
XMod
Crossed modules and cat1-groups inGAP

Version 2.59

21/03/2017

Chris Wensley
Murat Alp

Alper Odabaş
Enver Önder Uslu

Chris Wensley Email: c.d.wensley@bangor.ac.uk

Homepage: http://pages.bangor.ac.uk/~mas023/

Address: School of Computer Science, Bangor University,
Dean Street, Bangor, Gwynedd, LL57 1UT, U.K.

Murat Alp Email: muratalp@nigde.edu.tr

Address: Nigde Üniversitesi,
Fen Edebiyat Fakültesi, Matematik Bölümü
Nigde, Turkey.

Alper Odabaş Email: aodabas@ogu.edu.tr

Homepage: http://fef.ogu.edu.tr/matbil/aodabas/

Address: Department of Mathematics and Computer Science,
Osmangazi University, Eskişehir, Turkey

Enver Önder Uslu Email: enveruslu@ogu.edu.tr

Homepage: http://fef.ogu.edu.tr/matbil/enveruslu/

Address: Department of Mathematics and Computer Science,
Osmangazi University, Eskişehir, Turkey

mailto://c.d.wensley@bangor.ac.uk
http://pages.bangor.ac.uk/~mas023/
mailto://muratalp@nigde.edu.tr
mailto://aodabas@ogu.edu.tr
http://fef.ogu.edu.tr/matbil/aodabas/
mailto://enveruslu@ogu.edu.tr
http://fef.ogu.edu.tr/matbil/enveruslu/

XMod 2

Abstract

The XMod package provides functions for computation with

� �nite crossed modules of groups and cat1-groups, and morphisms of these structures;

� �nite pre-crossed modules, pre-cat1-groups, and their Peiffer quotients;

� isoclinism classes of groups and crossed modules;

� derivations of crossed modules and sections of cat1-groups;

� crossed squares and their morphisms, including the actor crossed square of a crossed module;

� crossed modules of �nite groupoids (experimental version).

XModwas originally implemented in 1997 using theGAP3 language, when the second author was studying
for a Ph.D. [Alp97] in Bangor.

In April 2002 the �rst and third parts were converted to GAP4, the pre-structures were added, and version
2.001 was released. The �nal two parts, covering derivations, sections and actors, were included in the January
2004 release 2.002 for GAP 4.4.

In October 2015 functions for computing isoclinism classes of crossed modules, written by Alper Odabaş
and Enver Uslu, were added. These are contained in Chapter 4, and are described in detail in the paper [IOU16].

The current version is 2.59, released 21st March 2017 for GAP 4.8.
Bug reports, suggestions and comments are, of course, welcome. Please submit an issue

at http://github.com/gap-packages/xmod/issues/ or send an email to the �rst author at
c.d.wensley@bangor.ac.uk.

Copyright

© 1997-2017 Chris Wensley et al. XMod is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

Acknowledgements

This documentation was prepared with the GAPDoc package [LN12] of Frank Lübeck and Max Neunhöffer.
The procedure used to mount new releases on GitHub uses the packages GitHubPagesForGAP [Hor14]

and ReleaseTools of Max Horn.

The second author wishes to acknowledge support from Dumlupinar University and the Turkish govern-

ment.

http://github.com/gap-packages/xmod/issues/
mailto://c.d.wensley@bangor.ac.uk
http://www.fsf.org/licenses/gpl.html

Contents

1 Introduction 5

2 2d-groups : crossed modules and cat1-groups 8

2.1 Constructions for crossed modules . 8

2.2 Properties of crossed modules . 10

2.3 Pre-crossed modules . 12

2.4 Cat1-groups and pre-cat1-groups . 13

2.5 Properties of cat1-groups . 14

2.6 Selection of a small cat1-group . 16

2.7 More functions for crossed modules and cat1-groups 18

3 2d-mappings 19

3.1 Morphisms of 2d-groups . 19

3.2 Morphisms of pre-crossed modules . 19

3.3 Morphisms of pre-cat1-groups . 21

3.4 Operations on morphisms . 22

4 Isoclinism of groups and crossed modules 24

4.1 More operations for crossed modules . 24

4.2 Isoclinism for groups . 30

4.3 Isoclinism for crossed modules . 31

5 Derivations and Sections 33

5.1 Whitehead Multiplication . 33

5.2 Whitehead Groups and Monoids . 35

6 Actors of 2d-groups 38

6.1 Actor of a crossed module . 38

7 Induced constructions 42

7.1 Induced crossed modules . 42

8 Crossed squares and their morphisms 45

8.1 Constructions for crossed squares . 46

8.2 Morphisms of crossed squares . 49

3

XMod 4

9 Crossed modules of groupoids 51

9.1 Constructions for crossed modules of groupoids . 51

10 Utility functions 52

10.1 Inclusion and Restriction Mappings . 52

10.2 Abelian Modules . 53

11 Development history 55

11.1 Changes from version to version . 55

11.2 Versions for GAP [4.5 .. 4.8] . 56

11.3 What needs doing next? . 57

References 60

Chapter 1

Introduction

The XMod package provides functions for computation with

� �nite crossed modules of groups and cat1-groups, and morphisms of these structures;

� �nite pre-crossed modules, pre-cat1-groups, and their Peiffer quotients;

� derivations of crossed modules and sections of cat1-groups;

� isoclinism of groups and crossed modules;

� the actor crossed square of a crossed module;

� crossed squares and their morphisms (experimental version);

� crossed modules of groupoids (experimental version).

It is loaded with the command
Example

gap> LoadPackage("xmod");

The term crossed module was introduced by J. H. C. Whitehead in [Whi48], [Whi49]. Loday,

in [Lod82], reformulated the notion of a crossed module as a cat1-group. Norrie [Nor90], [Nor87]

and Gilbert [Gil90] have studied derivations, automorphisms of crossed modules and the actor of

a crossed module, while Ellis [Ell84] has investigated higher dimensional analogues. Properties of

induced crossed modules have been determined by Brown, Higgins and Wensley in [BH78], [BW95]

and [BW96]. For further references see [AW00], where we discuss some of the data structures and

algorithms used in this package, and also tabulate isomorphism classes of cat1-groups up to size 30.

XMod was originally implemented in 1997 using theGAP 3 language. In April 2002 the �rst and

third parts were converted to GAP 4, the pre-structures were added, and version 2.001 was released.

The �nal two parts, covering derivations, sections and actors, were included in the January 2004

release 2.002 forGAP 4.4. Many of the function names have been changed during the conversion, for

example ConjugationXMod has become XModByNormalSubgroup. For a list of name changes see

the �le names.pdf in the doc directory.

In October 2015 Alper Odabaş and Enver Uslu were added to the list of package authors. Their

functions for computing isoclinism classes of groups and crossed modules are contained in Chapter

4, and are described in detail in their paper [IOU16].

5

XMod 6

The current version is 2.59 for GAP 4.8, released on 21st March 2017.

The package may be obtained as a compressed tar �le xmod-2.59.tar.gz by ftp from one of the

following sites:

� any GAP archive, e.g. http://www.gap-system.org/Packages/packages.html;

� the Bangor site: http://www.maths.bangor.ac.uk/chda/gap4/xmod/xmod.html;

� the package GitHub repository: https://github.com/gap-packages/xmod.

Crossed modules and cat1-groups are special types of 2-dimensional groups [Bro82], [BHS11],

and are implemented as 2dDomains and 2dGroups having a Source and a Range.

The package divides into eight parts. The �rst part is concerned with the standard constructions

for pre-crossed modules and crossed modules; together with direct products; normal sub-crossed mod-

ules; and quotients. Operations for constructing pre-cat1-groups and cat1-groups, and for converting

between cat1-groups and crossed modules, are also included.

The second part is concerned with morphisms of (pre-)crossed modules and (pre-)cat1-groups,

together with standard operations for morphisms, such as composition, image and kernel.

The third part is the most recent part of the package, introduced in October 2015. Additional

operations and properties for crossed modules are included in Section 4.1. Then, in 4.2 and 4.3 there

are functions for isoclinism of groups and crossed modules.

The fourth part is concerned with the equivalent notions of derivation for a crossed module and

section for a cat1-group, and the monoids which they form under the Whitehead multiplication.

The �fth part deals with actor crossed modules and actor cat1-groups. For the actor crossed

module Act(X) of a crossed module X we require representations for the Whitehead group of

regular derivations ofX and for the group of automorphisms ofX . The construction also provides

an inner morphism fromX to Act(X) whose kernel is the centre ofX .

The sixth part, which remains under development, contains functions to compute induced crossed

modules.

Since version 2.007 there are experimental functions for crossed squares and their morphisms,

structures which arise as 3-dimensional groups. Examples of these are inclusions of normal sub-

crossed modules, and the inner morphism from a crossed module to its actor.

The eighth part has some experimental functions for crossed modules of groupoids, interacting

with the package Gpd. Much more work on this is needed.

Future plans include the implementation of group-graphs which will provide examples of pre-

crossed modules (their implementation will require interaction with graph-theoretic functions inGAP

4). There are also plans to implement cat2-groups, and conversion betwen these and crossed squares.

