all other variables are called untyped variables. Typed variables
are particularly useful in case constructions, to support conditional attribute declarations. (See Case Constructions).

A string type may be referenced by its name if it has been declared in the same project file, or by an expanded name
whose prefix is the name of the project in which it is declared.

2.10.8 Variables

Variables store values (strings or list of strings) and can appear as part of an expression. The declaration of a variable
creates the variable and assigns the value of the expression to it. The name of the variable is available immediately
after the assignment symbol, if you need to reuse its old value to compute the new value. Before the completion of its
first declaration, the value of a variable defaults to the empty string ("").

A typed variable can be used as part of a case expression to compute the value, but it can only be declared once in
the project file, so that all case constructions see the same value for the variable. This provides more consistency
and makes the project easier to understand. The syntax for its declaration is identical to the Ada syntax for an object
declaration. In effect, a typed variable acts as a constant.

An untyped variable can be declared and overridden multiple times within the same project. It is declared implicitly
through an Ada assignment. The first declaration establishes the kind of the variable (string or list of strings) and
successive declarations must respect the initial kind. Assignments are executed in the order in which they appear, so
the new value replaces the old one and any subsequent reference to the variable uses the new value.

A variable may be declared at the project file level, or within a package.

56 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

typed_variable_declaration ::=
<typed_variable_>simple_name : <typed_string_>name := string_expression;

variable_declaration ::= <variable_>simple_name := expression;

Here are some examples of variable declarations:

This_OS : OS := external ("OS"); -- a typed variable declaration
That_OS := "GNU/Linux"; -- an untyped variable declaration

Name := "readme.txt";
Save_Name := Name & ".saved";

Empty_List := ();
List_With_One_Element := ("-gnaty");
List_With_Two_Elements := List_With_One_Element & "-gnatg";
Long_List := ("main.ada", "pack1_.ada", "pack1.ada", "pack2_.ada");

A variable reference may take several forms:

• The simple variable name, for a variable in the current package (if any) or in the current project

• An expanded name, whose prefix is a context name.

A context may be one of the following:

• The name of an existing package in the current project

• The name of an imported project of the current project

• The name of a direct or indirect base project (i.e., a project extended by the current project, either directly or
indirectly)

• An expanded name whose prefix is an imported/parent project name, and whose selector is a package name in
that project.

2.10.9 Case Constructions

A case construction is used in a project file to effect conditional behavior. Through this construction, you can set the
value of attributes and variables depending on the value previously assigned to a typed variable.

All choices in a choice list must be distinct. Unlike Ada, the choice lists of all alternatives do not need to include all
values of the type. An others choice must appear last in the list of alternatives.

The syntax of a case construction is based on the Ada case construction (although the null declaration for empty
alternatives is optional).

The case expression must be a string variable, either typed or not, whose value is often given by an external reference
(see External_Values).

Each alternative starts with the reserved word when, either a list of literal strings separated by the "|" character or the
reserved word others, and the "=>" token. When the case expression is a typed string variable, each literal string
must belong to the string type that is the type of the case variable. After each =>, there are zero or more declarations.
The only declarations allowed in a case construction are other case constructions, attribute declarations, and variable
declarations. String type declarations and package declarations are not allowed. Variable declarations are restricted to
variables that have already been declared before the case construction.

GPR Tools User’s Guide 57 of 139

GPR Tools User’s Guide 2020

case_construction ::=
'case' <variable_>name 'is' {case_item} 'end' 'case' ;

case_item ::=
'when' discrete_choice_list =>
{case_declaration
| attribute_declaration
| variable_declaration
| empty_declaration}

discrete_choice_list ::= string_literal {| string_literal} | 'others'

Here is a typical example, with a typed string variable:

project MyProj is
type OS_Type is ("GNU/Linux", "Unix", "Windows", "VMS");
OS : OS_Type := external ("OS", "GNU/Linux");

package Compiler is
case OS is

when "GNU/Linux" | "Unix" =>
for Switches ("Ada")

use ("-gnath");
when "Windows" =>
for Switches ("Ada")

use ("-gnatP");
when others =>
null;

end case;
end Compiler;

end MyProj;

2.10.10 Attributes

A project (and its packages) may have attributes that define the project’s properties. Some attributes have values that
are strings; others have values that are string lists.

attribute_declaration ::=
simple_attribute_declaration | indexed_attribute_declaration

simple_attribute_declaration ::= 'for' attribute_designator 'use' expression ;

indexed_attribute_declaration ::=
'for' *<indexed_attribute_>*simple_name (string_literal) 'use' expression ;

attribute_designator ::=
<simple_attribute_>simple_name
| <indexed_attribute_>simple_name (string_literal)

There are two categories of attributes: simple attributes and indexed attributes. Each simple attribute has a default
value: the empty string (for string attributes) and the empty list (for string list attributes). An attribute declaration
defines a new value for an attribute, and overrides the previous value. The syntax of a simple attribute declaration is
similar to that of an attribute definition clause in Ada.

58 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Some attributes are indexed. These attributes are mappings whose domain is a set of strings. They are declared one
association at a time, by specifying a point in the domain and the corresponding image of the attribute. Like untyped
variables and simple attributes, indexed attributes may be declared several times. Each declaration supplies a new
value for the attribute, and replaces the previous setting.

Here are some examples of attribute declarations:

-- simple attributes
for Object_Dir use "objects";
for Source_Dirs use ("units", "test/drivers");

-- indexed attributes
for Body ("main") use "Main.ada";
for Switches ("main.ada")

use ("-v", "-gnatv");
for Switches ("main.ada") use Builder'Switches ("main.ada") & "-g";

-- indexed attributes copy (from package Builder in project Default)
-- The package name must always be specified, even if it is the current
-- package.
for Default_Switches use Default.Builder'Default_Switches;

When an attribute is defined in the configuration project but not in the user project, it is inherited in the user project.

When a single string attribute is defined in both the configuration project and the user project, its value in the user
project is as declared; the value in the configuration project does not matter.

For string list attributes, there are two cases. Some of these attributes are configuration concatenable. For
these attributes, when they are declared in both the configuration project and the user project, the final value is
the concatenation of the value in the configuration project with the value in the user project. The configuration
concatenable attributes are indicated in the list below.

Attributes references may appear anywhere in expressions, and are used to retrieve the value previously assigned to
the attribute. If an attribute has not been set in a given package or project, its value defaults to the empty string or the
empty list, with some exceptions.

attribute_reference ::=
attribute_prefix ' <simple_attribute>_simple_name [(string_literal)]

attribute_prefix ::= 'project'
| <project_>simple_name
| package_identifier
| <project_>simple_name . package_identifier

Here are some examples:

project'Object_Dir
Naming'Dot_Replacement
Imported_Project'Source_Dirs
Imported_Project.Naming'Casing
Builder'Default_Switches ("Ada")

The exceptions to the empty defaults are:

• Object_Dir: default is "."

• Exec_Dir: default is ’Object_Dir, that is, the value of attribute Object_Dir in the same project,
declared or defaulted

GPR Tools User’s Guide 59 of 139

GPR Tools User’s Guide 2020

• Source_Dirs: default is (".")

The prefix of an attribute may be:

• project for an attribute of the current project

• The name of an existing package of the current project

• The name of an imported project

• The name of a parent project that is extended by the current project

• An expanded name whose prefix is imported/base/parent project name, and whose selector is a package name

In the following sections, all predefined attributes are succinctly described, first the project level attributes (that is,
those attributes that are not in a package), then the attributes in the different packages.

It is possible for different tools to dynamically create new packages with attributes, or new attributes in predefined
packages. These attributes are not documented here.

The attributes under Configuration headings are usually found only in configuration project files.

The characteristics of each attribute are indicated as follows:

• Type of value

The value of an attribute may be a single string, indicated by the word “single”, or a string list, indicated by the
word “list”.

• Read-only

When the attribute is read-only – that is when a declaration for the attribute is forbidden – this is indicated by
the “read-only”.

• Optional index

If an optional index is allowed in the value of the attribute (both single and list), this is indicated by the words
“optional index”.

• Indexed attribute

An indexed attribute is indicated by the word “indexed”.

• Case-sensitivity of the index

For an indexed attribute, if the index is case-insensitive, this is indicated by the words “case-insensitive index”.

• File name index

For an indexed attribute, when the index is a file name, this is indicated by the words “file name index”. The
index may or may not be case-sensitive, depending on the platform.

• others allowed in index

For an indexed attribute, if it is allowed to use others as the index, this is indicated by the words “others
allowed”.

When others is used as the index of an indexed attribute, the value of the attribute indexed by others is used
when no other index would apply.

• configuration concatenable

For a string list attribute, the final value if the attribute is declared in both the configuration project and the user
project is the concatenation of the two value, configuration then user.

60 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Project Level Attributes

• General

– Name: single, read-only

The name of the project.

– Project_Dir: single, read-only

The path name of the project directory.

– Main: list, optional index

The list of main sources for the executables.

– Languages: list

The list of languages of the sources of the project.

– Roots: list, indexed, file name index

The index is the file name of an executable source. Indicates the list of units from the main project that need
to be bound and linked with their closures with the executable. The index is either a file name, a language
name or “*”. The roots for an executable source are those in Roots with an index that is the executable
source file name, if declared. Otherwise, they are those in Roots with an index that is the language name
of the executable source, if present. Otherwise, they are those in Roots (“*”), if declared. If none of these
three possibilities are declared, then there are no roots for the executable source.

– Externally_Built: single

Indicates if the project is externally built. Only case-insensitive values allowed are “true” and “false”, the
default.

• Directories

– Object_Dir: single

Indicates the object directory for the project.

– Exec_Dir: single

Indicates the exec directory for the project, that is the directory where the executables are.

– Create_Missing_Dirs: single

Indicates if the missing object, library and executable directories should be created automatically by the
project-aware tool. Taken into account only in the main project. Only authorized case-insensitive values
are “true” and “false”.

– Source_Dirs: list

The list of source directories of the project.

– Inherit_Source_Path: list, indexed, case-insensitive index

Index is a language name. Value is a list of language names. Indicates that in the source search path of the
index language the source directories of the languages in the list should be included.

Example:

for Inherit_Source_Path ("C++") use ("C");

– Exclude_Source_Dirs: list

The list of directories that are included in Source_Dirs but are not source directories of the project.

GPR Tools User’s Guide 61 of 139

GPR Tools User’s Guide 2020

– Ignore_Source_Sub_Dirs: list

Value is a list of simple names or patterns for subdirectories that are removed from the list of source
directories, including their subdirectories.

• Source Files

– Source_Files: list

Value is a list of source file simple names.

– Locally_Removed_Files: list

Obsolescent. Equivalent to Excluded_Source_Files.

– Excluded_Source_Files: list

Value is a list of simple file names that are not sources of the project. Allows to remove sources that are
inherited or found in the source directories and that match the naming scheme.

– Source_List_File: single

Value is a text file name that contains a list of source file simple names, one on each line.

– Excluded_Source_List_File: single

Value is a text file name that contains a list of file simple names that are not sources of the project.

– Interfaces: list

Value is a list of file names that constitutes the interfaces of the project.

• Aggregate Projects

– Project_Files: list

Value is the list of aggregated projects.

– Project_Path: list

Value is a list of directories that are added to the project search path when looking for the aggregated
projects.

– External: single, indexed

Index is the name of an external reference. Value is the value of the external reference to be used when
parsing the aggregated projects.

• Libraries

– Library_Dir: single

Value is the name of the library directory. This attribute needs to be declared for each library project.

– Library_Name: single

Value is the name of the library. This attribute needs to be declared or inherited for each library project.

– Library_Kind: single

Specifies the kind of library: static library (archive) or shared library. Case-insensitive values must be one
of “static” for archives (the default), “static-pic” for archives of Position Independent Code, or “dynamic”
or “relocatable” for shared libraries.

– Library_Version: single

Value is the name of the library file.

62 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

– Library_Interface: list

Value is the list of unit names that constitutes the interfaces of a Stand-Alone Library project.

– Library_Standalone: single

Specifies if a Stand-Alone Library (SAL) is encapsulated or not. Only authorized case-insensitive values
are “standard” for non encapsulated SALs, “encapsulated” for encapsulated SALs or “no” for non SAL
library project.

– Library_Encapsulated_Options: list, configuration concatenable

Value is a list of options that need to be used when linking an encapsulated Stand-Alone Library.

– Library_Encapsulated_Supported: single

Indicates if encapsulated Stand-Alone Libraries are supported. Only authorized case-insensitive values are
“true” and “false” (the default).

– Library_Auto_Init: single

Indicates if a Stand-Alone Library is auto-initialized. Only authorized case-insensitive values are “true”
and “false”.

– Leading_Library_Options: list, configuration concatenable

Value is a list of options that are to be used at the beginning of the command line when linking a shared
library.

– Library_Options: list, configuration concatenable

Value is a list of options that are to be used when linking a shared library.

– Library_Rpath_Options: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is a list of options for an invocation of the compiler of the language. This
invocation is done for a shared library project with sources of the language. The output of the invocation is
the path name of a shared library file. The directory name is to be put in the run path option switch when
linking the shared library for the project.

– Library_Src_Dir: single

Value is the name of the directory where copies of the sources of the interfaces of a Stand-Alone Library
are to be copied.

– Library_ALI_Dir: single

Value is the name of the directory where the ALI files of the interfaces of a Stand-Alone Library are to be
copied. When this attribute is not declared, the directory is the library directory.

– Library_gcc: single

Obsolescent attribute. Specify the linker driver used to link a shared library. Use instead attribute
Linker’Driver.

– Library_Symbol_File: single

Value is the name of the library symbol file.

– Library_Symbol_Policy: single

Indicates the symbol policy kind. Only authorized case-insensitive values are “restricted”, “unrestricted”.

– Library_Reference_Symbol_File: single

Value is the name of the reference symbol file.

• Configuration - General

GPR Tools User’s Guide 63 of 139

GPR Tools User’s Guide 2020

– Default_Language: single

Value is the case-insensitive name of the language of a project when attribute Languages is not specified.

– Run_Path_Option: list

Value is the list of switches to be used when specifying the run path option in an executable.

– Run_Path_Origin: single

Value is the string that may replace the path name of the executable directory in the run path options.

– Separate_Run_Path_Options: single

Indicates if there may be several run path options specified when linking an executable. Only authorized
case-insensitive values are “true” or “false” (the default).

– Toolchain_Version: single, indexed, case-insensitive index

Index is a language name. Specify the version of a toolchain for a language.

– Required_Toolchain_Version: single, indexed, case-insensitive index

Index is a language name. Specify the value expected for the Toolchain_Version attribute for this
language, typically provided by an auto-generated configuration project. If Required_Toolchain_Version
and Toolchain_Version do not match, the project processing aborts with an error.

– Toolchain_Description: single, indexed, case-insensitive index

Obsolescent. No longer used.

– Object_Generated: single, indexed, case-insensitive index

Index is a language name. Indicates if invoking the compiler for a language produces an object file. Only
authorized case-insensitive values are “false” and “true” (the default).

– Objects_Linked: single, indexed, case-insensitive index

Index is a language name. Indicates if the object files created by the compiler for a language need to be
linked in the executable. Only authorized case-insensitive values are “false” and “true” (the default).

– Target: single

Value is the name of the target platform. Taken into account only in the main project.

Note that when the target is specified on the command line (usually with a switch –target=), the value of
attribute reference ‘Target is the one specified on the command line.

– Runtime: single, indexed, case-insensitive index

Index is a language name. Indicates the runtime directory that is to be used when using the compiler of the
language. Taken into account only in the main project, or its extended projects if any.

Note that when the runtime is specified for a language on the command line (usually with a switch –RTS),
the value of attribute reference ‘Runtime for this language is the one specified on the command line.

– Runtime_Dir: single, indexed, case-insensitive index

Index is a language name. Value is the path name of the runtime directory for the language.

– Runtime_Library_Dirs: list, indexed, case-insensitive index

Index is a language name. Value is the path names of the directories where the runtime libraries are located.
This attribute is not normally declared.

64 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

– Runtime_Library_Dir: single, indexed, case-insensitive index

Index is a language name. Value is the path name of the directory where the runtime libraries are located.
This attribute is obsolete.

– Runtime_Source_Dirs: list, indexed, case-insensitive index

Index is a language name. Value is the path names of the directories where the sources of runtime libraries
are located. This attribute is not normally declared.

– Runtime_Source_Dir: single, indexed, case-insensitive index

Index is a language name. Value is the path name of the directory where the sources of runtime libraries
are located. This attribute is obsolete.

– Runtime_Library_Version: single, indexed, case-insensitive index

Index is a language name. Value is library version for the language. This attribute is not normally declared.

– Toolchain_Name: single, indexed, case-insensitive index

Index is a language name. Indicates the toolchain name that is to be used when using the compiler of the
language. Taken into account only in the main project, or its extended projects if any.

• Configuration - Libraries

– Library_Builder: single

Value is the path name of the application that is to be used to build libraries. Usually the path name of
“gprlib”.

– Library_Support: single

Indicates the level of support of libraries. Only authorized case-insensitive values are “static_only”, “full”
or “none” (the default).

• Configuration - Archives

– Archive_Builder: list

Value is the name of the application to be used to create a static library (archive), followed by the options
to be used.

– Archive_Builder_Append_Option: list

Value is the list of options to be used when invoking the archive builder to add project files into an archive.

– Archive_Indexer: list

Value is the name of the archive indexer, followed by the required options.

– Archive_Suffix: single

Value is the extension of archives. When not declared, the extension is ”.a”.

– Library_Partial_Linker: list

Value is the name of the partial linker executable, followed by the required options.

• Configuration - Shared Libraries

– Shared_Library_Prefix: single

Value is the prefix in the name of shared library files. When not declared, the prefix is “lib”.

– Shared_Library_Suffix: single

Value is the extension of the name of shared library files. When not declared, the extension is ”.so”.

GPR Tools User’s Guide 65 of 139

GPR Tools User’s Guide 2020

– Symbolic_Link_Supported: single

Indicates if symbolic links are supported on the platform. Only authorized case-insensitive values are
“true” and “false” (the default).

– Library_Major_Minor_Id_Supported: single

Indicates if major and minor ids for shared library names are supported on the platform. Only authorized
case-insensitive values are “true” and “false” (the default).

– Library_Auto_Init_Supported: single

Indicates if auto-initialization of Stand-Alone Libraries is supported. Only authorized case-insensitive
values are “true” and “false” (the default).