The equivalent categories XMod (crossed modules) and Cat1 (cat1-groups) are also equivalent to

GpGpd, the subcategory of group objects in the category Gpd of groupoids. Finite groupoids have been

implemented in Emma Moore's package Gpd [Moo01] for groupoids and crossed resolutions.

In order that the user has some control of the verbosity of the XMod package's functions, an

InfoClass InfoXMod is provided (see Chapter ref:Info Functions in theGAPReferenceManual

for a description of the Infomechanism). By default, the InfoLevel of InfoXMod is 0; progressively

more information is supplied by raising the InfoLevel to 1, 2 and 3.

Example

gap> SetInfoLevel(InfoXMod, 1); #sets the InfoXMod level to 1

http://www.gap-system.org/Packages/packages.html
http://www.maths.bangor.ac.uk/chda/gap4/xmod/xmod.html
https://github.com/gap-packages/xmod

XMod 7

Once the package is loaded, the manual doc/manual.pdf can be found in the documentation

folder. The html versions, with or without MathJax, should be rebuilt as follows:

Example

gap> ReadPackage("xmod, "makedocrel.g");

It is possible to check that the package has been installed correctly by running the test �les:

Example

gap> ReadPackage("xmod", "tst/testall.g");

#I Testing .../pkg/xmod/tst/gp2obj.tst

...

Additional information can be found on the Computational Higher-dimensional Discrete Algebra

website at: http://pages.bangor.ac.uk/~mas023/chda/intro.html.

http://pages.bangor.ac.uk/~mas023/chda/intro.html

Chapter 2

2d-groups : crossed modules and

cat1-groups

2.1 Constructions for crossed modules

A crossed module (of groups) X = (¶ : S ! R) consists of a group homomorphism ¶ , called the

boundary ofX , with source S and range R. The group R acts on itself by conjugation, and on S by

an action a : R! Aut(S) such that, for all s;s1;s2 2 S and r 2 R,

XMod 1 : ¶ (sr) = r�1(¶ s)r = (¶ s)r; XMod 2 : s
¶ s2
1 = s�1

2 s1s2 = s1
s2 :

When only the �rst of these axioms is satis�ed, the resulting structure is a pre-crossed module (see

section 2.3). (Much of the literature on crossed modules uses left actions, but we have chosen to use

right actions in this package since that is the standard choice for group actions in GAP.)

The kernel of ¶ is abelian.

There are a variety of constructors for crossed modules:

2.1.1 XMod

. XMod(args) (function)

. XModByBoundaryAndAction(bdy, act) (operation)

. XModByTrivialAction(bdy) (operation)

. XModByNormalSubgroup(G, N) (operation)

. XModByCentralExtension(bdy) (operation)

. XModByAutomorphismGroup(grp) (operation)

. XModByInnerAutomorphismGroup(grp) (operation)

. XModByGroupOfAutomorphisms(G, A) (operation)

. XModByAbelianModule(abmod) (operation)

. DirectProduct(X1, X2) (operation)

The global function XMod implements one of the following standard constructions:

� A trivial action crossed module (¶ : S! R) has sr = s for all s 2 S; r 2 R, the source is abelian

and the image lies in the centre of the range.

8

XMod 9

� A conjugation crossed module is the inclusion of a normal subgroup SER, where R acts on S

by conjugation.

� A central extension crossed module has as boundary a surjection ¶ : S! R, with central kernel,

where r 2 R acts on S by conjugation with ¶�1r.

� An automorphism crossed module has as range a subgroup R of the automorphism group Aut(S)
of S which contains the inner automorphism group of S. The boundary maps s 2 S to the inner

automorphism of S by s.

� A crossed abelian module has an abelian module as source and the zero map as boundary.

� The direct product X1�X2 of two crossed modules has source S1� S2, range R1�R2 and

boundary ¶1�¶2, with R1; R2 acting trivially on S2; S1 respectively.

2.1.2 Source

. Source(X0) (attribute)

. Range(X0) (attribute)

. Boundary(X0) (attribute)

. AutoGroup(X0) (attribute)

. XModAction(X0) (attribute)

The following attributes are used in the construction of a crossed module X0.

� Source(X0) and Range(X0) are the source S and range R of ¶ , the boundary Boundary(X0);

� AutoGroup(X0) is a group of automorphisms of S;

� XModAction(X0) is a homomorphism from R to AutoGroup(X0).

2.1.3 Size

. Size(X0) (attribute)

. Name(X0) (attribute)

. IdGroup(X0) (attribute)

. ExternalSetXMod(X0) (attribute)

More familiar attributes are Name, Size and IdGroup. The name is formed by concatenating the

names of the source and range (if these exist). Size and IdGroup return two-element lists.

The ExternalSetXMod for a crossed module is the source group considered as a G-set of the

range group using the crossed module action.

The Display function is used to print details of 2d-groups.

In the simple example below, X1 is an automorphism crossed module, using a cyclic group of size

�ve. The Print statements at the end list the GAP representations, properties and attributes of X1.

Example

gap> c5 := Group((5,6,7,8,9));;

gap> SetName(c5, "c5");

gap> X1 := XModByAutomorphismGroup(c5);

XMod 10

[c5 -> PAut(c5)]

gap> Display(X1);

Crossed module [c5 -> PAut(c5)] :-

: Source group c5 has generators:

[(5,6,7,8,9)]

: Range group PAut(c5) has generators:

[(1,2,3,4)]

: Boundary homomorphism maps source generators to:

[()]

: Action homomorphism maps range generators to automorphisms:

(1,2,3,4) --> { source gens --> [(5,7,9,6,8)] }

This automorphism generates the group of automorphisms.

gap> Size(X1); IdGroup(X1);

[5, 4]

[[5, 1], [4, 1]]

gap> ext := ExternalSetXMod(X1);

<xset:[(), (5,6,7,8,9), (5,7,9,6,8), (5,8,6,9,7), (5,9,8,7,6)]>

gap> Orbits(ext);

[[()], [(5,6,7,8,9), (5,7,9,6,8), (5,9,8,7,6), (5,8,6,9,7)]]

gap> RepresentationsOfObject(X1);

["IsComponentObjectRep", "IsAttributeStoringRep", "IsPreXModObj"]

gap> KnownAttributesOfObject(X1);

["Name", "Size", "Range", "Source", "IdGroup", "Boundary", "AutoGroup",

"XModAction", "ExternalSetXMod"]

2.2 Properties of crossed modules

The underlying category structures for the objects constructed in this chapter follow the sequence

Is2dDomain; Is2dMagma; Is2dMagmaWithOne; Is2dMagmaWithInverses, mirroring the situa-

tion for (one-dimensional) groups. From these we construct Is2dSemigroup, Is2dMonoid and

Is2dGroup.

There are then a variety of properties associated with crossed modules, starting with IsPreXMod

and IsXMod.

2.2.1 IsXMod

. IsXMod(X0) (property)

. IsPreXMod(X0) (property)

. IsPerm2dGroup(X0) (property)

. IsPc2dGroup(X0) (property)

. IsFp2dGroup(X0) (property)

A structure which has IsPerm2dGroup is a precrossed module or a pre-cat1-group (see sec-

tion 2.4) whose source and range are both permutation groups. The properties IsPc2dGroup,

IsFp2dGroup are de�ned similarly. In the example below we see that X1 has IsPreXMod,

IsXMod and IsPerm2dGroup. There are also properties corresponding to the various construc-

tion methods listed in section 2.1: IsTrivialAction2dGroup; IsNormalSubgroup2dGroup;

IsCentralExtension2dGroup; IsAutomorphismGroup2dGroup; IsAbelianModule2dGroup.

XMod 11

Example

gap> KnownPropertiesOfObject(X1);

["IsEmpty", "IsTrivial", "IsNonTrivial", "IsFinite",

"CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree",

"IsGeneratorsOfSemigroup", "IsPreXModDomain", "IsPerm2dGroup", "IsPreXMod",

"IsXMod", "IsAutomorphismGroup2dGroup"]

2.2.2 SubXMod

. SubXMod(X0, src, rng) (operation)

. TrivialSubXMod(X0) (attribute)

. NormalSubXMods(X0) (attribute)

With the standard crossed module constructors listed above as building blocks, sub-crossed mod-

ules, normal sub-crossed modules N CX , and also quotients X =N may be constructed. A sub-

crossed moduleS = (d : N !M) is normal inX = (¶ : S! R) if

� N;M are normal subgroups of S;R respectively,

� d is the restriction of ¶ ,

� nr 2 N for all n 2 N; r 2 R,

� (s�1)ms 2 N for all m 2M; s 2 S.

These conditions ensure that MnN is normal in the semidirect product Rn S. (Note that hs;mi =
(s�1)ms is a displacement: see Displacement (4.1.3).)

A method for IsNormal for crossed modules is provided. See section 4.1 for quotient crossed

modules and natural homomorphisms.

The �ve normal subcrossed modules of X4 found in the following example are [id,id],

[k4,k4], [k4,a4], [a4,a4] and X4 itself.