– Shared_Library_Minimum_Switches: list, configuration concatenable

Value is the list of required switches when linking a shared library.

– Library_Version_Switches: list, configuration concatenable

Value is the list of switches to specify a internal name for a shared library.

– Library_Install_Name_Option: single

Value is the name of the option that needs to be used, concatenated with the path name of the library file,
when linking a shared library.

Package Binder Attributes

• General

– Default_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is the list of switches to be used when binding code of the language, if
there is no applicable attribute Switches.

– Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration concatenable

Index is either a language name or a source file name. Value is the list of switches to be used when binding
code. Index is either the source file name of the executable to be bound or the language name of the code
to be bound.

• Configuration - Binding

– Driver: single, indexed, case-insensitive index

Index is a language name. Value is the name of the application to be used when binding code of the
language.

– Required_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is the list of the required switches to be used when binding code of the
language.

– Prefix: single, indexed, case-insensitive index

Index is a language name. Value is a prefix to be used for the binder exchange file name for the language.
Used to have different binder exchange file names when binding different languages.

– Objects_Path: single,indexed, case-insensitive index

Index is a language name. Value is the name of the environment variable that contains the path for the
object directories.

66 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

– Object_Path_File: single,indexed, case-insensitive index

Index is a language name. Value is the name of the environment variable. The value of the environment
variable is the path name of a text file that contains the list of object directories.

Package Builder Attributes

• Default_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is the list of builder switches to be used when building an executable of the
language, if there is no applicable attribute Switches.

• Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration concatenable

Index is either a language name or a source file name. Value is the list of builder switches to be used when
building an executable. Index is either the source file name of the executable to be built or its language name.

• Global_Compilation_Switches: list, optional index, indexed, case-insensitive index, configuration
concatenable

Index is a language name. Value is the list of compilation switches to be used when building an executable.
Index is either the source file name of the executable to be built or its language name.

• Executable: single, indexed, case-insensitive index

Index is an executable source file name. Value is the simple file name of the executable to be built.

• Executable_Suffix: single

Value is the extension of the file names of executable. When not specified, the extension is the default extension
of executables on the platform.

• Global_Configuration_Pragmas: single

Value is the file name of a configuration pragmas file that is specified to the Ada compiler when compiling any
Ada source in the project tree.

• Global_Config_File: single, indexed, case-insensitive index

Index is a language name. Value is the file name of a configuration file that is specified to the compiler when
compiling any source of the language in the project tree.

Package Check Attributes

• Default_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is a list of switches to be used when invoking gnatcheck for a source of the
language, if there is no applicable attribute Switches.

• Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration concatenable

Index is a source file name. Value is the list of switches to be used when invoking gnatcheck for the source.

Package Clean Attributes

• Switches: list, configuration concatenable

Value is a list of switches to be used by the cleaning application.

GPR Tools User’s Guide 67 of 139

GPR Tools User’s Guide 2020

• Source_Artifact_Extensions: list, indexed, case-insensitive index

Index is a language names. Value is the list of extensions for file names derived from object file names that need
to be cleaned in the object directory of the project.

• Object_Artifact_Extensions: list, indexed, case-insensitive index

Index is a language names. Value is the list of extensions for file names derived from source file names that need
to be cleaned in the object directory of the project.

• Artifacts_In_Object_Dir: single

Value is a list of file names expressed as regular expressions that are to be deleted by gprclean in the object
directory of the project.

• Artifacts_In_Exec_Dir: single

Value is list of file names expressed as regular expressions that are to be deleted by gprclean in the exec directory
of the main project.

Package Compiler Attributes

• General

– Default_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is a list of switches to be used when invoking the compiler for the
language for a source of the project, if there is no applicable attribute Switches.

– Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration concatenable

Index is a source file name or a language name. Value is the list of switches to be used when invoking the
compiler for the source or for its language.

– Local_Configuration_Pragmas: single

Value is the file name of a configuration pragmas file that is specified to the Ada compiler when compiling
any Ada source in the project.

– Local_Config_File: single, indexed, case-insensitive index

Index is a language name. Value is the file name of a configuration file that is specified to the compiler
when compiling any source of the language in the project.

• Configuration - Compiling

– Driver: single, indexed, case-insensitive index

Index is a language name. Value is the name of the executable for the compiler of the language.

– Language_Kind: single, indexed, case-insensitive index

Index is a language name. Indicates the kind of the language, either file based or unit based. Only
authorized case-insensitive values are “unit_based” and “file_based” (the default).

– Dependency_Kind: single, indexed, case-insensitive index

Index is a language name. Indicates how the dependencies are handled for the language. Only authorized
case-insensitive values are “makefile”, “ali_file”, “ali_closure” or “none” (the default).

– Required_Switches: list, indexed, case-insensitive index, configuration concatenable

Equivalent to attribute Leading_Required_Switches.

68 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

– Leading_Required_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is the list of the minimum switches to be used at the beginning of the
command line when invoking the compiler for the language.

– Trailing_Required_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is the list of the minimum switches to be used at the end of the command
line when invoking the compiler for the language.

– PIC_Option: list, indexed, case-insensitive index

Index is a language name. Value is the list of switches to be used when compiling a source of the language
when the project is a shared library project.

– Path_Syntax: single, indexed, case-insensitive index

Index is a language name. Value is the kind of path syntax to be used when invoking the compiler for the
language. Only authorized case-insensitive values are “canonical” and “host” (the default).

– Source_File_Switches: single, indexed, case-insensitive index configuration concatenable

Index is a language name. Value is a list of switches to be used just before the path name of the source to
compile when invoking the compiler for a source of the language.

– Object_File_Suffix: single, indexed, case-insensitive index

Index is a language name. Value is the extension of the object files created by the compiler of the language.
When not specified, the extension is the default one for the platform.

– Object_File_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is the list of switches to be used by the compiler of the language to specify
the path name of the object file. When not specified, the switch used is “-o”.

– Multi_Unit_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is the list of switches to be used to compile a unit in a multi unit source
of the language. The index of the unit in the source is concatenated with the last switches in the list.

– Multi_Unit_Object_Separator: single, indexed, case-insensitive index

Index is a language name. Value is the string to be used in the object file name before the index of the unit,
when compiling a unit in a multi unit source of the language.

• Configuration - Mapping Files

– Mapping_File_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is the list of switches to be used to specify a mapping file when invoking
the compiler for a source of the language.

– Mapping_Spec_Suffix: single, indexed, case-insensitive index

Index is a language name. Value is the suffix to be used in a mapping file to indicate that the source is a
spec.

– Mapping_Body_Suffix: single, indexed, case-insensitive index

Index is a language name. Value is the suffix to be used in a mapping file to indicate that the source is a
body.

• Configuration - Config Files

– Config_File_Switches: list: single, indexed, case-insensitive index, configuration concatenable

GPR Tools User’s Guide 69 of 139

GPR Tools User’s Guide 2020

Index is a language name. Value is the list of switches to specify to the compiler of the language a
configuration file.

– Config_Body_File_Name: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a configuration specific to a body of
the language in a configuration file.

– Config_Body_File_Name_Index: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a configuration specific to the body
a unit in a multi unit source of the language in a configuration file.

– Config_Body_File_Name_Pattern: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a configuration for all bodies of the
languages in a configuration file.

– Config_Spec_File_Name: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a configuration specific to a spec of
the language in a configuration file.

– Config_Spec_File_Name_Index: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a configuration specific to the spec
a unit in a multi unit source of the language in a configuration file.

– Config_Spec_File_Name_Pattern: single, indexed, case-insensitive index

Index is a language name. Value is the template to be used to indicate a configuration for all specs of the
languages in a configuration file.

– Config_File_Unique: single, indexed, case-insensitive index

Index is a language name. Indicates if there should be only one configuration file specified to the compiler
of the language. Only authorized case-insensitive values are “true” and “false” (the default).

• Configuration - Dependencies

– Dependency_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is the list of switches to be used to specify to the compiler the dependency
file when the dependency kind of the language is file based, and when Dependency_Driver is not specified
for the language.

– Dependency_Driver: list, indexed, case-insensitive index

Index is a language name. Value is the name of the executable to be used to create the dependency file for
a source of the language, followed by the required switches.

• Configuration - Search Paths

– Include_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is the list of switches to specify to the compiler of the language to indicate
a directory to look for sources.

– Include_Path: single, indexed, case-insensitive index

Index is a language name. Value is the name of an environment variable that contains the path of all the
directories that the compiler of the language may search for sources.

– Include_Path_File: single, indexed, case-insensitive index

Index is a language name. Value is the name of an environment variable the value of which is the path
name of a text file that contains the directories that the compiler of the language may search for sources.

70 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

– Object_Path_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is the list of switches to specify to the compiler of the language the name
of a text file that contains the list of object directories. When this attribute is not declared, the text file is
not created.

• Configuration - Response Files

– Max_Command_Line_Length: single

Value is the maximum number of character in the command line when invoking a compiler that supports
response files.

– Response_File_Format: single, indexed, case-insensitive index

Indicates the kind of response file to create when the length of the compiling command line is too large.
The index is the name of the language for the compiler. Only authorized case-insensitive values are “none”,
“gnu”, “object_list”, “gcc_gnu”, “gcc_option_list” and “gcc_object_list”.

– Response_File_Switches: list, indexed, case-insensitive index, configuration concatenable

Value is the list of switches to specify a response file for a compiler. The index is the name of the language
for the compiler.

Package Cross_Reference Attributes

• Default_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is a list of switches to be used when invoking gnatxref for a source of the
language, if there is no applicable attribute Switches.

• Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration concatenable

Index is a source file name. Value is the list of switches to be used when invoking gnatxref for the source.

Package Documentation Attributes

Please refer to GNATdoc documentation for the list of supported attributes and their meaning.

Package Eliminate Attributes

• Default_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is a list of switches to be used when invoking gnatelim for a source of the
language, if there is no applicable attribute Switches.

• Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration concatenable

Index is a source file name. Value is the list of switches to be used when invoking gnatelim for the source.

Package Finder Attributes

• Default_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is a list of switches to be used when invoking gnatfind for a source of the
language, if there is no applicable attribute Switches.

• Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration concatenable

Index is a source file name. Value is the list of switches to be used when invoking gnatfind for the source.

GPR Tools User’s Guide 71 of 139

GPR Tools User’s Guide 2020

Package Gnatls Attributes

• Switches: list

Value is a list of switches to be used when invoking gnatls.

Package gnatstub Attributes

• Default_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is a list of switches to be used when invoking gnatstub for a source of the
language, if there is no applicable attribute Switches.

• Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration concatenable

Index is a source file name. Value is the list of switches to be used when invoking gnatstub for the source.

Package IDE Attributes

Please refer to your IDE documentation for the list of supported attributes and their meaning.

Package Install Attributes

• Artifacts: list, indexed

An indexed attribute to declare a set of files not part of the sources to be installed. The array index is the directory
where the file is to be installed. If a relative directory then Prefix (see below) is prepended. Note also that if the
same file name occurs multiple time in the attribute list, the last one will be the one installed. If an artifact is not
found a warning is displayed.

• Required_Artifacts: list, indexed

As above, but artifacts must be present or an error is reported.

• Prefix: single

Value is the install destination directory. If the value is a relative path, it is taken as relative to the global prefix
directory. That is, either the value passed to –prefix option or the default installation prefix.

• Sources_Subdir: single

Value is the sources directory or subdirectory of Prefix.

• Exec_Subdir: single

Value is the executables directory or subdirectory of Prefix.

• ALI_Subdir: single

Value is ALI directory or subdirectory of Prefix.

• Lib_Subdir: single

Value is library directory or subdirectory of Prefix.

• Project_Subdir: single

Value is the project directory or subdirectory of Prefix.

72 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

• Active: single

Indicates that the project is to be installed or not. Case-insensitive value “false” means that the project is not to
be installed, all other values mean that the project is to be installed.

• Mode: single

Value is the installation mode, it is either dev (default) or usage.

• Install_Name: single

Specify the name to use for recording the installation. The default is the project name without the extension.

• Side_Debug: single

Indicates that the project’s executable and shared libraries are to be stripped of the debug symbols. Those debug
symbols are written into a side file named after the original file with the ”.debug” extension added. Case-
insensitive value “false” (default) disables this feature. Set it to “true” to activate.

• Install_Project: single

Indicates that a project is to be generated and installed. The value is either “true” to “false”. Default is “true”.

Package Linker Attributes

• General

– Required_Switches: list, configuration concatenable

Value is a list of switches that are required when invoking the linker to link an executable.

– Default_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is a list of switches for the linker when linking an executable for a main
source of the language, when there is no applicable Switches.

– Leading_Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration
concatenable

Index is a source file name or a language name. Value is the list of switches to be used at the beginning of
the command line when invoking the linker to build an executable for the source or for its language.

– Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration concatenable

Index is a source file name or a language name. Value is the list of switches to be used when invoking the
linker to build an executable for the source or for its language.

– Trailing_Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration
concatenable

Index is a source file name or a language name. Value is the list of switches to be used at the end of the
command line when invoking the linker to build an executable for the source or for its language. These
switches may override the Required_Switches.

– Linker_Options: list, configuration concatenable

This attribute specifies a list of additional switches to be given to the linker when linking an executable. It
is ignored when defined in the main project and taken into account in all other projects that are imported
directly or indirectly. These switches complement the Linker’Switches defined in the main project.
This is useful when a particular subsystem depends on an external library: adding this dependency
as a Linker_Options in the project of the subsystem is more convenient than adding it to all the
Linker’Switches of the main projects that depend upon this subsystem.

GPR Tools User’s Guide 73 of 139

GPR Tools User’s Guide 2020

– Map_File_Option: single

Value is the switch to specify the map file name that the linker needs to create.

• Configuration - Linking

– Driver: single

Value is the name of the linker executable.

• Configuration - Response Files

– Max_Command_Line_Length: single

Value is the maximum number of character in the command line when invoking the linker to link an
executable.

– Response_File_Format: single

Indicates the kind of response file to create when the length of the linking command line is too large.
Only authorized case-insensitive values are “none”, “gnu”, “object_list”, “gcc_gnu”, “gcc_option_list”
and “gcc_object_list”.

– Response_File_Switches: list, configuration concatenable

Value is the list of switches to specify a response file to the linker.

Package Metrics Attribute

• Default_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is a list of switches to be used when invoking gnatmetric for a source of the
language, if there is no applicable attribute Switches.

• Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration concatenable

Index is a source file name. Value is the list of switches to be used when invoking gnatmetric for the source.

Package Naming Attributes

• Specification_Suffix: single, indexed, case-insensitive index

Equivalent to attribute Spec_Suffix.

• Spec_Suffix: single, indexed, case-insensitive index

Index is a language name. Value is the extension of file names for specs of the language.

• Implementation_Suffix: single, indexed, case-insensitive index

Equivalent to attribute Body_Suffix.

• Body_Suffix: single, indexed, case-insensitive index

Index is a language name. Value is the extension of file names for bodies of the language.

• Separate_Suffix: single

Value is the extension of file names for subunits of Ada.

• Casing: single

Indicates the casing of sources of the Ada language. Only authorized case-insensitive values are “lowercase”,
“uppercase” and “mixedcase”.

74 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

• Dot_Replacement: single

Value is the string that replace the dot of unit names in the source file names of the Ada language.

• Specification: single, optional index, indexed, case-insensitive index

Equivalent to attribute Spec.

• Spec: single, optional index, indexed, case-insensitive index

Index is a unit name. Value is the file name of the spec of the unit.

• Implementation: single, optional index, indexed, case-insensitive index

Equivalent to attribute Body.

• Body: single, optional index, indexed, case-insensitive index

Index is a unit name. Value is the file name of the body of the unit.

• Specification_Exceptions: list, indexed, case-insensitive index

Index is a language name. Value is a list of specs for the language that do not necessarily follow the naming
scheme for the language and that may or may not be found in the source directories of the project.

• Implementation_Exceptions: list, indexed, case-insensitive index

Index is a language name. Value is a list of bodies for the language that do not necessarily follow the naming
scheme for the language and that may or may not be found in the source directories of the project.

Package Pretty_Printer Attributes

• Default_Switches: list, indexed, case-insensitive index, configuration concatenable

Index is a language name. Value is a list of switches to be used when invoking gnatpp for a source of the
language, if there is no applicable attribute Switches.

• Switches: list, optional index, indexed, case-insensitive index, others allowed, configuration concatenable

Index is a source file name. Value is the list of switches to be used when invoking gnatpp for the source.

Package Remote Attributes

• Included_Patterns: list

If this attribute is defined it sets the patterns to synchronized from the master to the slaves. It is exclusive with
Excluded_Patterns, that is it is an error to define both.

• Included_Artifact_Patterns: list

If this attribute is defined it sets the patterns of compilation artifacts to synchronized from the slaves to the build
master. This attribute replace the default hard-coded patterns.

• Excluded_Patterns: list

Set of patterns to ignore when synchronizing sources from the build master to the slaves. A set of predefined
patterns are supported (e.g. *.o, *.ali, *.exe, etc.), this attributes make it possible to add some more patterns.

• Root_Dir: single

Value is the root directory used by the slave machines.

GPR Tools User’s Guide 75 of 139

GPR Tools User’s Guide 2020

Package Stack Attributes

• Switches: list, configuration concatenable

Value is the list of switches to be used when invoking gnatstack.

Package Synchronize Attributes

• Default_Switches: list, indexed, case-insensitive index

Index is a language name. Value is a list of switches to be used when invoking gnatsync for a source of the
language, if there is no applicable attribute Switches.

• Switches: list, optional index, indexed, case-insensitive index, others allowed

Index is a source file name. Value is the list of switches to be used when invoking gnatsync for the source.

2.11 Glossary

Abstract project A project with no source files, typically used to define common attributes that are shared by other
project files. See Sharing between Projects.

Aggregate project A project that in effect combines several projects in order to efficiently support concurrent
builds or builds of all main programs from the constituent projects, or the convenient definition of a common
environment for the constituent projects. See Aggregate Projects.

Attribute A named property of a project or one of its packages. See Attributes.

Base project A project that is extended by some other project. See Project Extension.

Child project A project that is defined by a name Parent_proj.Child_proj where Child_proj either
imports or extends Parent_Proj. This feature is typically used to show a close relationship between the two
projects, for example where the child project serves as a testbed for the parent. See Child Projects.