Example

gap> s4 := Group((1,2), (2,3), (3,4));;

gap> a4 := Subgroup(s4, [(1,2,3), (2,3,4)]);;

gap> k4 := Subgroup(a4, [(1,2)(3,4), (1,3)(2,4)]);;

gap> SetName(s4,"s4"); SetName(a4,"a4"); SetName(k4,"k4");

gap> X4 := XModByNormalSubgroup(s4, a4);

[a4->s4]

gap> Y4 := SubXMod(X4, k4, a4);

[k4->a4]

gap> IsNormal(X4,Y4);

true

gap> NX4 := NormalSubXMods(X4);;

gap> Length(NX4);

5

XMod 12

2.3 Pre-crossed modules

2.3.1 PreXModByBoundaryAndAction

. PreXModByBoundaryAndAction(bdy, act) (operation)

. SubPreXMod(X0, src, rng) (operation)

If axiom XMod 2 is not satis�ed, the corresponding structure is known as a pre-crossed module.

Example

gap> b1 := (11,12,13,14,15,16,17,18);; b2 := (12,18)(13,17)(14,16);;

gap> d16 := Group(b1, b2);;

gap> sk4 := Subgroup(d16, [b1^4, b2]);;

gap> SetName(d16, "d16"); SetName(sk4, "sk4");

gap> bdy16 := GroupHomomorphismByImages(d16, sk4, [b1,b2], [b1^4,b2]);;

gap> aut1 := GroupHomomorphismByImages(d16, d16, [b1,b2], [b1^5,b2]);;

gap> aut2 := GroupHomomorphismByImages(d16, d16, [b1,b2], [b1,b2^4*b2]);;

gap> aut16 := Group([aut1, aut2]);;

gap> act16 := GroupHomomorphismByImages(sk4, aut16, [b1^4,b2], [aut1,aut2]);;

gap> P16 := PreXModByBoundaryAndAction(bdy16, act16);

[d16->sk4]

gap> IsXMod(P16);

false

2.3.2 PeifferSubgroup

. PeifferSubgroup(X0) (attribute)

. XModByPeifferQuotient(prexmod) (attribute)

The Peiffer subgroup of a pre-crossed module P of S is the subgroup of ker(¶) generated by Peiffer
commutators

bs1;s2c = (s�1
1)¶ s2 s�1

2 s1 s2 = h¶ s2;s1i [s1;s2] :

ThenP = (0 : P!f1Rg) is a normal sub-pre-crossed module ofX andX =P = (¶ : S=P! R) is
a crossed module.

In the following example the Peiffer subgroup is cyclic of size 4.

Example

gap> P := PeifferSubgroup(P16);

Group([(11,15)(12,16)(13,17)(14,18), (11,17,15,13)(12,18,16,14)])

gap> X16 := XModByPeifferQuotient(P16);

[D16/P->sk4]

gap> Display(X16);

Crossed module [D16/P->sk4] :-

: Source group has generators:

[f1, f2]

: Range group has generators:

[(11,15)(12,16)(13,17)(14,18), (12,18)(13,17)(14,16)]

: Boundary homomorphism maps source generators to:

XMod 13

[(12,18)(13,17)(14,16), (11,15)(12,16)(13,17)(14,18)]

The automorphism group is trivial

gap> iso16 := IsomorphismPermGroup(Source(X16));;

gap> S16 := Image(iso16);

Group([(1,2), (3,4)])

2.4 Cat1-groups and pre-cat1-groups

2.4.1 Source

. Source(C) (attribute)

. Range(C) (attribute)

. TailMap(C) (attribute)

. HeadMap(C) (attribute)

. RangeEmbedding(C) (attribute)

. KernelEmbedding(C) (attribute)

. Boundary(C) (attribute)

. Name(C) (attribute)

. Size(C) (attribute)

These are the attributes of a cat1-group C in this implementation.

In [Lod82], Loday reformulated the notion of a crossed module as a cat1-group, namely a group

G with a pair of homomorphisms t;h : G ! G having a common image R and satisfying certain

axioms. We �nd it convenient to de�ne a cat1-group C = (e; t;h : G! R) as having source group G,

range group R, and three homomorphisms: two surjections t;h : G! R and an embedding e : R! G

satisfying:

Cat 1 : t � e = h� e= idR; Cat 2 : [ker t;kerh] = f1Gg:

It follows that t � e�h= h,~ h� e� t = t, t � e� t = t,~ h� e�h= h.

The maps t;h are often referred to as the source and target, but we choose to call them the tail

and head of C , because source is the GAP term for the domain of a function. The RangeEmbedding

is the embedding of R in G, the KernelEmbedding is the inclusion of the kernel of t in G, and the

Boundary is the restriction of h to the kernel of t.

2.4.2 Cat1

. Cat1(args) (attribute)

. PreCat1ByTailHeadEmbedding(t, h, e) (attribute)

. PreCat1ByEndomorphisms(t, h) (attribute)

. PreCat1ByNormalSubgroup(G, N) (attribute)

. Cat1ByPeifferQuotient(P) (attribute)

. Reverse(C0) (attribute)

These are some of the constructors for pre-cat1-groups and cat1-groups. The following listing

shows an example of a cat1-group of pc-groups of size [28;12].

XMod 14

Example

gap> G2 := SmallGroup(288, 956); SetName(G2, "G2");

<pc group of size 288 with 7 generators>

gap> d12 := DihedralGroup(12); SetName(d12, "d12");

<pc group of size 12 with 3 generators>

gap> a1 := d12.1;; a2 := d12.2;; a3 := d12.3;; a0 := One(d12);;

gap> gensG2 := GeneratorsOfGroup(G2);;

gap> t2 := GroupHomomorphismByImages(G2, d12, gensG2,

> [a0, a1*a3, a2*a3, a0, a0, a3, a0]);;

gap> h2 := GroupHomomorphismByImages(G2, d12, gensG2,

> [a1*a2*a3, a0, a0, a2*a3, a0, a0, a3^2]);;

gap> e2 := GroupHomomorphismByImages(d12, G2, [a1,a2,a3],

> [G2.1*G2.2*G2.4*G2.6^2, G2.3*G2.4*G2.6^2*G2.7, G2.6*G2.7^2]);

[f1, f2, f3] -> [f1*f2*f4*f6^2, f3*f4*f6^2*f7, f6*f7^2]

gap> C2 := PreCat1ByTailHeadEmbedding(t2, h2, e2);

[G2=>d12]

gap> IsCat1(C2);

true

gap> Display(C2);

Cat1-group [G2=>d12] :-

: Source group G2 has generators:

[f1, f2, f3, f4, f5, f6, f7]

: Range group d12 has generators:

[f1, f2, f3]

: tail homomorphism maps source generators to:

[<identity> of ..., f1*f3, f2*f3, <identity> of ..., <identity> of ...,

f3, <identity> of ...]

: head homomorphism maps source generators to:

[f1*f2*f3, <identity> of ..., <identity> of ..., f2*f3, <identity> of ...,

<identity> of ..., f3^2]

: range embedding maps range generators to:

[f1*f2*f4*f6^2, f3*f4*f6^2*f7, f6*f7^2]

: kernel has generators:

[f1, f4, f5, f7]

: boundary homomorphism maps generators of kernel to:

[f1*f2*f3, f2*f3, <identity> of ..., f3^2]

: kernel embedding maps generators of kernel to:

[f1, f4, f5, f7]

2.5 Properties of cat1-groups

Many of the properties listed in section 2.2 apply to pre-cat1-groups and to cat1-groups since these

are also 2d-groups. There are also more speci�c properties.

XMod 15

2.5.1 IsCat1

. IsCat1(C0) (property)

. IsPreXCat1(C0) (property)

. IsIdentityCat1(C0) (property)

. IsEndomorphismPreCat1(C0) (property)

IsIdentityCat1(C0) is true when the head and tail maps of C0 are identity mappings.

IsEndomorphismPreCat1(C0) is true when the range of C0 is a subgroup of the source.

Example

gap> KnownPropertiesOfObject(C2);

["CanEasilyCompareElements", "CanEasilySortElements", "IsDuplicateFree",

"IsGeneratorsOfSemigroup", "IsPreCat1Domain", "IsPerm2dGroup",

"IsPc2dGroup", "IsPreCat1", "IsCat1", "IsIdentityCat1",

"IsEndomorphismPreCat1"]

gap> IsEndomorphissmPreCat1(C2);

false

2.5.2 Cat1OfXMod

. Cat1OfXMod(X0) (attribute)

. XModOfCat1(C0) (attribute)

. PreCat1OfPreXMod(P0) (attribute)

. PreXModOfPreCat1(P0) (attribute)

The category of crossed modules is equivalent to the category of cat1-groups, and the functors

between these two categories may be described as follows. Starting with the crossed module X =
(¶ : S! R) the group G is de�ned as the semidirect product G= RnS using the action fromX , with

multiplication rule

(r1;s1)(r2;s2) = (r1r2;s1
r2s2):

The structural morphisms are given by

t(r;s) = r; h(r;s) = r(¶ s); er = (r;1):

On the other hand, starting with a cat1-group C = (e; t;h :G! R), we de�ne S= ker t, the range R is

unchanged, and ¶ = h jS. The action of R on S is conjugation in G via the embedding of R in G.

Example

gap> X2 := XModOfCat1(C2);;

gap> Display(X2);

Crossed module X([G2=>d12]) :-

: Source group has generators:

[f1, f4, f5, f7]

: Range group d12 has generators:

[f1, f2, f3]

: Boundary homomorphism maps source generators to:

XMod 16

[f1*f2*f3, f2*f3, <identity> of ..., f3^2]

: Action homomorphism maps range generators to automorphisms:

f1 --> { source gens --> [f1*f5, f4*f5, f5, f7^2] }

f2 --> { source gens --> [f1*f5*f7^2, f4, f5, f7] }

f3 --> { source gens --> [f1*f7, f4, f5, f7] }

These 3 automorphisms generate the group of automorphisms.

: associated cat1-group is [G2=>d12]

gap> StructureDescription(X2);

["D24", "D12"]

2.6 Selection of a small cat1-group

The Cat1 function may also be used to select a cat1-group from a data �le. All cat1-structures on

groups of size up to 70 (ordered according to theGAP 4 numbering of small groups) are stored in a list

in �le cat1data.g. Global variables CAT1_LIST_MAX_SIZE := 70 and CAT1_LIST_CLASS_SIZES

are also stored. The data is read into the list CAT1_LIST only when this function is called.

2.6.1 Cat1Select

. Cat1Select(size, gpnum, num) (attribute)

The function Cat1Select may be used in three ways. Cat1Select(size) returns the names

of the groups with this size, while Cat1Select(size, gpnum) prints a list of cat1-structures for

this chosen group. Cat1Select(size, gpnum, num) returns the chosen cat1-group.

The example below is the �rst case in which t 6= h and the associated conjugation crossed module

is given by the normal subgroup c3 of s3.

Example

gap> ## check the number of groups of size 18

gap> L18 := Cat1Select(18);

Usage: Cat1Select(size, gpnum, num);

["D18", "C18", "C3 x S3", "(C3 x C3) : C2", "C6 x C3"]

gap> ## check the number of cat1-structrues on the fourth of these

gap> Cat1Select(18, 4);

Usage: Cat1Select(size, gpnum, num);

There are 4 cat1-structures for the group (C3 x C3) : C2.

Using small generating set [f1, f2, f2*f3] for source of homs.

[[range gens], [tail genimages], [head genimages]] :-

(1) [[f1], [f1, <identity> of ..., <identity> of ...],

[f1, <identity> of ..., <identity> of ...]]

(2) [[f1, f3], [f1, <identity> of ..., f3],

[f1, <identity> of ..., f3]]

(3) [[f1, f3], [f1, <identity> of ..., f3],

[f1, f3^2, <identity> of ...]]

(4) [[f1, f2, f2*f3], tail = head = identity mapping]

4

gap> ## select the third of these cat1-structures

XMod 17

gap> C18 := Cat1(18, 4, 3);

[(C3 x C3) : C2=>Group([f1, <identity> of ..., f3])]

gap> ## convert from a pc-cat1-group to a permutation cat1-group

gap> iso18 := IsomorphismPermObject(C18);;

gap> PC18 := Image(iso18);;

gap> Display(PC18);

Cat1-group :-

: Source group has generators:

[(2,3)(5,6), (4,5,6), (1,2,3)]

: Range group has generators:

[(2,3), (), (1,2,3)]

: tail homomorphism maps source generators to:

[(2,3), (), (1,2,3)]

: head homomorphism maps source generators to:

[(2,3), (1,3,2), (1,2,3)]

: range embedding maps range generators to:

[(2,3)(5,6), (), (1,2,3)]

: kernel has generators:

[(4,5,6)]

: boundary homomorphism maps generators of kernel to:

[(1,3,2)]

: kernel embedding maps generators of kernel to:

[(4,5,6)]

gap> convert the result to the associated permutation crossed module

gap> X18 := XModByCat1(PC18);;

gap> Display(X18);

Crossed module:-

: Source group has generators:

[(4,5,6)]

: Range group has generators:

[(2,3), (), (1,2,3)]

: Boundary homomorphism maps source generators to:

[(1,3,2)]

: Action homomorphism maps range generators to automorphisms:

(2,3) --> { source gens --> [(4,6,5)] }

() --> { source gens --> [(4,5,6)] }

(1,2,3) --> { source gens --> [(4,5,6)] }

These 3 automorphisms generate the group of automorphisms.

: associated cat1-group is [..=>..]

2.6.2 AllCat1sBasic

. AllCat1sBasic(gp) (operation)

For a group G of size greater than 70 which is reasonably straightforward this function may be

used to construct a list of all cat1-group structures on G. The operation also attempts to write output

to a �le in the folder xmod/lib. (Other operations in the �le cat1data.gi have been used to deal

with the more complicated groups of size up to 70, but these are not described here.)

Van Luyen Le has a more ef�cient algorithm, extending the data up to groups of size 171, which

is expected to appear in a future release of HAP.

XMod 18

Example

gap> gp := SmallGroup(102, 2);

<pc group of size 102 with 3 generators>

gap> StructureDescription(gp);

"C3 x D34"

gap> all := AllCat1sBasic(gp);

#I Edit last line of .../xmod/lib/nn.kk.out to end with]]]]]

[[Group([f1, f2, f3])=>Group([f1, <identity> of ..., <identity> of ...

])], [Group([f1, f2, f3])=>Group([f1, f2, <identity> of ...])],

[Group([f1, f2, f3])=>Group([f1, <identity> of ..., f3])],

[Group([f1, f2, f3])=>Group([f1, f2, f3])]]

2.7 More functions for crossed modules and cat1-groups

Chapter 4 contains functions for quotient crossed modules; centre of a crossed module; commutator

and derived subcrossed modules; etc.

Here we mention two functions for groups which have been extended to the two-dimensional case.

2.7.1 IdGroup

. IdGroup(2dgroup) (operation)

. StructureDescription(2dgroup) (operation)

These functions return two-element lists formed by applying the function to the source and range

of the 2d-group.

Example

gap> IdGroup(X2);

[[24, 6], [12, 4]]

gap> StructureDescription(C2);

["(S3 x D24) : C2", "D12"]

Chapter 3

2d-mappings

3.1 Morphisms of 2d-groups

This chapter describes morphisms of (pre-)crossed modules and (pre-)cat1-groups.

3.1.1 Source

. Source(map) (attribute)

. Range(map) (attribute)

. SourceHom(map) (attribute)

. RangeHom(map) (attribute)

Morphisms of 2d-groups are implemented as 2d-mappings. These have a pair of 2d-groups as

source and range, together with two group homomorphisms mapping between corresponding source

and range groups. These functions return fail when invalid data is supplied.

3.2 Morphisms of pre-crossed modules

3.2.1 IsXModMorphism

. IsXModMorphism(map) (property)

. IsPreXModMorphism(map) (property)

A morphism between two pre-crossed modules X1 = (¶1 : S1 ! R1) and X2 = (¶2 : S2 ! R2)
is a pair (s ;r), where s : S1 ! S2 and r : R1 ! R2 commute with the two boundary maps and are

morphisms for the two actions:

¶2 �s = r �¶1; s(sr) = (ss)rr:

Thus s is the SourceHom and r is the RangeHom. WhenX1 =X2 and s ;r are automorphisms then

(s ;r) is an automorphism ofX1. The group of automorphisms is denoted by Aut(X1).

3.2.2 IsInjective

. IsInjective(map) (property)

. IsSurjective(map) (property)

19

XMod 20

. IsSingleValued(map) (property)

. IsTotal(map) (property)

. IsBijective(map) (property)

. IsEndo2dMapping(map) (property)

The usual properties of mappings are easily checked. It is usually suf�cient to verify that both the

SourceHom and the RangeHom have the required property.

3.2.3 XModMorphism

. XModMorphism(args) (function)

. XModMorphismByHoms(X1, X2, sigma, rho) (operation)

. PreXModMorphism(args) (function)

. PreXModMorphismByHoms(P1, P2, sigma, rho) (operation)

. InclusionMorphism2dDomains(X1, S1) (operation)

. InnerAutomorphismXMod(X1, r) (operation)

. IdentityMapping(X1) (attribute)

. IsomorphismPerm2dGroup(obj) (function)

. IsomorphismPc2dGroup(obj) (function)

These are the constructors for morphisms of pre-crossed and crossed modules.

In the following example we construct a simple automorphism of the crossed module X1 con-

structed in the previous chapter.