Configuration project A project that describes compilers and other tools, for use by GPRbuild. See Configuration
Project.

Extending a project The reuse and possible adaption by one project of the source files from another project (the
base project). Somewhat analogous to (single) class inheritance in object-oriented programming. See Project
Extension.

External variable A variable that is defined on the command line (by the -X switch), as the value of an environment
variable, or, by default, as the second parameter to the external function. See Scenarios in Projects.

Global attribute An attribute that applies to all projects in the project import closure of a main project. See Global
Attributes.

Importing a project The usage of a with or limited with clause on a project file in order to reuse properties
of some other project file. See Importing Projects.

Independent project A project defined by a single project file and thus not dependent on any other projects. See
Independent Project.

Library project A project that is used to define a library rather than an executable program. See Library Projects.

Main project A project that is specified on the command line. See Global Attributes.

Package A grouping of attribute definitions related to a particular GNAT tool. See Packages.

Parent project A project that has one or more child projects. See Child Projects.

76 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Project A set of named properties and their values, associated with the GNAT tools that are used during the
development of software in Ada and other languages. Properties include directories for source files, object
files, and executables; the switch settings for the various tools; and the naming scheme for source files.

Project extension See glossary item Extending a project

Project file A textual representation of a project, which uses an Ada-like notation. The syntax is presented in Project
File Reference.

Project import closure The project import closure for a given project proj is the set of projects consisting of proj
itself, together with each project that is directly or indirectly imported by proj. The import may be from either a
with or a limited with. See Project Import Closure.

Scenario The values of a project’s variables and attributes, as determined by the settings of external variables
referenced by a project. A scenario typically defines a particular mode of usage for the project. See Scenarios
in Projects.

Scenario variable An external variable, typically assigned to a typed variable and queried in a case construction.
See Scenario variable.

Standard project A non-library project with source files. See Standard project

Typed variable A project variable that can take any of a specified set of values, analogous to a variable of an Ada
enumeration type but where the values are string literals. See Scenarios in Projects.

GPR Tools User’s Guide 77 of 139

GPR Tools User’s Guide 2020

This page is intentionally left blank.

78 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

CHAPTER

THREE

BUILDING WITH GPRBUILD

3.1 Introduction

GPRbuild is a generic build tool designed for the construction of large multi-language systems organized into
subsystems and libraries. It is well-suited for compiled languages supporting separate compilation, such as Ada,
C, C++ and Fortran.

GPRbuild manages a three step build process.

• compilation phase:

Each compilation unit of each subsystem is examined in turn, checked for consistency, and compiled or
recompiled when necessary by the appropriate compiler. The recompilation decision is based on dependency
information that is typically produced by a previous compilation.

• post-compilation phase (or binding):

Compiled units from a given language are passed to a language-specific post-compilation tool if any. Also
during this phase objects are grouped into static or dynamic libraries as specified.

• linking phase:

All units or libraries from all subsystems are passed to a linker tool specific to the set of toolchains being used.

The tool is generic in that it provides, when possible, equivalent build capabilities for all supported languages. For
this, it uses a configuration file <file>.cgpr that has a syntax and structure very similar to a project file, but which
defines the characteristics of the supported languages and toolchains. The configuration file contains information such
as:

• the default source naming conventions for each language,

• the compiler name, location and required options,

• how to compute inter-unit dependencies,

• how to build static or dynamic libraries,

• which post-compilation actions are needed,

• how to link together units from different languages.

On the other hand, GPRbuild is not a replacement for general-purpose build tools such as make or ant which give the
user a high level of control over the build process itself. When building a system requires complex actions that do not
fit well in the three-phase process described above, GPRbuild might not be sufficient. In such situations, GPRbuild
can still be used to manage the appropriate part of the build. For instance it can be called from within a Makefile.

GPR Tools User’s Guide 79 of 139

GPR Tools User’s Guide 2020

3.2 Command Line

Three elements can optionally be specified on GPRbuild’s command line:

• the main project file,

• the switches for GPRbuild itself or for the tools it drives, and

• the main source files.

The general syntax is thus:

gprbuild [<proj>.gpr] [switches] [names]
{[-cargs opts] [-cargs:lang opts] [-largs opts] [-gargs opts]}

GPRbuild requires a project file, which may be specified on the command line either directly or through the -P
switch. If not specified, GPRbuild uses the project file default.gpr if there is one in the current working directory.
Otherwise, if there is only one project file in the current working directory, GPRbuild uses this project file.

Main source files represent the sources to be used as the main programs. If they are not specified on the command line,
GPRbuild uses the source files specified with the Main attribute in the project file. If none exists, then no executable
will be built. It is also possible to specify absolute file names, or file names relative to the current directory.

When source files are specified along with the option -c, then recompilation will be considered only for those source
files. In all other cases, GPRbuild compiles or recompiles all sources in the project tree that are not up to date, and
builds or rebuilds libraries that are not up to date.

If invoked without the --config= or --autoconf= options, then GPRbuild will look for a configuration
project file. The file name or path name of this configuration project file depends on the target, the runtime and
environment variable GPR_CONFIG See Configuring with GPRconfig. If there is no such file in the default locations
expected by GPRbuild (<install>/share/gpr and the current directory) then GPRbuild will invoke GPRconfig with
the languages from the project files, and create a configuration project file auto.cgpr in the object directory of
the main project. The project auto.cgpr will be rebuilt at each GPRbuild invocation unless you use the switch
--autoconf=path/auto.cgpr, which will use the configuration project file if it exists and create it otherwise.

Options given on the GPRbuild command line may be passed along to individual tools by preceding them with one of
the “command line separators” shown below. Options following the separator, up to the next separator (or end of the
command line), are passed along. The different command line separators are:

• -cargs

The arguments that follow up to the next command line separator are options for all compilers for all languages.
Example: -cargs -g

• -cargs:language name

The arguments that follow up to the next command line separator are options for the compiler of the specific
language.

Examples:

– -cargs:Ada -gnatf

– -cargs:C -E

• -bargs

The arguments that follow up to the next command line separator are options for all binder drivers.

• -bargs:language name

The arguments that follow up to the next command line separators are options for the binder driver of the specific
language.

80 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Examples:

– -bargs:Ada binder_prefix=ppc-elf

– -bargs:C++ c_compiler_name=ccppc

• -largs

The arguments that follow up to the next command line separator are options for the linker, when linking an
executable.

• -gargs

The arguments that follow up to the next command line separator are options for GPRbuild itself. Usually
-gargs is specified after one or several other command line separators.

• -margs

Equivalent to -gargs, provided for compatibility with gnatmake.

3.3 Switches

GPRbuild takes into account switches that may be specified on the command line or in attributes Switches(<main or
language>) or Default_Switches (<language>) in package Builder of the main project.

When there are a single main (specified on the command line or in attribute Main in the main project), the switches
that are taken into account in package Builder of the main project are Switches (<main>), if declared, or Switches
(<language of main>), if declared.

When there are several mains, if there are sources of the same language, then Switches (<language of main>) is taken
into account, if specified.

When there are no main specified, if there is only one compiled language (that is a language with a non empty Compiler
Driver), then Switches (<single language>) is taken into account, if specified.

The switches that are interpreted directly by GPRbuild are listed below.

First, the switches that may be specified only on the command line, but not in package Builder of the main project:

• --build-script=<script_file>

This switch is not compatible with --distributed=.

When this switch is specified, a shell script <script_file> is created. Provided that the temporary files created by
gprbuild are not deleted, running this script should perform the same build as the invocation of gprbuild, with
the same sources.

• --no-project

This switch cannot be used if a project file is specified on the command line.

When this switch is specified, it indicates to gprbuild that the project files in the current directory should not be
considered and that the default project file in <prefix>/share/gpr is to be used.

It is usually used with one or several mains specified on the command line.

• --no-complete-output

Synonym: -n.

By default, gprbuild redirects the standard output and the standard error of the compilations to different text files.
This allows to inspect the results afterwards, and also ensures that parallel processes do not clobber each other’s
output. When this switch is specified, these files are not created and individual compilations output directly to
common standard streams.

GPR Tools User’s Guide 81 of 139

GPR Tools User’s Guide 2020

• --complete-output

This switch is not compatible with --distributed=.

When this switch is specified, if a source is up to date and compilation log files exist, their contents are sent
to standard output and standard error. This allows to redisplay any warning or info from the last invocation of
gprbuild.

• --distributed[=slave1[,slave2]]

This switch is not compatible with --complete-output, or with --build-script=.

Activate the distributed compilation on the listed slaves nodes (IP or name). Or if no slave are specified they are
search in GPR_SLAVES or GPR_SLAVES_FILE environment variables. see Distributed compilation.

• --hash=string

Specify an hash string. This is just a value which is checked against the GPRslave hash value. If GPRslave has
a hash value specified this string must match, otherwise it is ignored. For example:

$ gprbuild --hash=$(echo $ADA_PROJECT_PATH | shasum) --distributed=...

• --slave-env=name

Use name as the slave’s environment directory instead of the default one. This options is only used in distributed
mode.

• --version

Display information about GPRbuild: version, origin and legal status, then exit successfully, ignoring other
options.

• --help

Display GPRbuild usage, then exit successfully, ignoring other options.

• --display-paths

Display two lines: the configuration project file search path and the user project file search path, then exit
successfully, ignoring other options.

• --config=config project file name

This specifies the configuration project file name. By default, the configuration project file name is
default.cgpr. Option --config= cannot be specified more than once. The configuration project file
specified with --config= must exist.

• --autoconf=config project file name

This specifies a configuration project file name that already exists or will be created automatically. Op-
tion --autoconf= cannot be specified more than once. If the configuration project file specified with
--autoconf= exists, then it is used. Otherwise, GPRconfig is invoked to create it automatically.

• --target=targetname

This specifies that the default configuration project file is <targetname>.cgpr. If no configuration project
file with this name is found, then GPRconfig is invoked with option --target=targetname to create a
configuration project file auto.cgpr.

Note: only one of --config, --autoconf or --target= can be specified.

• --implicit-with=project file name

Adds a given project as an implicit dependency to every project in the build tree by creating an implicit “limited
with” clause at the start of each project. This switch can only appear once on the command line.

82 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

• --subdirs=subdir

This indicates that the object, library and executable directories specified in the project file will be suffixed
with {subdir}. If needed, those subdirectories are created except for externally built projects: in this case if the
subdirectories already exist they are used, otherwise the base directories are used.

• --src-subdirs=subdir

This adds the given subdirectory (relative to each object directory of the project tree) to the list of source
directories of the project, one directory per object directory. This is useful for overriding temporarily some
source files for the purpose of e.g. source instrumentation such as source coverage or preprocessing. This
option may be combined with --subdirs.

• --relocate-build-tree[=dir]

With this option it is possible to achieve out-of-tree build. That is, real object, library or exec directories are
relocated to the current working directory or dir if specified.

• --root-dir=dir

This option is to be used with –relocate-build-tree above and cannot be specified alone. This option specifies
the root directory for artifacts for proper relocation. The default value is the main project directory. This may
not be suitable for relocation if for example some artifact directories are in parent directory of the main project.
The specified directory must be a parent of all artifact directories.

• --unchecked-shared-lib-imports

Allow shared library projects to import projects that are not shared library projects.

• --source-info=source info file

Specify a source info file. If the source info file is specified as a relative path, then it is relative to the object
directory of the main project. If the source info file does not exist, then after the Project Manager has successfully
parsed and processed the project files and found the sources, it creates the source info file. If the source info file
already exists and can be read successfully, then the Project Manager will get all the needed information about
the sources from the source info file and will not look for them. This reduces the time to process the project
files, especially when looking for sources that take a long time. If the source info file exists but cannot be parsed
successfully, the Project Manager will attempt to recreate it. If the Project Manager fails to create the source
info file, a message is issued, but GPRbuild does not fail.

• --restricted-to-languages=list of language names

Restrict the sources to be compiled to one or several languages. Each language name in the list is separated from
the next by a comma, without any space.

Example: --restricted-to-languages=Ada,C

When this switch is used, switches -c, -b and -l are ignored. Only the compilation phase is performed and
the sources that are not in the list of restricted languages are not compiled, including mains specified in package
Builder of the main project.

• --no-sal-binding

Specify to GPRbuild to not rebind a Stand-Alone Library (SAL), but instead to reuse the files created during
a previous build of the SAL. GPRbuild will fail if there are missing files. This option is unsafe and not
recommended, as it may result in incorrect binding of the SAL, for example if sources have been added, removed
or modified in a significant way related to binding. It is only provided to improve performance, when it is known
that the resulting binding files will be the same as the previous ones.

• -aP dir (Add directory dir to project search path)

Specify to GPRbuild to add directory dir to the user project file search path, before the default directory.

GPR Tools User’s Guide 83 of 139

GPR Tools User’s Guide 2020

• -d (Display progress)

Display progress for each source, up to date or not, as a single line completed x out of y (zz%).... If the file needs
to be compiled this is displayed after the invocation of the compiler. These lines are displayed even in quiet
output mode (switch -q).

• -Inn (Index of main unit in multi-unit source file) Indicate the index of the main unit in a multi-unit source
file. The index must be a positive number and there should be one and only one main source file name on the
command line.

• -eL (Follow symbolic links when processing project files)

By default, symbolic links on project files are not taken into account when processing project files. Switch -eL
changes this default behavior.

• -eS (no effect)

This switch is only accepted for compatibility with gnatmake, but it has no effect. For gnatmake, it means:
echo commands to standard output instead of standard error, but for gprbuild, commands are always echoed to
standard output.

• -F (Full project path name in brief error messages)

By default, in non verbose mode, when an error occurs while processing a project file, only the simple name
of the project file is displayed in the error message. When switch -F is used, the full path of the project file is
used. This switch has no effect when switch -v is used.

• -o name (Choose an alternate executable name)

Specify the file name of the executable. Switch -o can be used only if there is exactly one executable being
built; that is, there is exactly one main on the command line, or there are no mains on the command line and
exactly one main in attribute Main of the main project.

• -P proj (use Project file proj)

Specify the path name of the main project file. The space between -P and the project file name is optional.
Specifying a project file name (with suffix .gpr) may be used in place of option -P. Exactly one main project
file can be specified.

• -r (Recursive)

This switch has an effect only when -c or -u is also specified and there are no mains: it means that all sources
of all projects need to be compiled or recompiled.

• -u (Unique compilation, only compile the given files)

If there are sources specified on the command line, only compile these sources. If there are no sources specified
on the command line, compile all the sources of the main project.

In both cases, do not attempt the binding and the linking phases.

• -U (Compile all sources of all projects)

If there are sources specified on the command line, only compile these sources. If there are no sources specified
on the command line, compile all the sources of all the projects in the project tree.

In both cases, do not attempt the binding and the linking phases.

• -vPx (Specify verbosity when parsing Project Files)

By default, GPRbuild does not display anything when processing project files, except when there are errors. This
default behavior is obtained with switch -vP0. Switches -vP1 and -vP2 yield increasingly detailed output.

• -Xnm=val (Specify an external reference for Project Files)

84 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Specify an external reference that may be queried inside the project files using built-in function external. For
example, with -XBUILD=DEBUG, external(“BUILD”) inside a project file will have the value “DEBUG”.

• --compiler-subst=lang,tool (Specify alternative compiler)

Use tool for compiling files in language lang, instead of the normal compiler. For example, if
--compiler-subst=ada,my-compiler is given, then Ada files will be compiled with my-compiler
instead of the usual gcc. This and --compiler-pkg-subst are intended primarily for use by ASIS tools
using --incremental mode.

• --compiler-pkg-subst=pkg (Specify alternative package)

Use the switches in project-file package pkg when running the compiler, instead of the ones in package Compiler.

Then, the switches that may be specified on the command line as well as in package Builder of the main project
(attribute Switches):

• --keep-temp-files

Normally, GPRbuild delete the temporary files that it creates. When this switch is used, the temporary files that
GPRbuild creates are not deleted.

• --create-map-file

When linking an executable, if supported by the platform, create a map file with the same name as the executable,
but with suffix .map.

• --create-map-file=map file

When linking an executable, if supported by the platform, create a map file with file name map file.

• --no-indirect-imports

This indicates that sources of a project should import only sources or header files from directly imported projects,
that is those projects mentioned in a with clause and the projects they extend directly or indirectly. A check is
done in the compilation phase, after a successful compilation, that the sources follow these restrictions. For Ada
sources, the check is fully enforced. For non Ada sources, the check is partial, as in the dependency file there is
no distinction between header files directly included and those indirectly included. The check will fail if there
is no possibility that a header file in a non directly imported project could have been indirectly imported. If the
check fails, the compilation artifacts (dependency file, object file, switches file) are deleted.

• --indirect-imports

This indicates that sources of a project can import sources or header files from directly or indirectly
imported projects. This is the default behavior. This switch is provided to cancel a previous switch
--no-indirect-imports on the command line.

• --no-object-check

Do not check if an object has been created after compilation.

• --no-split-units

Forbid the sources of the same Ada unit to be in different projects.

• --single-compile-per-obj-dir

Disallow several simultaneous compilations for the same object directory.

• -b (Bind only)

Specify to GPRbuild that the post-compilation (or binding) phase is to be performed, but not the other phases
unless they are specified by appropriate switches.

GPR Tools User’s Guide 85 of 139

GPR Tools User’s Guide 2020

• -c (Compile only)

Specify to GPRbuild that the compilation phase is to be performed, but not the other phases unless they are
specified by appropriate switches.

• -f (Force recompilations)

Force the complete processing of all phases (or of those explicitly specified) even when up to date.

• -jnum (use num simultaneous compilation jobs)

By default, GPRbuild invokes one compiler at a time. With switch -j, it is possible to instruct GPRbuild to
spawn several simultaneous compilation jobs if needed. For example, -j2 for two simultaneous compilation
jobs or -j4 for four. On a multi-processor system, -jnum can greatly speed up the build process. If -j0
is used, then the maximum number of simultaneous compilation jobs is the number of core processors on the
platform.

Switch -jnum is also used to spawned several simultaneous binding processes and several simultaneous linking
processes when there are several mains to be bound and/or linked.

• -k (Keep going after compilation errors)

By default, GPRbuild stops spawning new compilation jobs at the first compilation failure. Using switch -k, it
is possible to attempt to compile/recompile all the sources that are not up to date, even when some compilations
failed. The post-compilation phase and the linking phase are never attempted if there are compilation failures,
even when switch -k is used.