Example

gap> sigma1 := GroupHomomorphismByImages(c5, c5, [(5,6,7,8,9)]

[(5,9,8,7,6)]);;

gap> rho1 := IdentityMapping(Range(X1));

IdentityMapping(PAut(c5))

gap> mor1 := XModMorphism(X1, X1, sigma1, rho1);

[[c5->PAut(c5))] => [c5->PAut(c5))]]

gap> Display(mor1);

Morphism of crossed modules :-

: Source = [c5->PAut(c5))] with generating sets:

[(5,6,7,8,9)]

[(1,2,3,4)]

: Range = Source

: Source Homomorphism maps source generators to:

[(5,9,8,7,6)]

: Range Homomorphism maps range generators to:

[(1,2,3,4)]

gap> IsAutomorphism2dDomain(mor1);

true

gap> Order(mor1);

2

gap> RepresentationsOfObject(mor1);

["IsComponentObjectRep", "IsAttributeStoringRep", "Is2dMappingRep"]

gap> KnownPropertiesOfObject(mor1);

["CanEasilyCompareElements", "CanEasilySortElements", "IsTotal",

"IsSingleValued", "IsInjective", "IsSurjective", "RespectsMultiplication",

XMod 21

"IsPreXModMorphism", "IsXModMorphism", "IsEndomorphism2dDomain",

"IsAutomorphism2dDomain"]

gap> KnownAttributesOfObject(mor1);

["Name", "Order", "Range", "Source", "SourceHom", "RangeHom"]

3.3 Morphisms of pre-cat1-groups

Amorphism of pre-cat1-groups from C1 = (e1; t1;h1 :G1 ! R1) to C2 = (e2; t2;h2 :G2 ! R2) is a pair
(g;r) where g : G1 ! G2 and r : R1 ! R2 are homomorphisms satisfying

h2 � g = r �h1; t2 � g = r � t1; e2 �r = g � e1:

3.3.1 IsCat1Morphism

. IsCat1Morphism(map) (property)

. IsPreCat1Morphism(map) (property)

. Cat1Morphism(args) (function)

. Cat1MorphismByHoms(C1, C2, gamma, rho) (operation)

. PreCat1Morphism(args) (function)

. PreCat1MorphismByHoms(P1, P2, gamma, rho) (operation)

. InclusionMorphism2dDomains(C1, S1) (operation)

. InnerAutomorphismCat1(C1, r) (operation)

. IdentityMapping(C1) (attribute)

. SmallerDegreePerm2dDomain(obj) (function)

The global function IsomorphismPermObject calls IsomorphismPerm2dGroup, which con-

structs a morphism whose SourceHom and RangeHom are calculated using IsomorphismPermGroup

on the source and range. Similarly SmallerDegreePermutationRepresentation is used on the

two groups to obtain SmallerDegreePerm2dDomain. Names are assigned automatically.

Example

gap> iso2 := IsomorphismPerm2dGroup(C2);

[[G2=>d12] => [..]]

gap> Display(iso2);

Morphism of cat1-groups :-

: Source = [G2=>d12] with generating sets:

[f1, f2, f3, f4, f5, f6, f7]

[f1, f2, f3]

: Range = P[G2=>d12] with generating sets:

[(6,12)(8,15)(9,16)(11,19)(13,26)(14,22)(17,27)(18,25)(20,21)(23,24),

(2, 3)(5,10)(9,16)(11,18)(17,23)(19,25)(24,27),

(4, 5, 7,10)(6, 9,12,16)(8,11,14,18)(13,17,20,23)(15,19,22,25)

(21,24,26,27), (4, 6, 7,12)(5, 9,10,16)(8,13,14,20)(11,17,18,23)

(15,21,22,26)(19,24,25,27), (4, 7)(5,10)(6,12)(8,14)(9,16)(11,18)

(13,20)(15,22)(17,23)(19,25)(21,26)(24,27), (1, 2, 3),

(4, 8,15)(5,11,19)(6,13,21)(7,14,22)(9,17,24)(10,18,25)(12,20,26)

(16,23,27)]

[(2,6)(3,5), (1,2,3,4,5,6), (1,3,5)(2,4,6)]

XMod 22

: Source Homomorphism maps source generators to:

[(6,12)(8,15)(9,16)(11,19)(13,26)(14,22)(17,27)(18,25)(20,21)(23,24),

(2, 3)(5,10)(9,16)(11,18)(17,23)(19,25)(24,27),

(4, 5, 7,10)(6, 9,12,16)(8,11,14,18)(13,17,20,23)(15,19,22,25)

(21,24,26,27), (4, 6, 7,12)(5, 9,10,16)(8,13,14,20)(11,17,18,23)

(15,21,22,26)(19,24,25,27), (4, 7)(5,10)(6,12)(8,14)(9,16)(11,18)

(13,20)(15,22)(17,23)(19,25)(21,26)(24,27), (1, 2, 3),

(4, 8,15)(5,11,19)(6,13,21)(7,14,22)(9,17,24)(10,18,25)(12,20,26)

(16,23,27)]

: Range Homomorphism maps range generators to:

[(2,6)(3,5), (1,2,3,4,5,6), (1,3,5)(2,4,6)]

3.4 Operations on morphisms

3.4.1 CompositionMorphism

. CompositionMorphism(map2, map1) (operation)

Composition of morphisms (written (<map1> * <map2>) when maps act on the right) calls the

CompositionMorphism function for maps (acting on the left), applied to the appropriate type of

2d-mapping.

Example

gap> H2 := Subgroup(G2,[G2.3,G2.4,G2.6,G2.7]); SetName(H2, "H2");

Group([f3, f4, f6, f7])

gap> c6 := Subgroup(d12, [b,c]); SetName(c6, "c6");

Group([f2, f3])

gap> SC2 := Sub2dGroup(C2, H2, c6);

[H2=>c6]

gap> IsCat1(SC2);

true

gap> inc2 := InclusionMorphism2dDomains(C2, SC2);

[[H2=>c6] => [G2=>d12]]

gap> CompositionMorphism(iso2, inc);

[[H2=>c6] => P[G2=>d12]]

3.4.2 Kernel

. Kernel(map) (operation)

. Kernel2dMapping(map) (attribute)

The kernel of a morphism of crossed modules is a normal subcrossed module whose groups are

the kernels of the source and target homomorphisms. The inclusion of the kernel is a standard example

of a crossed square, but these have not yet been implemented.

Example

gap> c2 := Group((19,20));

XMod 23

Group([(19,20)])

gap> X0 := XModByNormalSubgroup(c2, c2); SetName(X0, "X0");

[Group([(19,20)])->Group([(19,20)])]

gap> SX2 := Source(X2);;

gap> genSX2 := GeneratorsOfGroup(SX2);

[f1, f4, f5, f7]

gap> sigma0 := GroupHomomorphismByImages(SX2,c2,genSX2,[(19,20),(),(),()]);

[f1, f4, f5, f7] -> [(19,20), (), (), ()]

gap> rho0 := GroupHomomorphismByImages(d12,c2,[a1,a2,a3],[(19,20),(),()]);

[f1, f2, f3] -> [(19,20), (), ()]

gap> mor0 := XModMorphism(X2, X0, sigma0, rho0);;

gap> K0 := Kernel(mor0);

[Group([<identity> of ..., f4, f5, f7])->Group(

[<identity> of ..., f2, f3])]

])]

Chapter 4

Isoclinism of groups and crossed modules

This chapter describes some functions written by Alper Odabaş and Enver Uslu, and reported in their

paper [IOU16]. Section 4.1 contains some additional basic functions for crossed modules, construct-

ing quotients, centres, centralizers and normalizers. In Sections 4.2 and 4.3 there are functions dealing

speci�cally with isoclinism for groups and for crossed modules. Since these functions represent a re-

cent addition to the package (as of November 2015), the function names are liable to change in future

versions. The notion of isoclinism has been crucial to the enumeration of groups of prime power

order, see for example James, Newman and O'Brien, [JNO90].

4.1 More operations for crossed modules

4.1.1 FactorXMod

. FactorXMod(X1, X2) (operation)

. NaturalMorphismByNormalSubXMod(X1, X2) (operation)

When X2 = (¶2 : S2 ! R2) is a normal subcrossed module of X1 = (¶1 : S1 ! R1), then the

quotient crossed module is (¶ : S2=S1 ! R2=R1) with the induced boundary and action maps.

Example

gap> d24 := DihedralGroup(24);; SetName(d24, "d24");

gap> X24 := XModByAutomorphismGroup(d24);; Size(X24);

[24, 48]

gap> nsx := NormalSubXMods(X24);;

gap> ids := List(nsx, n -> IdGroup(n));;

gap> pos1 := Position(ids, [[4,1], [8,3]]);;

gap> Xn1 := nsx[pos1];

[Group([f2*f4^2, f3*f4])->Group([f3, f4, f5])]

gap> Size(Xn1);

[4, 8]

gap> nat1 := NaturalMorphismByNormalSubXMod(X24, Xn1);

[[d24->PAut(d24)] => [..]]

gap> Qn1 := FactorXMod(X24, Xn1);;

gap> Size(Qn1);

[6, 6]

24

XMod 25

4.1.2 IntersectionSubXMods

. IntersectionSubXMods(X0, X1, X2) (operation)

When X1,X2 are subcrossed modules of X0, then the source and range of their intersection are the

intersections of the sources and ranges of X1 and X2 respectively.
Example

gap> pos2 := Position(ids, [[24,6], [12,4]]);;

gap> Xn2 := nsx[pos2];

[d24->Group([f1*f3, f2, f5])]

gap> pos3 := Position(ids, [[12,2], [24,5]]);;

gap> Xn3 := nsx[pos3];

[Group([f2, f3, f4])->Group([f1, f2, f4, f5])]

gap> Xn23 := IntersectionSubXMods(X24, Xn2, Xn3);

[Group([f2, f3, f4])->Group([f2, f5, f2^2, f2*f5, f2^2*f5])]

gap> [Size(Xn2), Size(Xn3), Size(Xn23)];

[[24, 12], [12, 24], [12, 6]]

4.1.3 Displacement

. Displacement(alpha, r, s) (operation)

. DisplacementSubgroup(X0) (attribute)

Commutators may be written [r;q] = r�1q�1rq= (q�1)rq= r�1rq, and satisfy identities

[r;q]p = [rp;qp]; [pr;q] = [p;q]r[r;q]; [r; pq] = [r;q][r; p]q; [r;q]�1 = [q;r]:

In a similar way, when a group R acts on a group S, the displacement of s 2 S by r 2 R is de�ned to be

hr;si := (s�1)rs 2 S. WhenX = (¶ : S! R) is a pre-crossed module, the �rst crossed module axiom

requires ¶ hr;si = [r;¶ s]. For a given action a the Displacement function may be used to calculate

hr;si. Displacements satisfy the following identities, where s; t 2 S; p;q;r 2 R:

hr;sip = hrp;spi; hqr;si= hq;sirhr;si; hr;sti= hr; tihr;sit ; hr;si�1 = hr�1;sri:

The DisplacementSubgroup ofX is the subgroup Disp(X) of S generated by these displacements.