• -l (Link only)

Specify to GPRbuild that the linking phase is to be performed, but not the other phases unless they are specified
by appropriate switches.

• -m (Minimum Ada recompilation)

Do not recompile Ada code if timestamps are different but checksums are the same. Note that for the case when
source code contains preprocessing directives, this switch has no effect.

• -m2 (Checksum based recompilation)

Recompile Ada code even if timestamps are the same, but checksums are different. Note that for the case when
source code contains preprocessing directives, this switch has the same effect as -f.

• -p or --create-missing-dirs (Create missing object, library and exec directories)

By default, GPRbuild checks that the object, library and exec directories specified in project files exist. Switch
-p instructs GPRbuild to attempt to create missing directories. Note that these switches may be specified in
package Builder of the main project, but they are useless there as either the directories already exist or the
processing of the project files has failed before the evaluation of the Builder switches, because there is at least
one missing directory.

• -q (Quiet output)

Do not display anything except errors and progress (switch -d). Cancel any previous switch -v.

• -R (no run path option)

Do not use a run path option to link executables or shared libraries, even when attribute Run_Path_Option is
specified.

• -s (recompile if compilation switches have changed)

By default, GPRbuild will not recompile a source if all dependencies are satisfied. Switch -s instructs GPRbuild
to recompile sources when a different set of compilation switches has been used in the previous compilation,
even if all dependencies are satisfied. Each time GPRbuild invokes a compiler, it writes a text file that lists the
switches used in the invocation of the compiler, so that it can retrieve these switches if -s is used later.

86 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

• -v (Verbose output)

Same as switch -vl.

• -vl (Verbose output, low level)

Display full paths, all options used in spawned processes, as well as creations of missing directories and changes
of current working directories.

• -vm (Verbose output, medium level)

Not significantly different from switch -vh.

• -vh (Verbose output, high level)

In addition to what is displayed with switch vl, displayed internal behavior of gprbuild and reasons why the
spawned processes are invoked.

• -we (Treat all warnings as errors)

When -we is used, any warning during the processing of the project files becomes an error and GPRbuild does
not attempt any of the phases.

• -wn (Treat warnings as warnings)

Switch -wn may be used to restore the default after -we or -ws.

• -ws (Suppress all warnings)

Do not generate any warnings while processing the project files.

• -x (Create include path file)

Create the include path file for the Ada compiler. This switch is often necessary when Ada sources are compiled
with switch -gnatep=.

Switches that are accepted for compatibility with gnatmake, either on the command line or in the Builder Ada switches
in the main project file:

• -nostdinc

• -nostdlib

• -fstack-check

• -fno-inline

• -g* Any switch starting with -g

• -O* Any switch starting with -O

These switches are passed to the Ada compiler.

3.4 Initialization

Before performing one or several of its three phases, GPRbuild has to read the command line, obtain its configuration,
and process the project files.

If GPRbuild is invoked with an invalid switch or without any project file on the command line, it will fail immediately.

Examples:

GPR Tools User’s Guide 87 of 139

GPR Tools User’s Guide 2020

$ gprbuild -P
gprbuild: project file name missing after -P

$ gprbuild -P c_main.gpr -WW
gprbuild: illegal option "-WW"

GPRbuild looks for the configuration project file first in the current working directory, then in the default configuration
project directory. If the GPRbuild executable is located in a subdirectory <prefix>/bin, then the default
configuration project directory is <prefix>/share/gpr, otherwise there is no default configuration project
directory.

When it has found its configuration project path, GPRbuild needs to obtain its configuration. By default, the
file name of the main configuration project is default.cgpr. This default may be modified using the switch
--config=...

Example:

$ gprbuild --config=my_standard.cgpr -P my_project.gpr

If GPRbuild cannot find the main configuration project on the configuration project path, then it will look for all the
languages specified in the user project tree and invoke GPRconfig to create a temporary configuration project file. This
file is located in the directory computed by the following sequence: * Look for a valid absolute path in the environment
variables TMPDIR, TEMP, and TMP. * If this fails, check some predefined platform-specific temp dirs (e.g. /tmp for
linux). * Finally if none is accessible we fall back onto the current working directory.

The invocation of GPRconfig will take into account the target, if specified either by switch –target= on the command
line or by attribute Target in the main project. Also, if Ada is one of the languages, it will take into account the Ada
runtime directory, specified either by switches –RTS= or –RTS:ada= on the command line or by attribute Runtime
(“Ada”) in the main project file. If the Ada runtime is specified as a relative path, gprbuild will try to locate the Ada
runtime directory as a subdirectory of the main project directory, or if environment variable GPR_RUNTIME_PATH
is defined in the path specified by GPR_RUNTIME_PATH.

Once it has found the configuration project, GPRbuild will process its configuration: if a single string attribute is
specified in the configuration project and is not specified in a user project, then the attribute is added to the user
project. If a string list attribute is specified in the configuration project then its value is prepended to the corresponding
attribute in the user project.

After GPRbuild has processed its configuration, it will process the user project file or files. If these user project files
are incorrect then GPRbuild will fail with the appropriate error messages:

$ gprbuild -P my_project.gpr
ada_main.gpr:3:26: "src" is not a valid directory
gprbuild: "my_project.gpr" processing failed

Once the user project files have been dealt with successfully, GPRbuild will start its processing.

3.5 Compilation of one or several sources

If GPRbuild is invoked with -u or -U and there are one or several source file names specified on the command line,
GPRbuild will compile or recompile these sources, if they are not up to date or if -f is also specified. Then GPRbuild
will stop its execution.

The options/switches used to compile these sources are described in section Compilation Phase.

88 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

If GPRbuild is invoked with -u and no source file name is specified on the command line, GPRbuild will compile or
recompile all the sources of the main project and then stop.

In contrast, if GPRbuild is invoked with -U, and again no source file name is specified on the command line, GPRbuild
will compile or recompile all the sources of all the projects in the project tree and then stop.

3.6 Compilation Phase

When switch -c is used or when switches -b or -l are not used, GPRbuild will first compile or recompile the sources
that are not up to date in all the projects in the project tree. The sources considered are:

• all the sources in languages other than Ada

• if there are no main specified, all the Ada sources

• if there is a non Ada main, but no attribute Roots specified for this main, all the Ada sources

• if there is a main with an attribute Roots specified, all the Ada sources in the closures of these Roots.

• if there is an Ada main specified, all the Ada sources in the closure of the main

Attribute Roots takes as an index a main and a string list value. Each string in the list is the name of an Ada library
unit.

Example:

for Roots ("main.c") use ("pkga", "pkgb");

Package PkgA and PkgB will be considered, and all the Ada units in their closure will also be considered.

GPRbuild will first consider each source and decide if it needs to be (re)compiled.

A source needs to be compiled in the following cases:

• Switch -f (force recompilations) is used

• The object file does not exist

• The source is more recent than the object file

• The dependency file does not exist

• The source is more recent than the dependency file

• When -s is used: the switch file does not exist

• When -s is used: the source is more recent than the switch file

• The dependency file cannot be read

• The dependency file is empty

• The dependency file has a wrong format

• A source listed in the dependency file does not exist

• A source listed in the dependency file has an incompatible time stamp

• A source listed in the dependency file has been replaced

• Switch -s is used and the source has been compiled with different switches or with the same switches in a
different order

GPR Tools User’s Guide 89 of 139

GPR Tools User’s Guide 2020

When a source is successfully compiled, the following files are normally created in the object directory of the project
of the source:

• An object file

• A dependency file, except when the dependency kind for the language is none

• A switch file if switch -s is used

The compiler for the language corresponding to the source file name is invoked with the following switches/options:

• The required compilation switches for the language

• The compilation switches coming from package Compiler of the project of the source

• The compilation switches specified on the command line for all compilers, after -cargs

• The compilation switches for the language of the source, specified after -cargs:language

• Various other options including a switch to create the dependency file while compiling, a switch to specify a
configuration file, a switch to specify a mapping file, and switches to indicate where to look for other source or
header files that are needed to compile the source.

If compilation is needed, then all the options/switches, except those described as ‘Various other options’ are written to
the switch file. The switch file is a text file. Its file name is obtained by replacing the suffix of the source with .cswi.
For example, the switch file for source main.adb is main.cswi and for toto.c it is toto.cswi.

If the compilation is successful, then if the creation of the dependency file is not done during compilation but after
(see configuration attribute Compute_Dependency), then the process to create the dependency file is invoked.

If GPRbuild is invoked with a switch -j specifying more than one compilation process, then several compilation
processes for several sources of possibly different languages are spawned concurrently.

For each project file, attribute Interfaces may be declared. Its value is a list of sources or header files of the project file.
For a project file extending another one, directly or indirectly, inherited sources may be in the list. When Interfaces
is not declared, all sources or header files are part of the interface of the project. When Interfaces is declared, only
those sources or header files are part of the interface of the project file. After a successful compilation, gprbuild checks
that all imported or included sources or header files that are from an imported project are part of the interface of the
imported project. If this check fails, the compilation is invalidated and the compilation artifacts (dependency, object
and switches files) are deleted.

Example:

project Prj is
for Languages use ("Ada", "C");
for Interfaces use ("pkg.ads", "toto.h");

end Prj;

If a source from a project importing project Prj imports sources from Prj other than package Pkg or includes header
files from Prj other than “toto.h”, then its compilation will be invalidated.

3.7 Post-Compilation Phase

The post-compilation phase has two parts: library building and program binding.

If there are libraries that need to be built or rebuilt, gprbuild will call the library builder, specified by attribute
Library_Builder. This is generally the tool gprlib, provided with GPRbuild. If gprbuild can determine that a library is
already up to date, then the library builder will not be called.

90 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

If there are mains specified, and for these mains there are sources of languages with a binder driver (specified by
attribute Binder’Driver (<language>), then the binder driver is called for each such main, but only if it needs to.

For Ada, the binder driver is normally gprbind, which will call the appropriate version of gnatbind, that either the one
in the same directory as the Ada compiler or the fist one found on the path. When neither of those is appropriate, it is
possible to specify to gprbind the full path of gnatbind, using the Binder switch –gnatbind_path=.

Example:

package Binder is
for Switches ("Ada") use ("--gnatbind_path=/toto/gnatbind");

end Binder;

If GPRbuild can determine that the artifacts from a previous post-compilation phase are already up to date, the binder
driver is not called.

If there are no libraries and no binder drivers, then the post-compilation phase is empty.

3.8 Linking Phase

When there are mains specified, either in attribute Main or on the command line, and these mains are not up to date,
the linker is invoked for each main, with all the specified or implied options, including the object files generated during
the post-compilation phase by the binder drivers.

If switch -jnnn is used, with nnn other than 1, gprbuild will attempt to link simultaneously up to nnn executables.

3.9 Distributed compilation

3.9.1 Introduction to distributed compilation

For large projects the compilation time can become a limitation in the development cycle. To cope with that, GPRbuild
supports distributed compilation.

In the distributed mode, the local machine (called the build master) compiles locally but also sends compilation
requests to remote machines (called the build slaves). The compilation process can use one or more build slaves.
Once the compilation phase is done, the build master will conduct the binding and linking phases locally.

3.9.2 Setup build environments

The configuration process to be able to use the distributed compilation support is the following:

• Optionally add a Remote package in the main project file

This Remote package is to be placed into the project file that is passed to GPRbuild to build the application.

The Root_Dir default value is the project’s directory. This attribute designates the sources root directory. That
is, the directory from which all the sources are to be found to build the application. If the project passed to
GPRbuild to build the application is not at the top-level directory but in a direct sub-directory the Remote
package should be:

package Remote is
for Root_Dir use "..";

end Remote;

GPR Tools User’s Guide 91 of 139

GPR Tools User’s Guide 2020

• Launch a slave driver on each build slave

The build master will communicate with each build slave with a specific driver in charge of running the
compilation process and returning statuses. This driver is gprslave, GPRslave.

The requirement for the slaves are:

– The same build environment must be setup (same compiler version).

– The same libraries must be installed. That is, if the GNAT project makes use of external libraries the
corresponding C headers or Ada units must be installed on the remote slaves.

When all the requirement are set, just launch the slave driver:

$ gprslave

When all this is done, the remote compilation can be used simply by running GPRbuild in distributed mode from the
build master:

$ gprbuild --distributed=comp1.xyz.com,comp2.xyz.com prj.gpr

Alternatively the slaves can be set using the GPR_SLAVES environment variable. So the following command is
equivalent to the above:

$ export GPR_SLAVES=comp1.xyz.com,comp2.xyz.com
$ gprbuild --distributed prj.gpr

A third alternative is proposed using a list of slaves in a file (one per line). In this case the GPR_SLAVES_FILE
environment variable must contain the path name to this file:

$ export GPR_SLAVES_FILE=$HOME/slave-list.txt
$ gprbuild --distributed prj.gpr

Finally note that the search for the slaves are in this specific order. First the command line values, then GPR_SLAVES
if set and finally GPR_SLAVES_FILES.

The build slaves are specified with the following form:

<machine_name>[:port]

3.9.3 GPRslave

This is the slave driver in charge of running the compilation jobs as requested by the build master. One instance of this
tool must be launched in each build slave referenced in the project file.

Compilations for a specific project are conducted under a sub-directory from where the slave is launched by default.
This can be overridden with the -d option below.

The current options are:

• -v, --verbose

Activate the verbose mode

• -vv, --debug

Activate the debug mode (very verbose)

92 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

• -h, --help

Display the usage

• -d, --directory=

Set the work directory for the slave. This is where the sources will be copied and where the compilation will
take place. A sub-directory will be created for each root project built.

• -s, --hash=string

Specify an hash string. This is just a value which is checked against the GPRbuild hash value. If set, GPRbuild
hash value must match, otherwise the connection with the slave is aborted. For example:

$ gprslave --hash=$(echo $ADA_PROJECT_PATH | shasum)

• -jN , --jobs=N

Set the maximum simultaneous compilation. The default for N is the number of cores.

• -p, --port=N

Set the port the slave will listen to. The default value is 8484. The same port must be specified for the build
slaves on GPRbuild command line.

• -r, --response-handler=N

Set maximum number of simultaneous responses. With this option it is possible to control the number of
simultaneous responses (sending back object code and ALI files) supported. The value must be between 1 and
the maximum number of simultaneous compilations.

Note that a slave can be pinged to see if it is running and in response a set of information are delivered. The ping
command has the following format:

<lower-bound><upper-bound>PG

When <lower-bound> and <upper-bound> are 32bits binary values for the PG string command. As an example here
is how to send a ping command from a UNIX shell using the echo command:

echo -e "\x01\x00\x00\x00\x02\x00\x00\x00PG" | nc <HOSTNAME> 8484

The answer from the ping command has the following format:

:: OK<GPR Version String>[ASCII.GS]<time-stamp>[ASCII.GS]<slave hash>

The ASCII.GS is the Group Separator character whose code is 29.

GPR Tools User’s Guide 93 of 139

GPR Tools User’s Guide 2020

This page is intentionally left blank.

94 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

CHAPTER

FOUR

GPRBUILD COMPANION TOOLS

This chapter describes the various tools that can be used in conjunction with GPRbuild.

4.1 Configuring with GPRconfig

4.1.1 Configuration

GPRbuild requires one configuration file describing the languages and toolchains to be used, and project files
describing the characteristics of the user project. Typically the configuration file can be created automatically by
GPRbuild based on the languages defined in your projects and the compilers on your path. In more involved situations
— such as cross compilation, or environments with several compilers for the same language — you may need to control
more precisely the generation of the desired configuration of toolsets. A tool, GPRconfig, described in Configuring
with GPRconfig), offers this capability. In this chapter most of the examples can use autoconfiguration.

GPRbuild will start its build process by trying to locate a configuration file. The following tests are performed in the
specified order, and the first that matches provides the configuration file to use.

• If a file has a base names that matches <target>-<rts>.cgpr, <target.cgpr, <rts>.cgpr or default.cgpr is found
in the default configuration files directory, this file is used. The target and rts parameters are specified via the
–target and –RTS switches of gprbuild. The default directory is share/gpr in the installation directory of
gprbuild

• If not found, the environment variable GPR_CONFIG is tested to check whether it contains the name of a valid
configuration file. This can either be an absolute path name or a base name that will be searched in the same
default directory as above.

• If still not found and you used the –autoconf switch, then a new configuration file is automatically generated
based on the specified target and on the list of languages specified in your projects.

GPRbuild assumes that there are known compilers on your path for each of the necessary languages. It is
preferable and often necessary to manually generate your own configuration file when:

– using cross compilers (in which case you need to use gprconfig’s --target=) option,

– using a specific Ada runtime (e.g. --RTS=sjlj),

– working with compilers not in the path or not first in the path, or

– autoconfiguration does not give the expected results.

GPRconfig provides several ways of generating configuration files. By default, a simple interactive mode lists all the
known compilers for all known languages. You can then select a compiler for each of the languages; once a compiler
has been selected, only compatible compilers for other languages are proposed. Here are a few examples of GPRconfig
invocation:

GPR Tools User’s Guide 95 of 139

GPR Tools User’s Guide 2020

• The following command triggers interactive mode. The configuration will be generated in GPRbuild’s default
location, ./default.cgpr), unless -o is used.

gprconfig

• The first command below also triggers interactive mode, but the resulting configuration file has the name and
path selected by the user. The second command shows how GPRbuild can make use of this specific configuration
file instead of the default one.

gprconfig -o path/my_config.cgpr
gprbuild --config=path/my_config.cgpr

• The following command again triggers interactive mode, and only the relevant cross compilers for target ppc-elf
will be proposed.

gprconfig --target=ppc-elf

• The next command triggers batch mode and generates at the default location a configuration file using the first
native Ada and C compilers on the path.

gprconfig --config=Ada --config=C --batch

• The next command, a combination of the previous examples, creates in batch mode a configuration file named
x.cgpr for cross-compiling Ada with a run-time called hi and using C for the LEON processor.

gprconfig --target=leon-elf --config=Ada,,hi --config=C --batch -o x.cgpr

4.1.2 Using GPRconfig

Description

The GPRconfig tool helps you generate the configuration files for GPRbuild. It automatically detects the available
compilers on your system and, after you have selected the one needed for your application, it generates the proper
configuration file.

Note: In general, you will not launch GPRconfig explicitly. Instead, it is used implicitly by GPRbuild through the
use of –config and –autoconf switches.

Command line arguments

GPRconfig supports the following command line switches:

--target=platform

This switch indicates the target computer on which your application will be run. It is mostly useful for
cross configurations. Examples include ppc-elf, ppc-vx6-windows. It can also be used in native
configurations and is useful when the same machine can run different kind of compilers such as mingw32
and cygwin on Windows or x86-32 and x86-64 on GNU Linux. Since different compilers will often return
a different name for those targets, GPRconfig has an extensive knowledge of which targets are compatible,
and will for example accept x86-linux as an alias for i686-pc-linux-gnu. The default target is
the machine on which GPRconfig is run.

96 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

If you enter the special target all, then all compilers found on the PATH will be displayed.

--show-targets

As mentioned above, GPRconfig knows which targets are compatible. You can use this switch to find the
list of targets that are compatible with –target.

--config=language[,version[,runtime[,path[,name]]]]

The intent of this switch is to preselect one or more compilers directly from the command line. This
switch takes several optional arguments, which you can omit simply by passing the empty string. When
omitted, the arguments will be computed automatically by GPRconfig.

In general, only language needs to be specified, and the first compiler on the PATH that can compile this
language will be selected. As an example, for a multi-language application programmed in C and Ada,
the command line would be:

--config=Ada --config=C

path is the directory that contains the compiler executable, for instance /usr/bin (and not the
installation prefix /usr).

name should be one of the compiler names defined in the GPRconfig knowledge base. The list of
supported names includes GNAT, GCC,.... This name is generally not needed, but can be used to distinguish
among several compilers that could match the other arguments of --config.

Another possible more frequent use of name is to specify the base name of an executable. For instance, if
you prefer to use a diab C compiler (executable is called dcc) instead of gcc, even if the latter appears
first in the path, you could specify dcc as the name parameter.

gprconfig --config Ada,,,/usr/bin # automatic parameters
gprconfig --config C,,,/usr/bin,GCC # automatic version
gprconfig --config C,,,/usr/bin,gcc # same as above, with exec name

This switch is also the only possibility to include in your project some languages that are not associated
with a compiler. This is sometimes useful especially when you are using environments like GPS that
support project files. For instance, if you select “Project file” as a language, the files matching the .gpr
extension will be shown in the editor, although they of course play no role for gprbuild itself.

--batch

If this switch is specified, GPRconfig automatically selects the first compiler matching each of the –config
switches, and generates the configuration file immediately. It will not display an interactive menu.

-o file

This specifies the name of the configuration file that will be generated. If this switch is not specified, a
default file is generated in the installation directory of GPRbuild (assuming you have write access to that
directory), so that it is automatically picked up by GPRbuild later on. If you select a different output file,
you will need to specify it to GPRbuild.

--db directory , --db- Indicates another directory that should be parsed for GPRconfig’s knowledge base.
Most of the time this is only useful if you are creating your own XML description files locally. Additional
directories are always processed after the default knowledge base. The second version of the switch prevents
GPRconfig from reading its default knowledge base.

-h Generates a brief help message listing all GPRconfig switches and the default value for their arguments. This
includes the location of the knowledge base, the default target, etc.

GPR Tools User’s Guide 97 of 139

GPR Tools User’s Guide 2020

Interactive use

When you launch GPRconfig, it first searches for all compilers it can find on your PATH, that match the target specified
by --target. It is recommended, although not required, that you place the compilers that you expect to use for your
application in your PATH before you launch gprconfig, since that simplifies the setup.

GPRconfig then displays the list of all the compilers it has found, along with the language they can compile, the run-
time they use (when applicable),.... It then waits for you to select one of the compilers. This list is sorted by language,
then by order in the PATH environment variable (so that compilers that you are more likely to use appear first), then
by run-time names and finally by version of the compiler. Thus the first compiler for any language is most likely the
one you want to use.

You make a selection by entering the letter that appears on the line for each compiler (be aware that this letter is case
sensitive). If the compiler was already selected, it is deselected.

A filtered list of compilers is then displayed: only compilers that target the same platform as the selected compiler are
now shown. GPRconfig then checks whether it is possible to link sources compiled with the selected compiler and
each of the remaining compilers; when linking is not possible, the compiler is not displayed. Likewise, all compilers
for the same language are hidden, so that you can only select one compiler per language.

As an example, if you need to compile your application with several C compilers, you should create another language,
for instance called C2, for that purpose. That will give you the flexibility to indicate in the project files which compiler
should be used for which sources.

The goal of this filtering is to make it more obvious whether you have a good chance of being able to link. There is
however no guarantee that GPRconfig will know for certain how to link any combination of the remaining compilers.

You can select as many compilers as are needed by your application. Once you have finished selecting the compilers,
select s, and GPRconfig will generate the configuration file.

4.1.3 The GPRconfig knowledge base

GPRconfig itself has no hard-coded knowledge of compilers. Thus there is no need to recompile a new version of
GPRconfig when a new compiler is distributed.

Note: The role and format of the knowledge base are irrelevant for most users of GPRconfig, and are only needed
when you need to add support for new compilers. You can skip this section if you only want to learn how to use
GPRconfig.

All knowledge of compilers is embedded in a set of XML files called the knowledge base. Users can easily contribute
to this general knowledge base, and have GPRconfig immediately take advantage of any new data.

The knowledge base contains various kinds of information:

• Compiler description

When it is run interactively, GPRconfig searches the user’s PATH for known compilers, and tries to deduce
their configuration (version, supported languages, supported targets, run-times, ...). From the knowledge base
GPRconfig knows how to extract the relevant information about a compiler.

This step is optional, since a user can also enter all the information manually. However, it is recommended that
the knowledge base explicitly list its known compilers, to make configuration easier for end users.

• Specific compilation switches

When a compiler is used, depending on its version, target, run-time,..., some specific command line switches
might have to be supplied. The knowledge base is a good place to store such information.

98 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

For instance, with the GNAT compiler, using the soft-float runtime should force gprbuild to use the
-msoft-float compilation switch.

• Linker options

Linking a multi-language application often has some subtleties, and typically requires specific linker switches.
These switches depend on the list of languages, the list of compilers,....

• Unsupported compiler mix

It is sometimes not possible to link together code compiled with two particular compilers. The knowledge
base should store this information, so that end users are informed immediately when attempting to use such a
compiler combination.

The end of this section will describe in more detail the format of this knowledge base, so that you can add your own
information and have GPRconfig advantage of it.

General file format

The knowledge base is implemented as a set of XML files. None of these files has a special name, nor a special
role. Instead, the user can freely create new files, and put them in the knowledge base directory, to contribute new
knowledge.

The location of the knowledge base is $prefix/share/gprconfig, where $prefix is the directory in which
GPRconfig was installed. Any file with extension .xml in this directory will be parsed automatically by GPRconfig
at startup after sorting them alphabetically.

All files must have the following format:

<?xml version="1.0" ?>
<gprconfig>

...
</gprconfig>

The root tag must be <gprconfig>.

The remaining sections in this chapter will list the valid XML tags that can be used to replace the ‘...’ code above.
These tags can either all be placed in a single XML file, or split across several files.

Compiler description

One of the XML tags that can be specified as a child of <gprconfig> is <compiler_description>. This node and
its children describe one of the compilers known to GPRconfig. The tool uses them when it initially looks for all
compilers known on the user’s PATH environment variable.

This is optional information, but simplifies the use of GPRconfig, since the user is then able to omit some parameters
from the --config command line argument, and have them automatically computed.

The <compiler_description> node doesn’t accept any XML attribute. However, it accepts a number of child tags that
explain how to query the various attributes of the compiler. The child tags are evaluated (if necessary) in the same
order as they are documented below.

<name> This tag contains a simple string, which is the name of the compiler. This name must be unique across all
the configuration files, and is used to identify that compiler_description node.

<compiler_description>
<name>GNAT</name>
</compiler_description>

GPR Tools User’s Guide 99 of 139

GPR Tools User’s Guide 2020

<executable> This tag contains a string, which is the name of an executable to search for on the PATH. Examples are
gnatls, gcc,...

In some cases, the tools have a common suffix, but a prefix that might depend on the target. For instance,
GNAT uses gnatmake for native platforms, but powerpc-wrs-vxworks-gnatmake for cross-compilers
to VxWorks. Most of the compiler description is the same, however. For such cases, the value of the executable
node is considered as beginning a regular expression. The tag also accepts an optional attribute prefix, which
is an integer indicating the parenthesis group that contains the prefix. In the following example, you obtain the
version of the GNAT compiler by running either gnatls or powerpc-wrs-vxworks-gnatls, depending on the name
of the executable that was found.

The regular expression needs to match the whole name of the file, i.e. it contains an implicit ‘^’ at the
start, and an implicit ‘$’ at the end. Therefore if you specify .*gnatmake as the regexp, it will not match
gnatmake-debug.

A special case is when this node is empty (but it must be specified!). In such a case, you must also specify the
language (see <language> below) as a simple string. It is then assumed that the specified language does not
require a compiler. In the configurations file (Configurations), you can test whether that language was specified
on the command line by using a filter such as

<compilers>
<compiler language="name"/>

</compilers>

<executable prefix="1">(powerpc-wrs-vxworks-)?gnatmake</executable>
<version><external>${PREFIX}gnatls -v</external></version>

GPRconfig searches in all directories listed on the PATH for such an executable. When one is found, the rest
of the <compiler_description> children are checked to know whether the compiler is valid. The directory in
which the executable was found becomes the ‘current directory’ for the remaining XML children.

<target> This node indicates how to query the target architecture for the compiler. See GPRconfig external values for
valid children.

If this isn’t specified, the compiler will always be considered as matching on the current target.

<version> This tag contains any of the nodes defined in GPRconfig external values below. It shows how to query the
version number of the compiler. If the version cannot be found, the executable will not be listed in the list of
compilers.

<variable name=”varname”> This node will define a user variable which may be later referenced. The variables are
evaluated just after the version but before the languages and the runtimes nodes. See GPRconfig external values
below for valid children of this node. If the evaluation of this variable is empty then the compiler is considered
as invalid.

<languages> This node indicates how to query the list of languages. See GPRconfig external values below for valid
children of this node.

The value returned by the system will be split into words. As a result, if the returned value is ‘ada,c,c++’, there
are three languages supported by the compiler (and three entries are added to the menu when using GPRconfig
interactively).

If the value is a simple string, the words must be comma-separated, so that you can specify languages whose
names include spaces. However, if the actual value is computed from the result of a command, the words can
also be space-separated, to be compatible with more tools.

<runtimes> This node indicates how to query the list of supported runtimes for the compiler. See GPRconfig external
values below for valid children. The returned value is split into words as for <languages>.

100 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

This node accepts one attribute, “default”, which contains a list of comma-separated names of runtimes. It is
used to sort the runtimes when listing which compilers were found on the PATH.

As a special case, gprconfig will merge two runtimes if the XML nodes refer to the same directories after
normalization and resolution of links. As such, on Unix systems, the “adalib” link to “rts-native/adalib” (or
similar) will be ignored and only the “native” runtime will be displayed.

GPRconfig external values

A number of the XML nodes described above can contain one or more children, and specify how to query a value
from an executable. Here is the list of valid contents for these nodes. The <directory> and <external> children can
be repeated multiple times, and the <filter> and <must_match> nodes will be applied to each of these. The final value
of the external value is the concatenation of the computation for each of the <directory> and <external> nodes.

• A simple string

A simple string given in the node indicates a constant. For instance, the list of supported languages might be
defined as:

<compiler_description>
<name>GNAT</name>
<executable>gnatmake</executable>
<languages>Ada</languages>
</compiler_description>

for the GNAT compiler, since this is an Ada-only compiler.

Variables can be referenced in simple strings.

• <getenv name=”variable” />

If the contents of the node is a <getenv> child, the value of the environment variable variable is returned. If the
variable is not defined, this is an error and the compiler is ignored.

<compiler_description>
<name>GCC-WRS</name>
<executable prefix="1">cc(arm|pentium)</executable>
<version>
<getenv name="WIND_BASE" />
</version>
</compile_description>

• <external>command</external>

If the contents of the node is an <external> child, this indicates that a command should be run on the system.
When the command is run, the current directory (i.e., the one that contains the executable found through the
<executable> node), is placed first on the PATH. The output of the command is returned and may be later
filtered. The command is not executed through a shell; therefore you cannot use output redirection, pipes, or
other advanced features.

For instance, extracting the target processor from gcc can be done with:

<version>
<external>gcc -dumpmachine</external>
</version>

GPR Tools User’s Guide 101 of 139

GPR Tools User’s Guide 2020

Since the PATH has been modified, we know that the gcc command that is executed is the one from the same
directory as the <external> node.

Variables are substituted in command.

• <grep regexp=”regexp” group=”0” />

This node must come after the previously described ones. It is used to further filter the output. The previous
output is matched against the regular expression regexp and the parenthesis group specified by group is returned.
By default, group is 0, which indicates the whole output of the command.

For instance, extracting the version number from gcc can be done with:

<version>
<external>gcc -v</external>
<grep regexp="^gcc version (\S+)" group="1" />
</version>

• <directory group=”0” contents=”“>regexp</directory>

If the contents of the node is a <directory> child, this indicates that GPRconfig should find all the files matching
the regular expression. Regexp is a path relative to the directory that contains the <executable> file, and should
use Unix directory separators (i.e. ‘/’), since the actual directory will be converted into this format before the
match, for system independence of the knowledge base.

The group attribute indicates which parenthesis group should be returned. It defaults to 0 which indicates the
whole matched path. If this attribute is a string rather than an integer, then it is the value returned.

regexp can be any valid regular expression. This will only match a directory or file name, not a subdirectory.
Remember to quote special characters, including ‘.’, if you do not mean to use a regexp.

The optional attribute contents can be used to indicate that the contents of the file should be read. The first
line that matches the regular expression given by contents will be used as a file path instead of the file matched
by regexp. This is in general used on platforms that do not have symbolic links, and a file is used instead of
a symbolic link. In general, this will work better than group specifies a string rather than a parenthesis group,
since the latter will match the path matched by regexp, not the one read in the file.

For instance, finding the list of supported runtimes for the GNAT compiler is done with:

<runtimes>
<directory group="1">
\.\./lib/gcc/${TARGET/.*/rts-(.*)/adainclude
</directory>
<directory group="default">
\.\./lib/gcc/${TARGET}/.*/adainclude
</directory>
</runtimes>}

Note the second node, which matches the default run-time, and displays it as such.

• <filter>value1,value2,...</filter>

This node must come after one of the previously described ones. It is used to further filter the output. The
previous output is split into words (it is considered as a comma-separated or space-separated list of words), and
only those words in value1, value2,... are kept.

For instance, the gcc compiler will return a variety of supported languages, including ‘ada’. If we do not want
to use it as an Ada compiler we can specify:

102 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

<languages>
<external regexp="languages=(\S+)" group="1">gcc -v</external>
<filter>c,c++,fortran</filter>
</languages>

• <must_match>regexp</must_match>

If this node is present, then the filtered output is compared with the specified regular expression. If no match is
found, then the executable is not stored in the list of known compilers.

For instance, if you want to have a <compiler_description> tag specific to an older version of GCC, you could
write:

<version>
<external regexp="gcc version (\S+)"
group="1">gcc -v </external>
<must_match>2.8.1</must_match>
</version>

Other versions of gcc will not match this <compiler_description> node.

GPRconfig variable substitution

The various compiler attributes defined above are made available as variables in the rest of the XML files. Each of
these variables can be used in the value of the various nodes (for instance in <directory>), and in the configurations
(Configuration).

A variable is referenced by ${name} where name is either a user variable or a predefined variable. An alternate
reference is $name where name is a sequence of alpha numeric characters or underscores. Finally $$ is replaced by a
simple $.

User variables are defined by <variable> nodes and may override predefined variables. To avoid a possible override
use lower case names.

The variables are used in two contexts: either in a <compiler_description> node, in which case the variable refers to
the compiler we are describing, or within a <configuration> node. In the latter case, and since there might be several
compilers selected, you need to further specify the variable by adding in parenthesis the language of the compiler you
are interested in.

For instance, the following is invalid:

<configuration>
<compilers>
<compiler name="GNAT" />
</compilers>
<targets negate="true">
<target name="^powerpc-elf$"/>
</targets>
<config>
package Compiler is

for Driver ("Ada") use "${PATH}gcc"; -- Invalid !
end Compiler;
</config>
</configuration>

GPR Tools User’s Guide 103 of 139

GPR Tools User’s Guide 2020

The trouble with the above is that if you are using multiple languages like C and Ada, both compilers will match the
“negate” part, and therefore there is an ambiguity for the value of ${PATH}. To prevent such issues, you need to use
the following syntax instead when inside a <configuration> node:

for Driver ("Ada") use "${PATH(ada)}gcc"; -- Correct

Predefined variables are always in upper case. Here is the list of predefined variables

• EXEC is the name of the executable that was found through <executable>. It only contains the basename, not
the directory information.

• HOST is replaced by the architecture of the host on which GPRconfig is running. This name is hard-coded in
GPRconfig itself, and is generated by configure when GPRconfig was built.

• TARGET is replaced by the target architecture of the compiler, as returned by the <target> node. This is of
course not available when computing the target itself.

This variable takes the language of the compiler as an optional index when in a <configuration> block: if
the language is specified, the target returned by that specific compiler is used; otherwise, the normalized
target common to all the selected compilers will be returned (target normalization is also described in the
knowledge base’s XML files).

• VERSION is replaced by the version of the compiler. This is not available when computing the target or, of
course, the version itself.

• PREFIX is replaced by the prefix to the executable name, as defined by the <executable> node.

• PATH is the current directory, i.e. the one containing the executable found through <executable>. It always
ends with a directory separator.

• LANGUAGE is the language supported by the compiler, always folded to lower-case

• RUNTIME, RUNTIME_DIR This string will always be substituted by the empty string when the value of the
external value is computed. These are special strings used when substituting text in configuration chunks.

RUNTIME_DIR always end with a directory separator.

• GPRCONFIG_PREFIX is the directory in which GPRconfig was installed (e.g "/usr/local/" if the
executable is "/usr/local/bin/gprconfig". This directory always ends with a directory
separator. This variable never takes a language in parameter, even within a <configuration> node.

If a variable is not defined, an error message is issued and the variable is substituted by an empty string.

Configurations

The second type of information stored in the knowledge base are the chunks of gprbuild configuration files.