The identities imply hr;sit = hr;str
�1

ihr�1; ti, so Disp(X) is normal in S.
Example

gap> pos4 := Position(ids, [[6,2], [24,14]]);;

gap> Xn4 := nsx[pos4];;

gap> Sn4 := Source(Xn4);;

gap> Rn4 := Range(Xn4);;

gap> r := Rn4.1;; s := Sn4.1;;

gap> d := Displacement(XModAction(Xn4), r, s);

f4

gap> bn4 := Boundary(Xn4);;

gap> Image(bn4, d) = Comm(r, Image(bn4, s));

true

gap> DisplacementSubgroup(Xn4);

Group([f4])

XMod 26

4.1.4 CommutatorSubXMod

. CommutatorSubXMod(X, X1, X2) (operation)

. CrossActionSubgroup(X, X1, X2) (operation)

WhenX1 = (N ! Q);X2 = (M! P) are two normal subcrossed modules ofX = (¶ : S! R),
the displacements hp;ni and hq;mi all map by ¶ into [Q;P]. These displacements form a normal sub-

group of S, called the CrossActionSubgroup. The CommutatorSubXMod [X1;X2] has this subgroup
as source and [P;Q] as range, and is normal inX .

Example

gap> CrossActionSubgroup(X24, Xn2, Xn3);

Group([f2])

gap> Cn23 := CommutatorSubXMod(X24, Xn2, Xn3);

[Group([f2])->Group([f2, f5])]

gap> Size(Cn23);

[12, 6]

gap> Xn23 = Cn23;

true

4.1.5 DerivedSubXMod

. DerivedSubXMod(X0) (attribute)

The DerivedSubXMod ofX is the normal subcrossed module [X ;X] = (¶ 0 : Disp(X)! [R;R])
where ¶ 0 is the restriction of ¶ (see page 66 of Norrie's thesis [Nor87]).

Example

gap> DXn4 := DerivedSubXMod(Xn4);

[Group([f4])->Group([f2])]

4.1.6 FixedPointSubgroupXMod

. FixedPointSubgroupXMod(X0, T, Q) (operation)

. StabilizerSubgroupXMod(X0, T, Q) (operation)

The FixedPointSubgroupXMod(X,T,Q) forX = (¶ : S! R) is the subgroup Fix(X ;T;Q) of
elements t 2 T 6 S individually �xed under the action of Q6 R.

The StabilizerSubgroupXMod(X,T,Q) forX is the subgroup Stab(X ;T;Q) of Q6 R whose

elements act trivially on the whole of T 6 S (see page 19 of Norrie's thesis [Nor87]).

Example

gap> fix := FixedPointSubgroupXMod(Xn4, Sn4, Rn4);

Group([f3*f4])

gap> stab := StabilizerSubgroupXMod(Xn4, Sn4, Rn4);

Group([f5, f2*f3])

XMod 27

4.1.7 CentreXMod

. CentreXMod(X0) (attribute)

. Centralizer(X, Y) (operation)

. Normalizer(X, Y) (operation)

The centre Z(X) ofX = (¶ : S! R) has as source the �xed point subgroup Fix(X ;S;R). The
range is the intersection of the centre Z(R) with the stabilizer subgroup.

When Y = (T ! Q) is a subcrossed module ofX = (¶ : S! R), the centralizer CX (Y) of Y
has as source the �xed point subgroup Fix(X ;S;Q). The range is the intersection of the centralizer

CR(Q) with Stab(X ;T;R).
The normalizer NX (Y) of Y has as source the subgroup of S consisting of the displacements

hs;qi which lie in S.

Example

gap> ZXn4 := CentreXMod(Xn4);

[Group([f3*f4])->Group([f3, f5])]

gap> IdGroup(ZXn4);

[[2, 1], [4, 2]]

gap> CDXn4 := Centralizer(Xn4, DXn4);

[Group([f3*f4])->Group([f2])]

gap> IdGroup(CDXn4);

[[2, 1], [3, 1]]

gap> NDXn4 := Normalizer(Xn4, DXn4);

[Group(<identity> of ...)->Group([f5, f2*f3])]

gap> IdGroup(NDXn4);

[[1, 1], [12, 5]]

4.1.8 CentralQuotient

. CentralQuotient(G) (attribute)

The CentralQuotient of a group G is the crossed module (G ! G=Z(G)) with the natural

homomorphism as the boundary map. This is a special case of XModByCentralExtension (see 2.1).

Similarly, the central quotient of a crossed module X is the crossed square (X)X =Z(X)
(see section 8.1).

Example

gap> Q24 := CentralQuotient(d24); Size(Q24);

[d24->Group([f1, f2, f3])]

[24, 12]

4.1.9 IsAbelian2dGroup

. IsAbelian2dGroup(X0) (property)

. IsAspherical2dGroup(X0) (property)

. IsSimplyConnected2dGroup(X0) (property)

XMod 28

. IsFaithful2dGroup(X0) (property)

A crossed module is abelian if it equal to its centre. This is the case when the range group is

abelian and the action is trivial.

A crossed module is aspherical if the boundary has trivial kernel.

A crossed module is simply connected if the boundary has trivial cokernel.

A crossed module is faithful if the action is faithful.
Example

gap> [IsAbelian2dGroup(Xn4), IsAbelian2dGroup(X24)];

[false, false]

gap> pos7 := Position(ids, [[3,1], [6,1]]);;

gap> [IsAspherical2dGroup(nsx[pos7]), IsAspherical2dGroup(X24)];

[true, false]

gap> [IsSimplyConnected2dGroup(Xn4), IsSimplyConnected2dGroup(X24)];

[true, true]

gap> [IsFaithful2dGroup(Xn4), IsFaithful2dGroup(X24)];

[false, true]

4.1.10 LowerCentralSeriesOfXMod

. LowerCentralSeriesOfXMod(X0) (attribute)

. IsNilpotent2dGroup(X0) (property)

. NilpotencyClass2dGroup(X0) (attribute)

Let Y be a subcrossed module ofX . A series of length n fromX to Y has the form

X = X0 D X1 D � � � D Xi D � � � D Xn = Y (16 i6 n):

The quotientsFi =Xi=Xi�1 are the factors of the series.

A factorFi is central ifXi�1EX andFi is a subcrossed module of the centre ofX =Xi�1.

A series is central if all its factors are central.

X is soluble if it has a series all of whose factors are abelian.

X is nilpotent is it has a series all of whose factors are central factors ofX .

The lower central series ofX is the sequence (see [Nor87], p.77):

X = G1(X) D G2(X) D � � � where G j(X) = [G j�1(X);X]:

IfX is nilpotent, then its lower central series is its most rapidly descending central series.

The least integer c such that Gc+1(X) is the trivial crossed module is the nilpotency class ofX .
Example

gap> LowerCentralSeries(X24);

[[d24->PAut(d24)], [Group([f2])->Group([f2, f5])],

[Group([f3*f4^2])->Group([f2])], [Group([f4])->Group([f2])]

]

gap> IsNilpotent2dGroup(X24);

false

gap> NilpotencyClassOf2dGroup(X24);

0

XMod 29

4.1.11 AllXMods

. AllXMods(args) (function)

The global function AllXMods may be called in three ways: as AllXMods(S,R) to compute all

crossed modules with chosen source and range groups; as AllXMods([n,m]) to compute all crossed

modules with a given size; or as AllXMods(ord) to compute all crossed modules whose associated

cat1-groups have a given size ord.

In the example we see that there are 4 crossed modules (C6 ! S3); forming a subset of the 17

crossed modules with size [6,6]; and that these form a subset of the 205 crossed modules whose

cat1-group has size 36. There are 40 precrossed modules with size [6,6].

Example

gap> xc6s3 := AllXMods(SmallGroup(6,2), SmallGroup(6,1));;

gap> Length(xc6s3);

4

gap> x66 := AllXMods([6,6]);;

gap> Length(x66);

17

gap> x36 := AllXMods(36);;

gap> Length(x36);

205

gap> size36 := List(x36, x -> [Size(Source(x)), Size(Range(x))]);;

gap> Collected(size36);

[[[1, 36], 14], [[2, 18], 7], [[3, 12], 21], [[4, 9], 14],

[[6, 6], 17], [[9, 4], 102], [[12, 3], 8], [[18, 2], 18],

[[36, 1], 4]]

4.1.12 IsomorphismXMods

. IsomorphismXMods(X1, X2) (operation)

. AllXModsUpToIsomorphism(list) (operation)

The function IsomorphismXMods computes an isomorphism m :X1 !X2, provided one exists,

or else returns fail. In the example below we see that the 17 crossed modules of size [6,6] in x66

(see the previous subsection) fall into 9 isomorphism classes.