Each of these chunks is also placed in an XML node that provides optional filters. If all the filters match, then the chunk
will be merged with other similar chunks and placed in the final configuration file that is generated by GPRconfig.

For instance, it is possible to indicate that a chunk should only be included if the GNAT compiler with the soft-float
runtime is used. Such a chunk can for instance be used to ensure that Ada sources are always compiled with the
-msoft-float command line switch.

GPRconfig does not perform sophisticated merging of chunks. It simply groups packages together. For example, if
the two chunks are:

chunk1:
package Language_Processing is
for Attr1 use ("foo");

104 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

end Language_Processing;
chunk2:

package Language_Processing is
for Attr1 use ("bar");

end Language_Processing;

Then the final configuration file will look like:

package Language_Processing is
for Attr1 use ("foo");
for Attr1 use ("bar");

end Language_Processing;

As a result, to avoid conflicts, it is recommended that the chunks be written so that they easily collaborate together.
For instance, to obtain something equivalent to

package Language_Processing is
for Attr1 use ("foo", "bar");

end Language_Processing;

the two chunks above should be written as:

chunk1:
package Language_Processing is
for Attr1 use Language_Processing'Attr1 & ("foo");

end Language_Processing;
chunk2:

package Language_Processing is
for Attr1 use Language_Processing'Attr1 & ("bar");

end Language_Processing;

The chunks are described in a <configuration> XML node. The most important child of such a node is <config>,
which contains the chunk itself. For instance, you would write:

<configuration>
... list of filters, see below
<config>
package Language_Processing is

for Attr1 use Language_Processing'Attr1 & ("foo");
end Language_Processing;
</config>

</configuration>

If <config> is an empty node (i.e., <config/> or <config></config> was used), then the combination of
selected compilers will be reported as invalid, in the sense that code compiled with these compilers cannot be linked
together. As a result, GPRconfig will not create the configuration file.

The special variables (GPRconfig variable substitution) are also substituted in the chunk. That allows you to compute
some attributes of the compiler (its path, the runtime,...), and use them when generating the chunks.

The filters themselves are of course defined through XML tags, and can be any of:

<compilers negate=”false”> This filter contains a list of <compiler> children. The <compilers> filter matches if any
of its children match. However, you can have several <compilers> filters, in which case they must all match.
This can be used to include linker switches chunks. For instance, the following code would be used to describe
the linker switches to use when GNAT 5.05 or 5.04 is used in addition to g++ 3.4.1:

GPR Tools User’s Guide 105 of 139

GPR Tools User’s Guide 2020

<configuration>
<compilers>
<compiler name="GNAT" version="5.04" />
<compiler name="GNAT" version="5.05" />

</compilers>
<compilers>
<compiler name="G++" version="3.4.1" />

</compilers>
...

</configuration>

If the attribute negate is true, then the meaning of this filter is inverted, and it will match if none of its children
matches.

The format of the <compiler> is the following:

<compiler name="name" version="..."
runtime="..." language="..." />

The language attribute, when specified, matches the corresponding attribute used in the <compiler_description>
children. All other attributes are regular expressions, which are matched against the corresponding selected
compilers. Runtime attribute is matched against the base name of corresponding compiler runtime if it is given
as a full path. When an attribute is not specified, it will always match. Matching is done in a case-insensitive
manner.

For instance, to check a GNAT compiler in the 5.x family, use:

<compiler name="GNAT" version="5.\d+" />

<hosts negate=”false”> This filter contains a list of <host> children. It matches when any of its children matches.
You can specify only one <hosts> node. The format of <host> is a node with one mandatory attribute name,
which is a regexp matched against the architecture on which GPRconfig is running, and one optional attribute
except, which is also a regexp, but a negative one. If both name and except match the architecture, corresponding
<configuration> node is ignored. The name of the architecture was computed by configure when GPRconfig
was built. Note that the regexp might match a substring of the host name, so you might want to surround it with
“^” and “$” so that it only matches the whole host name (for instance, “elf” would match “powerpc-elf”, but
“^elf$” would not).

If the negate attribute is true, then the meaning of this filter is inverted, and it will match when none of its
children matches.

For instance, to activate a chunk only if the compiler is running on an Intel Linux machine, use:

<hosts>
<host name="i.86-.*-linux(-gnu)?" />

</hosts>

<targets negate=”false”> This filter contains a list of <target> children. It behaves exactly like <hosts>, but matches
against the architecture targeted by the selected compilers. For instance, to activate a chunk only when the code
is targeted for linux, use:

If the negate attribute is true, then the meaning of this filter is inverted, and it will match when none of its
children matches.

106 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

<targets>
<target name="i.86-.*-linux(-gnu)?" />

</targets>

4.2 Configuration File Reference

A text file using the project file syntax. It defines languages and their characteristics as well as toolchains for those
languages and their characteristics.

GPRbuild needs to have a configuration file to know the different characteristics of the toolchains that can be used to
compile sources and build libraries and executables.

A configuration file is a special kind of project file: it uses the same syntax as a standard project file. Attributes in the
configuration file define the configuration. Some of these attributes have a special meaning in the configuration.

The default name of the configuration file, when not specified to GPRbuild by switches --config= or
--autoconf= is default.cgpr. Although the name of the configuration file can be any valid file name,
it is recommended that its suffix be .cgpr (for Configuration GNAT Project), so that it cannot be confused with a
standard project file which has the suffix .gpr.

When default.cgpr cannot be found in the configuration project path, GPRbuild invokes GPRconfig to create a
configuration file.

In the following description of the attributes, when an attribute is an indexed attribute and its index is a language name,
for example Spec_Suffix (<language>), then the name of the language is case insensitive. For example, both C and c
are allowed.

Any attribute may appear in a configuration project file. All attributes in a configuration project file are inherited
by each user project file in the project tree. However, usually only the attributes listed below make sense in the
configuration project file.

4.2.1 Project Level Configuration Attributes

General Attributes

• Default_Language

Specifies the name of the language of the immediate sources of a project when attribute Languages is not
declared in the project. If attribute Default_Language is not declared in the configuration file, then each user
project file in the project tree must have an attribute Languages declared, unless it extends another project.
Example:

for Default_Language use "ada";

• Run_Path_Option

Specifies a ‘run path option’; i.e., an option to use when linking an executable or a shared library to indicate
the path (Rpath) where to look for other libraries. The value of this attribute is a string list. When linking an
executable or a shared library, the search path is concatenated with the last string in the list, which may be an
empty string.

Example:

GPR Tools User’s Guide 107 of 139

GPR Tools User’s Guide 2020

for Run_Path_Option use ("-Wl,-rpath,");

• Run_Path_Origin

Specifies the string to be used in an Rpath to indicate the directory of the executable, allowing then to have
Rpaths specified as relative paths.

Example:

for Run_Path_Origin use "$ORIGIN";

• Toolchain_Version (<language>)

Specifies a version for a toolchain, as a single string. This toolchain version is passed to the library builder.
Example:

for Toolchain_Version ("Ada") use "GNAT 6.1";

This attribute is used by GPRbind to decide on the names of the shared GNAT runtime libraries.

• Toolchain_Description (<language>)

Specifies as a single string a description of a toolchain. This attribute is not directly used by GPRbuild or its
auxiliary tools (GPRbind and GPRlib) but may be used by other tools, for example GPS. Example:

for Toolchain_Description ("C") use "gcc version 4.1.3 20070425";

General Library Related Attributes

• Library_Support

Specifies the level of support for library project. If this attribute is not specified, then library projects are not
supported. The only potential values for this attribute are none, static_only and full. Example:

for Library_Support use "full";

• Library_Builder

Specifies the name of the executable for the library builder. Example:

for Library_Builder use "/.../gprlib";

Archive Related Attributes

• Archive_Builder

Specifies the name of the executable of the archive builder with the minimum options, if any. Example:

for Archive_Builder use ("ar", "cr");

• Archive_Indexer

108 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Specifies the name of the executable of the archive indexer with the minimum options, if any. If this attribute is
not specified, then there is no archive indexer. Example:

for Archive_Indexer use ("ranlib");

• Archive_Suffix

Specifies the suffix of the archives. If this attribute is not specified, then the suffix of the archives is defaulted to
.a. Example:

for Archive_Suffix use ".olb"; -- for VMS

• Library_Partial_Linker

Specifies the name of the executable of the partial linker with the options to be used, if any. If this attribute is
not specified, then there is no partial linking. Example:

for Library_Partial_Linker use ("gcc", "-nostdlib", "-Wl,-r", "-o");

Shared Library Related Attributes

• Shared_Library_Prefix

Specifies the prefix of the file names of shared libraries. When this attribute is not specified, the prefix is lib.
Example:

for Shared_Library_Prefix use ""; -- for Windows, if needed

• Shared_Library_Suffix

Specifies the suffix of the file names of shared libraries. When this attribute is not specified, the suffix is .so.
Example:

for Shared_Library_Suffix use ".dll"; -- for Windows

• Symbolic_Link_Supported

Specifies if symbolic links are supported by the platforms. The possible values of this attribute are “false” (the
default) and “true”. When this attribute is not specified, symbolic links are not supported.

for Symbolic_Link_Supported use "true";

• Library_Major_Minor_ID_Supported

Specifies if major and minor IDs are supported for shared libraries. The possible values of this attribute are
“false” (the default) and “true”. When this attribute is not specified, major and minor IDs are not supported.

for Library_Major_Minor_ID_Supported use "True";

• Library_Auto_Init_Supported

Specifies if library auto initialization is supported. The possible values of this attribute are “false” (the default)
and “true”. When this attribute is not specified, library auto initialization is not supported.

GPR Tools User’s Guide 109 of 139

GPR Tools User’s Guide 2020

for Library_Auto_Init_Supported use "true";

• Shared_Library_Minimum_Switches

Specifies the minimum options to be used when building a shared library. These options are put in the
appropriate section in the library exchange file when the library builder is invoked. Example:

for Shared_Library_Minimum_Switches use ("-shared");

• Library_Version_Switches

Specifies the option or options to be used when a library version is used. These options are put in the appropriate
section in the library exchange file when the library builder is invoked. Example:

for Library_Version_Switches use ("-Wl,-soname,");

• Runtime_Library_Dir (<language>)

Specifies the directory for the runtime libraries for the language. Example:

for Runtime_Library_Dir ("Ada") use "/path/to/adalib";

This attribute is used by GPRlib to link shared libraries with Ada code.

• Object_Lister

Specifies the name of the executable of the object lister with the minimum options, if any. This tool is used to
list symbols out of object code to create a list of the symbols to export. Example:

for Object_Lister use ("nm", "-g", "--demangle");

• Object_Lister_Matcher

A regular expression pattern for matching symbols out of the output of Object_Lister tool. Example:

for Object_Lister_Matcher use " T (.*)";

• Export_File_Format

The export file format to generate, this is either DEF (Windows), Flat or GNU. Example:

for Export_File_Format use "GNU";

• Export_File_Switch

The required switch to pass the export file to the linker. Example:

for Export_File_Switch use "-Wl,--version-script=";

4.2.2 Package Naming

Attributes in package Naming of a configuration file specify defaults. These attributes may be used in user project files
to replace these defaults.

110 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

The following attributes usually appear in package Naming of a configuration file:

• Spec_Suffix (<language>)

Specifies the default suffix for a ‘spec’ or header file. Examples:

for Spec_Suffix ("Ada") use ".ads";
for Spec_Suffix ("C") use ".h";
for Spec_Suffix ("C++") use ".hh";

• Body_Suffix (<language>)

Specifies the default suffix for a ‘body’ or a source file. Examples:

for Body_Suffix ("Ada") use ".adb";
for Body_Suffix ("C") use ".c";
for Body_Suffix ("C++") use ".cpp";

• Separate_Suffix

Specifies the suffix for a subunit source file (separate) in Ada. If attribute Separate_Suffix is not specified, then
the default suffix of subunit source files is the same as the default suffix for body source files. Example:

for Separate_Suffix use ".sep";

• Casing

Specifies the casing of spec and body files in a unit based language (such as Ada) to know how to map a unit
name to its file name. The values for this attribute may only be “lowercase”, “UPPERCASE” and “Mixedcase”.
The default, when attribute Casing is not specified is lower case. This attribute rarely needs to be specified, since
on platforms where file names are not case sensitive (such as Windows or VMS) the default (lower case) will
suffice.

• Dot_Replacement

Specifies the string to replace a dot (‘.’) in unit names of a unit based language (such as Ada) to obtain its file
name. If there is any unit based language in the configuration, attribute Dot_Replacement must be declared.
Example:

for Dot_Replacement use "-";

4.2.3 Package Builder

• Executable_Suffix

Specifies the default executable suffix. If no attribute Executable_Suffix is declared, then the default executable
suffix for the host platform is used. Example:

for Executable_Suffix use ".exe";

4.2.4 Package Compiler

GPR Tools User’s Guide 111 of 139

GPR Tools User’s Guide 2020

General Compilation Attributes

• Driver (<language>)

Specifies the name of the executable for the compiler of a language. The single string value of this attribute
may be an absolute path or a relative path. If relative, then the execution path is searched. Specifying the empty
string for this attribute indicates that there is no compiler for the language.

Examples:

for Driver ("C++") use "g++";
for Driver ("Ada") use "/.../bin/gcc";
for Driver ("Project file") use "";

• Required_Switches (<language>)

Specifies the minimum options that must be used when invoking the compiler of a language. Examples:

for Required_Switches ("C") use ("-c", "-x", "c");
for Required_Switches ("Ada") use ("-c", "-x", "ada", "-gnatA");

• PIC_Option (<language>)

Specifies the option or options that must be used when compiling a source of a language to be put in a shared
library. Example:

for PIC_Option ("C") use ("-fPIC");

Mapping File Related Attributes

• Mapping_File_Switches (<language>)

Specifies the switch or switches to be used to specify a mapping file to the compiler. When attribute
Mapping_File_Switches is not declared, then no mapping file is specified to the compiler. The value of this
attribute is a string list. The path name of the mapping file is concatenated with the last string in the string list,
which may be empty. Example:

for Mapping_File_Switches ("Ada") use ("-gnatem=");

• Mapping_Spec_Suffix (<language>)

Specifies, for unit based languages that support mapping files, the suffix in the mapping file that needs to be
added to the unit name for specs. Example:

for Mapping_Spec_Suffix ("Ada") use "%s";

• Mapping_Body_Suffix (<language>)

Specifies, for unit based languages that support mapping files, the suffix in the mapping file that needs to be
added to the unit name for bodies. Example:

for Mapping_Spec_Suffix ("Ada") use "%b";

112 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Config File Related Attributes

In the value of config file attributes defined below, there are some placeholders that GPRbuild will replace. These
placeholders are:

Placeholder Interpretation
%u unit name
%f source file name
%s spec suffix
%b body suffix
%c casing
%d dot replacement string

Attributes:

• Config_File_Switches (<language>)

Specifies the switch or switches to be used to specify a configuration file to the compiler. When attribute
Config_File_Switches is not declared, then no config file is specified to the compiler. The value of this attribute
is a string list. The path name of the config file is concatenated with the last string in the string list, which may
be empty. Example:

for Config_File_Switches ("Ada") use ("-gnatec=");

• Config_Body_File_Name (<language>)

Specifies the line to be put in a config file to indicate the file name of a body. Example:

for Config_Body_File_Name ("Ada") use
"pragma Source_File_Name_Project (%u, Body_File_Name => ""%f"");";

• Config_Spec_File_Name (<language>)

Specifies the line to be put in a config file to indicate the file name of a spec. Example:

for Config_Spec_File_Name ("Ada") use
"pragma Source_File_Name_Project (%u, Spec_File_Name => ""%f"");";

• Config_Body_File_Name_Pattern (<language>)

Specifies the line to be put in a config file to indicate a body file name pattern. Example:

for Config_Body_File_Name_Pattern ("Ada") use
"pragma Source_File_Name_Project " &
" (Body_File_Name => ""*%b""," &
" Casing => %c," &
" Dot_Replacement => ""%d"");";

• Config_Spec_File_Name_Pattern (<language>)

Specifies the line to be put in a config file to indicate a spec file name pattern. Example:

for Config_Spec_File_Name_Pattern ("Ada") use
"pragma Source_File_Name_Project " &
" (Spec_File_Name => ""*%s""," &
" Casing => %c," &
" Dot_Replacement => ""%d"");";

GPR Tools User’s Guide 113 of 139

GPR Tools User’s Guide 2020

• Config_File_Unique (<language>)

Specifies, for languages that support config files, if several config files may be indicated to the compiler, or not.
This attribute may have only two values: “true” or “false” (case insensitive). The default, when this attribute
is not specified, is “false”. When the value “true” is specified for this attribute, GPRbuild will concatenate the
config files, if there are more than one. Example:

for Config_File_Unique ("Ada") use "True";

Dependency Related Attributes

There are two dependency-related attributes: Dependency_Switches and Dependency_Driver. If neither of these two
attributes are specified for a language other than Ada, then the source needs to be (re)compiled if the object file does
not exist or the source file is more recent than the object file or the switch file.

• Dependency_Switches (<language>)

For languages other than Ada, attribute Dependency_Switches specifies the option or options to add to
the compiler invocation so that it creates the dependency file at the same time. The value of attribute
Dependency_Option is a string list. The name of the dependency file is added to the last string in the list,
which may be empty. Example:

for Dependency_Switches ("C") use ("-Wp,-MD,");

With these Dependency_Switches, when compiling file.c the compiler will be invoked with the option
-Wp,-MD,file.d.

• Dependency_Driver (<language>)

Specifies the command and options to create a dependency file for a source. The full path name of the source is
appended to the last string of the string list value. Example:

for Dependency_Driver ("C") use ("gcc", "-E", "-Wp,-M", "");

Usually, attributes Dependency_Switches and Dependency_Driver are not both specified.

Search Path Related Attributes

• Include_Switches (<language>)

Specifies the option or options to use when invoking the compiler to indicate that a directory is part of the source
search path. The value of this attribute is a string list. The full path name of the directory is concatenated with
the last string in the string list, which may be empty. Example:

for Include_Switches ("C") use ("-I");

Attribute Include_Switches is ignored if either one of the attributes Include_Path or Include_Path_File are
specified.