The function AllXModsUpToIsomorphism takes a list of crossed modules and partitions them

into isomorphism classes.

Example

gap> IsomorphismXMods(x66[1], x66[2]);

[[Group([f1, f2])->Group([f1, f2])] => [Group([f1, f2])->Group(

[f1, f2])]]

gap> iso66 := AllXModsUpToIsomorphism(x66);; Length(iso66);

9

XMod 30

4.2 Isoclinism for groups

4.2.1 Isoclinism

. Isoclinism(G, H) (operation)

. AreIsoclinicDomains(G, H) (operation)

Let G;H be groups with central quotients Q(G) and Q(H) and derived subgroups [G;G] and
[H;H] respectively. Let cG : G=Z(G)�G=Z(G)! [G;G] and cH : H=Z(H)�H=Z(H)! [H;H] be
the two commutator maps. An isoclinism G�H is a pair of isomorphisms (h ;x)where h :G=Z(G)!
H=Z(H) and x : [G;G]! [H;H] such that cG�x = (h�h)�cH . Isoclinism is an equivalence relation,

and all abelian groups are isoclinic to the trivial group.

Example

gap> G := SmallGroup(64, 6);; StructureDescription(G);

"(C8 x C4) : C2"

gap> QG := CentralQuotient(G);; IdGroup(QG);

[[64, 6], [8, 3]]

gap> H := SmallGroup(32, 41);; StructureDescription(H);

"C2 x Q16"

gap> QH := CentralQuotient(H);; IdGroup(QH);

[[32, 41], [8, 3]]

gap> Isoclinism(G, H);

[[f1, f2, f3] -> [f1, f2*f3, f3], [f3, f5] -> [f4*f5, f5]]

gap> K := SmallGroup(32, 43);; StructureDescription(K);

"(C2 x D8) : C2"

gap> QK := CentralQuotient(K);; IdGroup(QK);

[[32, 43], [16, 11]]

gap> AreIsoclinicDomains(G, K);

false

4.2.2 IsStemDomain

. IsStemDomain(G) (property)

. IsoclinicStemDomain(G) (attribute)

. AllStemGroupIds(n) (operation)

. AllStemGroupFamilies(n) (operation)

A group G is a stem group if Z(G)� [G;G]. Every group is isoclinic to a stem group, but distinct

stem groups may be isoclinic. For example, groups D8;Q8 are two isoclinic stem groups.

The function IsoclinicStemDomain returns a stem group isoclinic to G.

The function AllStemGroupIds returns the IdGroup list of the stem groups of a speci�ed size,

while AllStemGroupFamilies splits this list into isoclinism classes.

Example

gap> DerivedSubgroup(G);

Group([f3, f5])

gap> IsStemDomain(G);

false

XMod 31

gap> IsoclinicStemDomain(G);

<pc group of size 16 with 4 generators>

gap> AllStemGroupIds(32);

[[32, 6], [32, 7], [32, 8], [32, 18], [32, 19], [32, 20],

[32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32],

[32, 33], [32, 34], [32, 35], [32, 43], [32, 44], [32, 49],

[32, 50]]

gap> AllStemGroupFamilies(32);

[[[32, 6], [32, 7], [32, 8]], [[32, 18], [32, 19], [32, 20]],

[[32, 27], [32, 28], [32, 29], [32, 30], [32, 31], [32, 32],

[32, 33], [32, 34], [32, 35]], [[32, 43], [32, 44]],

[[32, 49], [32, 50]]]

4.2.3 IsoclinicRank

. IsoclinicRank(G) (attribute)

. IsoclinicMiddleLength(G) (attribute)

LetG be a �nite p-group. Then logp j[G;G]=(Z(G)\ [G;G])j is called themiddle length ofG. Also
logp jZ(G)\ [G;G]j+ logp jG=Z(G)j is called the rank of G. These invariants appear in the tables of

isoclinism families of groups of order 128 in [JNO90].

Example

gap> IsoclinicMiddleLength(G);

1

gap> IsoclinicRank(G);

4

4.3 Isoclinism for crossed modules

4.3.1 Isoclinism

. Isoclinism(X0, Y0) (operation)

. AreIsoclinicDomains(X0, Y0) (operation)

Let X ;Y be crossed modules with central quotients Q(X) and Q(Y), and derived sub-

crossed modules [X ;X] and [Y ;Y] respectively. Let cX : Q(X)� Q(X) ! [X ;X] and

cY : Q(Y)�Q(Y) ! [Y ;Y] be the two commutator maps. An isoclinism X � Y is a pair

of bijective morphisms (h ;x) where h : Q(X) ! Q(Y) and x : [X ;X] ! [Y ;Y] such that

cX � x = (h �h) � cY . Isoclinism is an equivalence relation, and all abelian crossed modules are

isoclinic to the trivial crossed module.

Example

gap> C8 := Cat1(16,8,1);;

gap> X8 := XMod(C8); IdGroup(X8);

[Group([f1*f2*f3, f3, f4])->Group([f2, f2])]

[[8, 1], [2, 1]]

XMod 32

gap> C9 := Cat1(32,9,1);

[(C8 x C2) : C2=>Group([f2, f2])]

gap> X9 := XMod(C9); IdGroup(X9);

[Group([f1*f2*f3, f3, f4, f5])->Group([f2, f2])]

[[16, 5], [2, 1]]

gap> AreIsoclinicDomains(X8, X9);

true

gap> ism89 := Isoclinism(X8, X9);;

gap> Display(ism89);

[[[Group([f1])->Group([f2])] => [Group([f1])->Group([f2])]],

[[Group([f3])->Group(<identity> of ...)] => [Group(

[f3])->Group(<identity> of ...)]]]

4.3.2 IsStemDomain

. IsStemDomain(X0) (property)

. IsoclinicStemDomain(X0) (property)

A crossed module X is a stem crossed module if Z(X) � [X ;X]. Every crossed module is

isoclinic to a stem crossed module, but distinct stem crossed modules may be isoclinic.

A method for IsoclinicStemDomain has yet to be implemented.

Example

gap> IsStemDomain(X8);

true

gap> IsStemDomain(X9);

false

4.3.3 IsoclinicRank

. IsoclinicRank(X0) (attribute)

. IsoclinicMiddleLength(X0) (attribute)

The formulae in subsection 4.2.3 are applied to the crossed module.

Example

gap> IsoclinicMiddleLength(X8);

[1, 0]

gap> IsoclinicRank(X8);

[3, 1]

Chapter 5

Derivations and Sections

5.1 Whitehead Multiplication

5.1.1 IsDerivation

. IsDerivation(map) (property)

. IsSection(map) (property)

. IsUp2dMapping(map) (property)

TheWhitehead monoid Der(X) ofX was de�ned in [Whi48] to be the monoid of all derivations

from R to S, that is the set of all maps c : R ! S, with Whitehead multiplication ? (on the right)

satisfying:

Der 1 : c(qr) = (cq)r (cr); Der 2 : (c1 ?c2)(r) = (c2r)(c1r)(c2¶c1r):

The zero map is the identity for this composition. Invertible elements in the monoid are called regular.

The Whitehead group of X is the group of regular derivations in Der(X). In the next chapter the

actor of X is de�ned as a crossed module whose source and range are permutation representations

of the Whitehead group and the automorphism group ofX .

The construction for cat1-groups equivalent to the derivation of a crossed module is the section.

The monoid of sections of C = (e; t;h : G! R) is the set of group homomorphisms x : R! G, with

Whitehead multiplication ? (on the right) satisfying:

Sect 1 : t �x = idR; Sect 2 : (x1 ?x2)(r) = (x1r)(ehx1r)
�1(x2hx1r) = (x2hx1r)(ehx1r)

�1(x1r):

The embedding e is the identity for this composition, and h(x1 ?x2) = (hx1)(hx2). A section is regular

when hx is an automorphism, and the group of regular sections is isomorphic to the Whitehead group.

If e denotes the inclusion of S= kert in G then ¶ = he : S! R and

x r = (er)(ecr); which equals (r;cr) 2 RnS;

determines a section x of C in terms of the corresponding derivation c ofX , and conversely.

5.1.2 DerivationByImages

. DerivationByImages(X0, ims) (operation)

33

XMod 34

Derivations are stored like group homomorphisms by specifying the images of a generating

set. Images of the remaining elements may then be obtained using axiom Der 1. The function

IsDerivation is automatically called to check that this procedure is well-de�ned.