• Include_Path (<language>)

Specifies the name of an environment variable that is used by the compiler to get the source search path. The
value of the environment variable is the source search path to be used by the compiler. Example:

114 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

for Include_Path ("C") use "CPATH";
for Include_Path ("Ada") use "ADA_INCLUDE_PATH";

Attribute Include_Path is ignored if attribute Include_Path_File is declared for the language.

• Include_Path_File (<language>)

Specifies the name of an environment variable that is used by the compiler to get the source search path. The
value of the environment variable is the path name of a text file that contains the path names of the directories
of the source search path. Example:

for Include_Path_File ("Ada") use "ADA_PRJ_INCLUDE_FILE";

4.2.5 Package Binder

• Driver (<language>)

Specifies the name of the executable of the binder driver. When this attribute is not specified, there is no binder
for the language. Example:

for Driver ("Ada") use "/.../gprbind";

• Required_Switches (<language>)

Specifies the minimum options to be used when invoking the binder driver. These options are put in the
appropriate section in the binder exchange file, one option per line. Example:

for Required_Switches ("Ada") use ("--prefix=<prefix>");

• Prefix (<language>)

Specifies the prefix to be used in the name of the binder exchange file. Example:

for Prefix ("C++") use ("c__");

• Objects_Path (<language>)

Specifies the name of an environment variable that is used by the compiler to get the object search path. The
value of the environment variable is the object search path to be used by the compiler. Example:

for Objects_Path ("Ada") use "ADA_OBJECTS_PATH";

• Objects_Path_File (<language>)

Specifies the name of an environment variable that is used by the compiler to get the object search path. The
value of the environment variable is the path name of a text file that contains the path names of the directories
of the object search path. Example:

for Objects_Path_File ("Ada") use "ADA_PRJ_OBJECTS_FILE";

GPR Tools User’s Guide 115 of 139

GPR Tools User’s Guide 2020

4.2.6 Package Linker

• Driver

Specifies the name of the executable of the linker. Example:

for Driver use "g++";

• Required_Switches

Specifies the minimum options to be used when invoking the linker. Those options are happened at the end of
the link command so that potentially conflicting user options take precedence.

• Map_File_Option

Specifies the option to be used when the linker is asked to produce a map file.

for Map_File_Option use "-Wl,-Map,";

• Max_Command_Line_Length

Specifies the maximum length of the command line to invoke the linker. If this maximum length is reached,
a response file will be used to shorten the length of the command line. This is only taken into account when
attribute Response_File_Format is specified.

for Max_Command_Line_Length use "8000";

• Response_File_Format

Specifies the format of the response file to be generated when the maximum length of the command line to
invoke the linker is reached. This is only taken into account when attribute Max_Command_Line_Length is
specified.

The allowed case-insensitive values are:

– “GNU” Used when the underlying linker is gnu ld.

– “Object_List” Used when the response file is a list of object files, one per line.

– “GCC_GNU” Used with recent version of gcc when the underlined linker is gnu ld.

– “GCC_Object_List” Used with recent version of gcc when the underlying linker is not gnu ld.

for Response_File_Format use "GCC_GNU";

• Response_File_Switches

Specifies the option(s) that must precede the response file name when when invoking the linker. This is only
taken into account when both attributes Max_Command_Line_Length and Response_File_Format are specified.

for Response_File_Switches use ("-Wl,-f,");

4.3 Cleaning up with GPRclean

The GPRclean tool removes the files created by GPRbuild. At a minimum, to invoke GPRclean you must specify a
main project file in a command such as gprclean proj.gpr or gprclean -P proj.gpr.

116 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Examples of invocation of GPRclean:

gprclean -r prj1.gpr
gprclean -c -P prj2.gpr

4.3.1 Switches for GPRclean

The switches for GPRclean are:

• --no-project

This switch cannot be used if a project file is specified on the command line.

When this switch is specified, it indicates to gprclean that the project files in the current directory should not be
considered and that the default project file in <prefix>/share/gpr is to be used.

It is usually used with one or several mains specified on the command line.

• --distributed

Also clean-up the sources on build slaves, see Distributed compilation.

• --slave-env=name

Use name as the slave’s environment directory instead of the default one. This options is only used in distributed
mode.

• --config=config project file name

Specify the configuration project file name.

• --autoconf=config project file name

This specifies a configuration project file name that already exists or will be created automatically. Op-
tion --autoconf= cannot be specified more than once. If the configuration project file specified with
--autoconf= exists, then it is used. Otherwise, GPRconfig is invoked to create it automatically.

• --target=targetname

Specify a target for cross platforms.

• --db dir

Parse dir as an additional knowledge base.

• --db-

Do not parse the standard knowledge base.

• --RTS=runtime

Use runtime runtime for language Ada.

• --RTS:lang=runtime

Use runtime runtime for language lang.

• --subdirs=dir

This indicates that the object, library and executable directories specified in the project file will be suffixed
with {subdir}. If needed, those subdirectories are created except for externally built projects: in this case if the
subdirectories already exist they are used, otherwise the base directories are used.

GPR Tools User’s Guide 117 of 139

GPR Tools User’s Guide 2020

• --src-subdirs=subdir

This adds the given subdirectory (relative to each object directory of the project tree) to the list of source
directories of the project, one directory per object directory. GPRclean will remove the project source files
found in these subdirectories. This option may be combined with --subdirs.

• --relocate-build-tree[=dir]

With this option it is possible to achieve out-of-tree build. That is, real object, library or exec directories are
relocated to the current working directory or dir if specified.

• --root-dir=dir

This option is to be used with –relocate-build-tree above and cannot be specified alone. This option specifies
the root directory for artifacts for proper relocation. The default value is the main project directory. This may
not be suitable for relocation if for example some artifact directories are in parent directory of the main project.
The specified directory must be a parent of all artifact directories.

• --unchecked-shared-lib-imports

Shared library projects may import any project.

• -aPdir

Add directory dir to the project search path.

• -c

Only delete compiler-generated files. Do not delete executables and libraries.

• -eL

Follow symbolic links when processing project files.

• -f

Force deletions of unwritable files.

• -F

Display full project path name in brief error messages.

• -h

Display the usage.

• -n

Do not delete files, only list files that would be deleted.

• -Pproj

Use Project File proj.

• -q

Be quiet/terse. There is no output, except to report problems.

• -r

Recursive. Clean all projects referenced by the main project directly or indirectly. Without this switch,
GPRclean only cleans the main project.

• -v

Verbose mode.

118 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

• -vPx

Specify verbosity when parsing Project Files. x = 0 (default), 1 or 2.

• -Xnm=val

Specify an external reference for Project Files.

4.4 Installing with GPRinstall

The GPRinstall tool installs projects. With GPRinstall it is not needed to create complex makefiles to install the
components. This also removes the need for OS specific commands (like cp, mkdir on UNIXs) and so makes the
installation process easier on all supported platforms.

After building a project it is often necessary to install the project to make it accessible to other projects. GPRinstall
installs only what is necessary and nothing more. That is, for a library project the library itself is installed with the
corresponding ALI files for Ada sources, but the object code is not installed as it not needed. Also if the Ada specs are
installed the bodies are not, because they are not needed in most cases. The cases where the bodies are required (if the
spec has inline routines or is a generic) are properly detected by GPRinstall.

Furthermore, we can note that GPRinstall handles the preprocessed sources. So it installs the correct variant of the
source after resolving the preprocessing directives.

The parts of a project that can be installed are:

• sources of a project

• a static or shared library built from a library project

• objects built from a standard project

• executables built from a standard project

Moreover, GPRinstall will create, when needed, a project to use the installed sources, objects or library. By default,
this project file is installed in the GPRbuild’s default path location so that it can be “with”ed easily without further
configuration. The installation process keeps record of every file installed for easy and safe removal.

GPRinstall supports all kinds of project:

• standard projects

The object files, executable and source files are considered for installation.

• library and aggregate library projects

The library itself and the source files are considered for installation.

• aggregate projects

All aggregated projects are considered for installation.

Projects that won’t be installed are:

• Project explicitly disabled for installation

A project with the Active attribute set to False in the project’s Install package.

• Projects with no sources

Both abstract projects and standard projects without any sources

At a minimum, to invoke GPRinstall you must specify a main project file in a command such as gprinstall
proj.gpr or gprinstall -P proj.gpr (in installing mode) or the install name (in uninstalling mode)
gprinstall --uninstall proj.

GPR Tools User’s Guide 119 of 139

GPR Tools User’s Guide 2020

Examples of invocation of GPRinstall:

gprinstall prj1.gpr
gprinstall -r --prefix=/my/root/install -P prj2.gpr

GPRinstall will record the installation under the install name which is by default the name of the project without the
extension. That is above the project install names are prj1 and prj2.

The installation name can be specified with the option --install-name. This makes it possible to record the
installation of multiple projects under the same name. This is handy if an application comes with a library and a set of
tools built with multiple projects. In this case we may want to record the installation under the same name. The install
name is also used as a suffix to group include and library directories.

Examples of installation under the same name:

gprinstall --install-name=myapp lib.gpr
gprinstall --install-name=myapp --mode=usage tools/tools.gpr

Note the --mode=usage option above. This tells GPRinstall to only install the executable built as part of the project.

It is possible to uninstall a project by using the --uninstall option. In this case we just pass the install name to
GPRinstall:

gprinstall --uninstall prj1
gprinstall --uninstall prj2

And both lib.gpr and tools.gpr above will be uninstalled with:

gprinstall --uninstall myapp

Note that GPRinstall does not deal with dependencies between projects. Also GPRinstall in uninstall mode does not
need nor use information in the installed project. This is because the project may not be present anymore and many
different project scenario may have been installed. So when uninstalling GPRinstall just use the manifest file (whose
name is the install name) information.

4.4.1 Switches for GPRinstall

The switches for GPRinstall are:

• --config=main config project file name

Specify the configuration project file name

• --autoconf=config project file name

This specifies a configuration project file name that already exists or will be created automatically. Op-
tion --autoconf= cannot be specified more than once. If the configuration project file specified with
--autoconf= exists, then it is used. Otherwise, GPRconfig is invoked to create it automatically.

• --build-name

Specify under which name the current project build must be installed. The default value is default. Using this
option it is possible to install different builds (using different configuration, options, etc...) of the same project.
The given name will be used by client to select which build they want to use (link against).

• --build-var

120 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Specify the name of the build variable in the installed project. If this options is not used, the default build
variable used is <PROJECT_NAME>_BUILD.

It is possible to specify multiple variables in –build-var option. In this case, if the first build variable is not
found, the second one will be checked, and so on. This makes it possible to have a project specific variable to
select the corresponding build and a more generic build variable shared by multiple projects.

$ gprinstall -Pproject1 \
--build-var=PROJECT1_BUILD,LIBRARY_TYPE

^
Scenario variable to control
specifically this project

^
Scenario variable to control
the default for a set of projects

$ gprinstall -Pproject2 \
--build-var=PROJECT2_BUILD,LIBRARY_TYPE

• --no-build-var

Specify that no build/scenario variable should be generated. This option can be use for a project where there is
single configuration, so a single installation. This option cannot be used with --build-var.

• --dry-run

Install nothing, just display the actions that would have been done.

• -a

Install all the sources (default). Cannot be used with -m below.

• -m

Install only the interface sources (minimal set of sources). Cannot be used with -a above.

• -f

Force overwriting of existing files

• -h

Display this message

• --mode=[dev/usage]

Specify the installation mode.

– dev

This is the default mode. The installation is done in developer mode. All files to use the project are copied
to install prefix. For a library this means that the specs, the corresponding ALI files for Ada units and the
library itself (static or relocatable) are installed. For a standard project the object files are installed instead
of the library.

– usage

The installation is done in usage mode. This means that only the library or the executable is installed. In
this installation mode there is no project generated, nor specs or ALI files installed.

GPR Tools User’s Guide 121 of 139

GPR Tools User’s Guide 2020

Mode Interpretation
dev For this mode the binaries (built libraries and executable) are installed together with the sources to

use them.
us-
age

For this mode only the binaries are installed and no project are created.

• -p, --create-missing-dirs

Create missing directories in the installation location.

• -Pproj

Specify the project file to install.

• --prefix=path

Specify the location of the installation. If not specified, the default location for the current compiler is used.
That is, path corresponds to parent directory where gprinstall is found.

• --install-name=name

Specify the name to use for recording the installation. The default is the project name without the extension.
If set this option is also used as include or library directories’ suffix to group all related installations under a
common directory.

• --sources-subdir=path

Specify the value for the sources installation directory if an absolute path. Otherwise it is appended to the prefix
above. The default is include/<project_name>[.<build-name>]

• --lib-subdir=path

Specify the value for the library and object installation directory if an absolute path. Otherwise it is appended to
the prefix above. The default is lib/<project_name>[.<build-name>]

• --link-lib-subdir=path

Specify the value for the library symlink directory if an absolute path. Otherwise it is appended to the prefix
above.

• ---exec-subdir=path

Specify the value for the executables installation directory if an absolute path. Otherwise it is appended to the
prefix above. The default is bin.

• --project-subdir=path

Specify the value for the project installation directory if an absolute path. Otherwise it is appended to the prefix
above. The default is share/gpr.

• --no-project

Specify that no project is to be generated and installed.

• --target=targetname

Specify a target for cross platforms.

• --no-lib-link

Disable copy of shared libraries into the executable directory on Windows or creation of symlink in the lib
directory on UNIX. This is done by default to place the shared libraries into a directory where application will
look for them.

• --sources-only

122 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Copy only sources part of the project, the object, library or executable files are never copied. When this switch
is used the installed project is not set as externally built.

• --side-debug

Write debug symbols out of executables and libraries into a separate file. The separate file is named after the
main file with an added .debug extension. That is, if the executable to be installed is named main, then
a file main.debug is also created in the same location, containing only the debug information. The debug
information is then removed from the main executable.

• --subdirs=subdir

This indicates that the object, library and executable directories specified in the project file will be suffixed
with {subdir}. If needed, those subdirectories are created except for externally built projects: in this case if the
subdirectories already exist they are used, otherwise the base directories are used.

• --relocate-build-tree[=dir]

With this option it is possible to achieve out-of-tree build. That is, real object, library or exec directories are
relocated to the current working directory or dir if specified.

• --root-dir=dir

This option is to be used with –relocate-build-tree above and cannot be specified alone. This option specifies
the root directory for artifacts for proper relocation. The default value is the main project directory. This may
not be suitable for relocation if for example some artifact directories are in parent directory of the main project.
The specified directory must be a parent of all artifact directories.

• -q

Be quiet/terse. There is no output, except to report problems.

• -r

(Recursive.) Install all projects referenced by the main project directly or indirectly. Without this switch,
GPRinstall only installs the main project.

• --no-manifest

Prevent the manifest file from being created. Note that using this option will make it impossible to uninstall the
project using GPRinstall. See option –uninstall.

• --uninstall

Uninstall mode, files installed for a given project or install name will be removed. A check is done that no
manual changes have been applied to the files before removing. Deletion of the files can be forced in this case
by using the -f option. Note that the parameter in this case is not the project name but the install name which
corresponds to the manifest file.

• --list

List mode, displays all the installed packaged.

• --stat

Apply to list mode above, displays also some statistics about the installed packages : number of files, total size
used on disk, and whether there is some files missing.

• -v

Verbose mode

• -Xnm=val

Specify an external reference for Project Files.

GPR Tools User’s Guide 123 of 139

GPR Tools User’s Guide 2020

4.5 Specifying a Naming Scheme with GPRname

When the Ada source file names do not follow a regular naming scheme, the mapping of Ada units to source file names
must be indicated in package Naming with attributes Spec and Body.

To help maintain the correspondence between compilation unit names and source file names within the compiler, the
tool gprname may be used to generate automatically these attributes.

4.5.1 Running gprname

The usual form of the gprname command is:

$ gprname [‘switches‘] ‘naming_pattern‘ [‘naming_patterns‘]
[--and [‘switches‘] ‘naming_pattern‘ [‘naming_patterns‘]]

Most of the arguments are optional: switch -P must be specified to indicate the project file and at least one Naming
Pattern.

gprname will attempt to find all the compilation units in files that follow at least one of the naming patterns. To find
Ada compilation units, gprname will use the GNAT compiler in syntax-check-only mode on all regular files.

One or several Naming Patterns may be given as arguments to gprname. Each Naming Pattern is enclosed between
double quotes (or single quotes on Windows). A Naming Pattern is a regular expression similar to the wildcard patterns
used in file names by the Unix shells or the DOS prompt.

gprname may be called with several sections of directories/patterns. Sections are separated by switch –and. In each
section, there must be at least one pattern. If no directory is specified in a section, the project directory is implied. The
options other that the directory switches and the patterns apply globally even if they are in different sections.

Examples of Naming Patterns are:

"*.[12].ada"
"*.ad[sb]*"
"body_*" "spec_*"

For a more complete description of the syntax of Naming Patterns, see the second kind of regular expressions described
in g-regexp.ads (the ‘Glob’ regular expressions).

4.5.2 Switches for GPRname

Switches for gprname must precede any specified Naming Pattern.

You may specify any of the following switches to gprname:

• --version

Display Copyright and version, then exit disregarding all other options.

• --target=<targ>

Indicates the target of the GNAT compiler. This may be needed if there is no native compiler available.

• --help

If –version was not used, display usage, then exit disregarding all other options.

124 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

• --subdirs=dir

This indicates that the object, library and executable directories specified in the project file will be suffixed
with {subdir}. If needed, those subdirectories are created except for externally built projects: in this case if the
subdirectories already exist they are used, otherwise the base directories are used.

• --no-backup

Do not create a backup copy of the project file if it already exists.

• --ignore-duplicate-files

Ignore files with the same basename, and take the first one found into account only. By default when
encountering a duplicate file, a warning is emitted, and duplicate entries in the Naming package will be
generated, needing manual editing to resolve the conflict. With this switch, gprname assumes that only the
first file should be used and others should be ignored.

• --ignore-predefined-units

Ignore predefined units (children of System, Interfaces and Ada packages).

• --and

Start another section of directories/patterns.

• -ddir

Look for source files in directory dir. There may be zero, one or more spaces between -d and dir. dir
may end with /**, that is it may be of the form root_dir/**. In this case, the directory root_dir and all of its
subdirectories, recursively, have to be searched for sources. When a switch -d is specified, the current working
directory will not be searched for source files, unless it is explicitly specified with a -d or -D switch. Several
switches -d may be specified. If dir is a relative path, it is relative to the directory of the project file specified
with switch -P. The directory specified with switch -d must exist and be readable.

• -Dfilename

Look for source files in all directories listed in text file filename. There may be zero, one or more spaces
between -D and filename. filename must be an existing, readable text file. Each nonempty line in
filename must be a directory. Specifying switch -D is equivalent to specifying as many switches -d as
there are nonempty lines in file.

• -eL

Follow symbolic links when processing project files.

• -fpattern

Foreign C language patterns. Using this switch, it is possible to add sources of language C to the list of sources
of a project file.

For example,

gprname -P prj.gpr -f"*.c" "*.ada" -f "*.clang"

will look for Ada units in all files with the .ada extension, and will add to the list of file for project prj.gpr
the C files with extensions .c and .clang. Attribute Languages will be declared with the list of languages
with sources. In the above example, it will be (“Ada”, “C”) if Ada and C sources have been found.

• -f:<lang> pattern

Foreign language {<lang>} patterns. Using this switch, it is possible to add sources of language <lang> to the
list of sources of a project file.

For example,

GPR Tools User’s Guide 125 of 139

GPR Tools User’s Guide 2020

gprname -P prj.gpr "*.ada" -f:C++ "*.cpp" -f:C++ "*.CPP"

Files with extensions .cpp and *.CPP are C++ sources. Attribute Languages will have value (“Ada”, “C++”)
if Ada and C++ sources are found.

• -h

Output usage (help) information. The output is written to stdout.

• -Pproj

Create or update project file proj. There may be zero, one or more space between -P and proj. proj
may include directory information. proj must be writable. There must be only one switch -P. If switch –
no-backup is not specified, a backup copy of the project file is created in the project directory with file name
<proj>.gpr.saved_x. ‘x’ is the first non negative number that makes this backup copy a new file.

• -v

Verbose mode. Output detailed explanation of behavior to stdout. This includes name of the file written, the
name of the directories to search and, for each file in those directories whose name matches at least one of the
Naming Patterns, an indication of whether the file contains a unit, and if so the name of the unit.

• -v -v

Very Verbose mode. In addition to the output produced in verbose mode, for each file in the searched directories
whose name matches none of the Naming Patterns, an indication is given that there is no match.

• -xpattern

Excluded patterns. Using this switch, it is possible to exclude some files that would match the name patterns.
For example,

gprname -P prj.gpr -x "*_nt.ada" "*.ada"

will look for Ada units in all files with the .ada extension, except those whose names end with _nt.ada.

4.5.3 Example of gprname Usage

$ gprname -P/home/me/proj.gpr -x "*_nt_body.ada"
-dsources -dsources/plus -Dcommon_dirs.txt "body_*" "spec_*"

Note that several switches -d may be used, even in conjunction with one or several switches -D. Several Naming
Patterns and one excluded pattern are used in this example.

4.6 The Library Browser GPRls

gprls is a tool that outputs information about compiled sources. It gives the relationship between objects, unit names
and source files. It can also be used to check source dependencies as well as various characteristics.

4.6.1 Running gprls

The gprls command has the form

126 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

$ gprls switches ‘object_or_dependency_files‘

The main argument is the list of object files or ali files for Ada sources for which information is requested.

gprls uses a project file, either specified through a single switch -P, or the default project file. If no ob-
ject_or_dependency_files is specified then all the object files corresponding to the sources of the project are deemed
to be specified.

In normal mode, without option other that -P <project file>, gprls produces information for each object/dependency
file: the full path of the object, the name of the principal unit in this object if the source is in Ada, the status of the
source and the full path of the source.

Here is a simple example of use:

$ gprls -P prj.gpr
/my_path/obj/pkg.o

pkg
DIF pkg.adb

/my_path/obj/main.o
main

MOK main.adb

The first three lines can be interpreted as follows: the main unit which is contained in object file pkg.o is pkg, whose
main source is in pkg.adb. Furthermore, the version of the source used for the compilation of pkg has been modified
(DIF). Each source file has a status qualifier which can be:

OK (unchanged) The version of the source file used for the compilation of the specified unit corresponds exactly to
the actual source file.

MOK (slightly modified) The version of the source file used for the compilation of the specified unit differs from the
actual source file but not enough to require recompilation. If you use gprbuild with the qualifier -m (minimal
recompilation), a file marked MOK will not be recompiled.

DIF (modified) The source used to build this object has been modified and need to be recompiled.

??? (dependency file not found) The object/dependency file cannot be found.

4.6.2 Switches for GPRls

gprls recognizes the following switches:

--version Display Copyright and version, then exit disregarding all other options.

--help If –version was not used, display usage, then exit disregarding all other options.

--closure Display the Ada closures of the mains specified on the command line or in attribute Main of the main
project. The absolute paths of the units in the closures are listed, but no status is checked. If all the ALI files are
found, then the list is preceded with the line “Closure:” or “Closures:”. Otherwise, it is preceded with the line
“Incomplete Closure:” or “Incomplete closures:”.

-P <project file> Use this project file. This switch may only be specified once.

-a Consider all units, including those of the predefined Ada library. Especially useful with -d.

-d List sources from which specified units depend on.

-h Output the list of options.

-o Only output information about object files.

GPR Tools User’s Guide 127 of 139

GPR Tools User’s Guide 2020

-s Only output information about source files.

-u Only output information about compilation units.

-U If no object/dependency file is specified, list information for the sources of all the projects in the project tree.

-files=file Take as arguments the files listed in text file file. Text file file may contain empty lines that are
ignored. Each nonempty line should contain the name of an existing object/dependency file. Several such
switches may be specified simultaneously.

-aPdir Add dir at the beginning of the project search dir.

--RTS=rts-path‘ Specifies the default location of the Ada runtime library. Same meaning as the equivalent
gprbuild switch.

-v Verbose mode. Output the complete source, object and project paths. For each Ada source, include special
characteristics such as:

• Preelaborable: The unit is preelaborable in the Ada sense.

• No_Elab_Code: No elaboration code has been produced by the compiler for this unit.

• Pure: The unit is pure in the Ada sense.

• Elaborate_Body: The unit contains a pragma Elaborate_Body.

• Remote_Types: The unit contains a pragma Remote_Types.

• Shared_Passive: The unit contains a pragma Shared_Passive.

• Predefined: This unit is part of the predefined environment and cannot be modified by the user.

• Remote_Call_Interface: The unit contains a pragma Remote_Call_Interface.

4.6.3 Examples of gprls Usage

$ gprls -v -P prj.gpr

5 lines: No errors
gprconfig --batch -o /my_path/obj/auto.cgpr --target=x86_64-linux --config=ada,,
Creating configuration file: /my_path/obj/auto.cgpr
Checking configuration /my_path/obj/auto.cgpr

GPRLS Pro 17.0 (20161010) (x86_64-unknown-linux-gnu)
Copyright (C) 2015-2016, AdaCore

Source Search Path:
<Current directory>
/my_path/local/lib/gcc/x86_64-pc-linux-gnu/4.9.4//adainclude/

Object Search Path:
<Current directory>
/my_path/local/lib/gcc/x86_64-pc-linux-gnu/4.9.4//adalib/

Project Search Path:
<Current_Directory>
/my_path/local/x86_64-unknown-linux-gnu/lib/gnat
/my_path/local/x86_64-unknown-linux-gnu/share/gpr
/my_path/local/share/gpr
/my_path/local/lib/gnat

128 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

/my_path/obj/pkg.o
Unit =>

Name => pkg
Kind => package body
Flags => No_Elab_Code

Source => pkg.adb unchanged
Unit =>

Name => pkg
Kind => package spec
Flags => No_Elab_Code

Source => pkg.ads unchanged
/my_path/obj/main.o

Unit =>
Name => main
Kind => subprogram body
Flags => No_Elab_Code

Source => main.adb slightly modified

$ gprls -d -P prj.gpr main.o
/my_path/obj/main.o

main
MOK main.adb

OK pkg.ads

$ gprls -s -P prj.gpr main.o
main

main.adb

GPR Tools User’s Guide 129 of 139

GPR Tools User’s Guide 2020

This page is intentionally left blank.

130 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

APPENDIX

A

GNU FREE DOCUMENTATION LICENSE

Version 1.3, 3 November 2008

Copyright 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license,
unlimited in duration, to use that work under the conditions stated herein. The Document, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

GPR Tools User’s Guide 131 of 139

http://fsf.org/

GPR Tools User’s Guide 2020

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called Opaque.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific
section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

132 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

3. State on the Title page the name of the publisher of the Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

8. Include an unaltered copy of this License.

9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year,
new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve
in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

13. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

14. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

15. Preserve any Warranty Disclaimers.

GPR Tools User’s Guide 133 of 139

GPR Tools User’s Guide 2020

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties—for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section
4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the
original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one
section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace
the individual copies of this License in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

134 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section
4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you
of the violation by some reasonable means, this is the first time you have received notice of violation of this License
(for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License “or any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide
which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained
in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

GPR Tools User’s Guide 135 of 139

http://www.gnu.org/copyleft/

GPR Tools User’s Guide 2020

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with ... Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two
alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

136 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

INDEX

Symbols
–RTS (gprls), 128
–batch (gprconfig), 97
–closure (gprls), 127
–config (gprconfig), 97
–db (gprconfig), 97
–help (gprls), 127
–help (gprname), 124
–no-indirect-imports (gprbuild), 24
–show-target (gprconfig), 97
–target (gprconfig), 96
–target= (gprname), 124
–version (gprls), 127
–version (gprname), 124
-D (gprname), 125
-P, 11
-P (gprbuild), 19
-P (gprls), 127
-P (gprname), 126
-U (gprls), 128
-X, 11, 27
-a (gprls), 127
-aP, 24
-aP (gprls), 128
-d (gprls), 127
-d (gprname), 125
-f (gprname), 125
-files (gprls), 128
-h (gprconfig), 97
-h (gprls), 127
-h (gprname), 126
-j, 42
-o (gprconfig), 97
-o (gprls), 127
-p (gprbuild), 15
-s (gprls), 127
-u (gprls), 128
-v (gprbuild), 19
-v (gprls), 24, 128
-v (gprname), 126
-v -v (gprname), 126
-x (gprname), 126

A
Abstract project, 50, 76
abstract project qualifier, 27
ADA_PROJECT_PATH, 24, 41, 43, 44, 48, 50
Aggregate library project, 47
Aggregate project, 39, 50, 76
Attribute, 58, 76

B
Base project, 34, 76
Binder package, 18, 51
Binder’Default_Switches attribute, 33
Body attribute, 22
Body_Suffix attribute, 22
Builder package, 18, 51
Built-in Functions, 54

C
Case construction, 28, 57
Casing attribute, 21
Check package, 51
Child project, 38, 76
Clean package, 51
Command line length, 17
Compiler package, 51
Configuration project, 50, 76
Cross_Reference package, 51
Cyclic project dependencies, 25

D
Declarations in project files, 51
Default_Switches attribute, 18, 33
Distributed compilation, 52
Documentation package, 51
Dot_Replacement attribute, 21

E
Eliminate package, 51
environment variable

ADA_PROJECT_PATH, 24, 41, 43, 44, 48, 50
GPR_PROJECT_PATH, 24, 41, 43, 44, 48, 50
GPR_PROJECT_PATH_FILE, 24, 43, 48

GPR Tools User’s Guide 137 of 139

GPR Tools User’s Guide 2020

PATH, 41, 44, 97–99, 101, 102
Environment variable in scenarios, 28
Excluded_Source_Dirs attribute, 14
Excluded_Source_Files attribute, 15, 35
Excluded_Source_List_File attribute, 15, 35
Exec_Dir attribute, 16
Executable attribute, 19
Executable_Suffix, 20
Expressions in project files, 53
Extending a project, 34, 76
Extending declaration, 52
extends all, 36
External attribute, 44
external function, 28, 54
External variable, 27, 76
external_as_list function, 54
Externally_Built attribute, 23, 31

F
Finder package, 51

G
Global attribute, 27, 76
Global_Compilation_Switches attribute, 27, 45
Global_Config_File attribute, 47
Global_Configuration_Pragmas attribute, 27, 46
gnatcheck tool, 51
gnatdoc tool, 51
gnatelim tool, 51
gnatfind tool, 51
Gnatls package, 51
gnatls tool, 51
gnatmetric tool, 52
gnatpp tool, 52
gnatstack tool, 52
Gnatstub package, 52
gnatstub tool, 52
gnatsync tool, 52
gnatxref tool, 51
GPR_PROJECT_PATH, 24, 41, 43, 44, 48, 50
GPR_PROJECT_PATH_FILE, 24, 43, 48
gprclean tool, 51
gprconfig external values, 101
gprinstall tool, 34, 52
gprls, 126

I
IDE package, 52
Ignore_Source_Sub_Dirs attribute, 14
Immediate sources of a project, 50
Implementation attribute, 22
Implementation_Exceptions attribute, 22
Implementation_Suffix attribute, 22
Importing a project, 11, 23, 76

Independent project, 49, 76
Indexed attribute concept, 18
Install package, 52
Interfaces attribute, 32

L
Languages attribute, 14
Leading_Library_Options attribute, 31
Library browser, 126
Library project, 29, 50, 76
Library_ALI_Dir attribute, 30
Library_Auto_Init attribute, 33
Library_Dir attribute, 29, 33
Library_GCC attribute, 30
Library_Interface attribute, 32
Library_Kind attribute, 30
Library_Name attribute, 29
Library_Options attribute, 30
Library_Src_Dir attribute, 33
Library_Standalone attribute, 32
Library_Symbol_File attribute, 33
Library_Symbol_Policy attribute, 33
Library_Version attribute, 30
Limited with (project import), 25
Linker package, 18, 52
Linker_Options attribute, 73
Local_Configuration_Pragmas attribute, 18
Locally_Removed_Files attribute, 15

M
Main attribute, 16
Main project, 27, 76
Metrics package, 52

N
Naming package, 20, 52
Naming scheme, 14, 20

O
Object_Dir attribute, 15

P
Package, 76
Package Builder, 45
Package extension, 52
Package renaming, 52
Packages in project files, 12, 17, 51
Parent project, 38, 76
PATH, 41, 44, 97–99, 101, 102
Portability of path names, 13
Pretty_Printer package, 52
Project, 77
Project attribute, 12

138 of 139 GPR Tools User’s Guide

GPR Tools User’s Guide 2020

Project extension, 11, 34, 77
Project file, 12, 77
Project import closure, 24, 77
Project path, 24
Project qualifier, 27
Project variable, 12
Project_Files attribute, 40, 43
Project_Path attribute, 43

R
Remote package, 52
Renaming declaration, 52
Reserved words (in project files), 49

S
Scenario, 77
Scenario variable, 77
Separate_Suffix attribute, 22
Source directories, 13
Source_Dirs attribute, 13, 14
Source_Files attribute, 14
Source_List_File attribute, 14
Sources of a project, 50
Spec attribute, 22
Spec_Suffix attribute, 21
Specification attribute, 22
Specification_Exceptions attribute, 22
Specification_Suffix attribute, 21
Stack package, 52
Stand-alone libraries, 32
Standard project, 50, 77
Switches attribute, 18, 45
Synchronize package, 52

T
Type declaration, 56
Typed variable, 28, 77

V
Variables in project files, 56

W
with clause, 23

GPR Tools User’s Guide 139 of 139

	Introduction
	GNAT Project Manager
	Introduction
	Building with Projects
	Source Files and Directories
	Duplicate Sources in Projects
	Object and Exec Directory
	Main Subprograms
	Tools Options in Project Files
	Compiling with Project Files
	Executable File Names
	Using Variables to Avoid Duplication
	Naming Schemes

	Organizing Projects into Subsystems
	Importing Projects
	Cyclic Project Dependencies
	Sharing between Projects
	Global Attributes

	Scenarios in Projects
	Library Projects
	Building Libraries
	Using Library Projects
	Stand-alone Library Projects
	Installing a Library with Project Files

	Project Extension
	Importing and Project Extension

	Child Projects
	Aggregate Projects
	Building all main programs from a single project closure
	Building a set of projects with a single command
	Defining a build environment
	Improving builder performance
	Syntax of aggregate projects
	package Builder in aggregate projects

	Aggregate Library Projects
	Building aggregate library projects
	Syntax of aggregate library projects

	Project File Reference
	Project Declaration
	Qualified Projects
	Declarations
	Packages
	Expressions
	Built-in Functions
	The function external
	The function external_as_list
	Split

	Typed String Declaration
	Variables
	Case Constructions
	Attributes
	Project Level Attributes
	Package Binder Attributes
	Package Builder Attributes
	Package Check Attributes
	Package Clean Attributes
	Package Compiler Attributes
	Package Cross_Reference Attributes
	Package Documentation Attributes
	Package Eliminate Attributes
	Package Finder Attributes
	Package Gnatls Attributes
	Package gnatstub Attributes
	Package IDE Attributes
	Package Install Attributes
	Package Linker Attributes
	Package Metrics Attribute
	Package Naming Attributes
	Package Pretty_Printer Attributes
	Package Remote Attributes
	Package Stack Attributes
	Package Synchronize Attributes

	Glossary

	Building with GPRbuild
	Introduction
	Command Line
	Switches
	Initialization
	Compilation of one or several sources
	Compilation Phase
	Post-Compilation Phase
	Linking Phase
	Distributed compilation
	Introduction to distributed compilation
	Setup build environments
	GPRslave

	GPRbuild Companion Tools
	Configuring with GPRconfig
	Configuration
	Using GPRconfig
	Description
	Command line arguments
	Interactive use

	The GPRconfig knowledge base
	General file format
	Compiler description
	GPRconfig external values
	GPRconfig variable substitution
	Configurations

	Configuration File Reference
	Project Level Configuration Attributes
	General Attributes
	General Library Related Attributes
	Archive Related Attributes
	Shared Library Related Attributes

	Package Naming
	Package Builder
	Package Compiler
	General Compilation Attributes
	Mapping File Related Attributes
	Config File Related Attributes
	Dependency Related Attributes
	Search Path Related Attributes

	Package Binder
	Package Linker

	Cleaning up with GPRclean
	Switches for GPRclean

	Installing with GPRinstall
	Switches for GPRinstall

	Specifying a Naming Scheme with GPRname
	Running gprname
	Switches for GPRname
	Example of gprname Usage

	The Library Browser GPRls
	Running gprls
	Switches for GPRls
	Examples of gprls Usage

	GNU Free Documentation License
	Index