In the following example a cat1-group C3 and the associated crossed module X3 are constructed,

where X3 is isomorphic to the inclusion of the normal cyclic group c3 in the symmetric group s3.
Example

gap> g18 := Group((1,2,3), (4,5,6), (2,3)(5,6));;

gap> SetName(g18, "g18");

gap> gen18 := GeneratorsOfGroup(g18);;

gap> g1 := gen18[1];; g2 := gen18[2];; g3 := gen18[3];;

gap> s3 := Subgroup(g18, gen18{[2..3]});;

gap> SetName(s3, "s3");;

gap> t := GroupHomomorphismByImages(g18, s3, gen18, [g2,g2,g3]);;

gap> h := GroupHomomorphismByImages(g18, s3, gen18, [(),g2,g3]);;

gap> e := GroupHomomorphismByImages(s3, g18, [g2,g3], [g2,g3]);;

gap> C3 := Cat1(t, h, e);

[g18=>s3]

gap> SetName(Kernel(t), "c3");;

gap> X3 := XModOfCat1(C3);;

gap> Display(X3);

Crossed module [c3->s3] :-

: Source group has generators:

[(1,2,3)(4,6,5)]

: Range group has generators:

[(4,5,6), (2,3)(5,6)]

: Boundary homomorphism maps source generators to:

[(4,6,5)]

: Action homomorphism maps range generators to automorphisms:

(4,5,6) --> { source gens --> [(1,2,3)(4,6,5)] }

(2,3)(5,6) --> { source gens --> [(1,3,2)(4,5,6)] }

These 2 automorphisms generate the group of automorphisms.

: associated cat1-group is [g18=>s3]

gap> imchi := [(1,2,3)(4,6,5), (1,2,3)(4,6,5)];;

gap> chi := DerivationByImages(X3, imchi);

DerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)],

[(1,2,3)(4,6,5), (1,2,3)(4,6,5)])

5.1.3 SectionByImages

. SectionByImages(C, ims) (operation)

. SectionByDerivation(chi) (operation)

. DerivationBySection(xi) (operation)

Sections are group homomorphisms, so do not need a special representation. Operations

SectionByDerivation and DerivationBySection convert derivations to sections, and vice-versa,

calling Cat1OfXMod and XModOfCat1 automatically.

Two strategies for calculating derivations and sections are implemented, see [AW00]. The default

method for AllDerivations is to search for all possible sets of images using a backtracking proce-

XMod 35

dure, and when all the derivations are found it is not known which are regular. In early versions of

this package, the default method for AllSections(<C>) was to compute all endomorphisms on

the range group R of C as possibilities for the composite hx . A backtrack method then found possible

images for such a section. In the current version the derivations of the associated crossed module are

calculated, and these are all converted to sections using SectionByDerivation.

Example

gap> xi := SectionByDerivation(chi);

SectionByImages(s3, g18, [(4,5,6), (2,3)(5,6)], [(1,2,3), (1,2)(4,6)])

5.2 Whitehead Groups and Monoids

5.2.1 RegularDerivations

. RegularDerivations(X0) (attribute)

. AllDerivations(X0) (attribute)

. RegularSections(C0) (attribute)

. AllSections(C0) (attribute)

. ImagesList(obj) (attribute)

. ImagesTable(obj) (attribute)

There are two functions to determine the elements of the Whitehead group and the Whitehead

monoid of a crossed module, namely RegularDerivations and AllDerivations. (The functions

RegularSections and AllSections perform corresponding tasks for a cat1-group.)

Using our example X3 we �nd that there are just nine derivations. (In fact, six of them regular, as

we shall see in the next section. The associated group is isomorphic to the symmetric group s3.)

Example

gap> all3 := AllDerivations(X3);;

gap> imall3 := ImagesList(all3);;

gap> PrintListOneItemPerLine(imall3);

[[(), ()],

[(), (1,3,2)(4,5,6)],

[(), (1,2,3)(4,6,5)],

[(1,3,2)(4,5,6), ()],

[(1,3,2)(4,5,6), (1,3,2)(4,5,6)],

[(1,3,2)(4,5,6), (1,2,3)(4,6,5)],

[(1,2,3)(4,6,5), ()],

[(1,2,3)(4,6,5), (1,3,2)(4,5,6)],

[(1,2,3)(4,6,5), (1,2,3)(4,6,5)]

]

gap> KnownAttributesOfObject(all3);

["Object2d", "ImagesList", "AllOrRegular", "ImagesTable"]

gap> PrintListOneItemPerLine(ImagesTable(all3));

[[1, 1, 1, 1, 1, 1],

[1, 1, 1, 3, 3, 3],

[1, 1, 1, 2, 2, 2],

[1, 3, 2, 1, 3, 2],

XMod 36

[1, 3, 2, 3, 2, 1],

[1, 3, 2, 2, 1, 3],

[1, 2, 3, 1, 2, 3],

[1, 2, 3, 3, 1, 2],

[1, 2, 3, 2, 3, 1]

]

5.2.2 CompositeDerivation

. CompositeDerivation(chi1, chi2) (operation)

. UpImagePositions(chi) (attribute)

. UpGeneratorImages(chi) (attribute)

. CompositeSection(xi1, xi2) (operation)

The Whitehead product c1 ? c2 is implemented as CompositeDerivation(<chi1>,<chi2>).

The composite of two sections is just the composite of homomorphisms.

Example

gap> reg3 := RegularDerivations(X3);;

gap> imder3 := ImagesList(reg3);; Length(imder3);

6

gap> chi4 := DerivationByImages(X3, imder3[4]);

DerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)], [(1,3,2)(4,5,6), ()])

gap> chi5 := DerivationByImages(X3, imder3[5]);

DerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)],

[(1,3,2)(4,5,6), (1,3,2)(4,5,6)])

gap> im4 := UpImagePositions(chi4);

[1, 3, 2, 1, 3, 2]

gap> im5 := UpImagePositions(chi5);

[1, 3, 2, 3, 2, 1]

gap> chi45 := chi4 * chi5;

DerivationByImages(s3, c3, [(4,5,6), (2,3)(5,6)], [(), (1,3,2)(4,5,6)])

gap> im45 := UpImagePositions(chi45);

[1, 1, 1, 3, 3, 3]

gap> Position(imder3, UpGeneratorImages(chi45));

2

5.2.3 WhiteheadGroupTable

. WhiteheadGroupTable(X0) (attribute)

. WhiteheadMonoidTable(X0) (attribute)

. WhiteheadPermGroup(X0) (attribute)

. WhiteheadTransMonoid(X0) (attribute)

Multiplication tables for the Whitehead group or monoid enable the construction of permutation

or transformation representations.

XMod 37

Example

gap> wgt3 := WhiteheadGroupTable(X3);;

gap> PrintListOneItemPerLine(wgt3);

[[1, 2, 3, 4, 5, 6],

[2, 3, 1, 5, 6, 4],

[3, 1, 2, 6, 4, 5],

[4, 6, 5, 1, 3, 2],

[5, 4, 6, 2, 1, 3],

[6, 5, 4, 3, 2, 1]

]

gap> wpg3 := WhiteheadPermGroup(X3);

Group([(1,2,3)(4,5,6), (1,4)(2,6)(3,5)])

gap> wmt3 := WhiteheadMonoidTable(X3);;

gap> PrintListOneItemPerLine(wmt3);

[[1, 2, 3, 4, 5, 6, 7, 8, 9],

[2, 3, 1, 5, 6, 4, 8, 9, 7],

[3, 1, 2, 6, 4, 5, 9, 7, 8],

[4, 6, 5, 1, 3, 2, 7, 9, 8],

[5, 4, 6, 2, 1, 3, 8, 7, 9],

[6, 5, 4, 3, 2, 1, 9, 8, 7],

[7, 7, 7, 7, 7, 7, 7, 7, 7],

[8, 8, 8, 8, 8, 8, 8, 8, 8],

[9, 9, 9, 9, 9, 9, 9, 9, 9]

]

gap> wtm3 := WhiteheadTransMonoid(X3);

<transformation monoid on 9 pts with 3 generators>

gap> GeneratorsOfMonoid(wtm3);

[Transformation([2, 3, 1, 5, 6, 4, 8, 9, 7]),

Transformation([4, 6, 5, 1, 3, 2, 7, 9, 8]),

Transformation([7, 7, 7, 7, 7, 7, 7, 7, 7])]

Chapter 6

Actors of 2d-groups

6.1 Actor of a crossed module

The actor ofX is a crossed module (D :W (X)! Aut(X)) which was shown by Lue and Norrie,

in [Nor87] and [Nor90] to give the automorphism object of a crossed moduleX . In this implemen-

tation, the source of the actor is a permutation representation W of the Whitehead group of regular

derivations, and the range of the actor is a permutation representation A of the automorphism group

Aut(X) ofX .

6.1.1 AutomorphismPermGroup

. AutomorphismPermGroup(xmod) (attribute)

. GeneratingAutomorphisms(xmod) (attribute)

. PermAutomorphismAsXModMorphism(xmod, perm) (attribute)

The automorphisms (s ;r) of X form a group Aut(X) of crossed module isomorphisms. The

function AutomorphismPermGroup �nds a set of GeneratingAutomorphisms for Aut(X), and then
constructs a permutation representation of this group, which is used as the range of the actor crossed

module of X . The individual automorphisms can be constructed from the permutation group using

the function PermAutomorphismAsXModMorphism. The example below uses the crossed module

X3=[c3->s3] constructed in section 5.1.
Example

gap> APX3 := AutomorphismPermGroup(X3);

Group([(5,7,6), (1,2)(3,4)(6,7)])

gap> Size(APX3);

6

gap> genX3 := GeneratingAutomorphisms(X3);

[[[c3->s3] => [c3->s3]], [[c3->s3] => [c3->s3]]]

gap> e6 := Elements(APX3)[6];

(1,2)(3,4)(5,7)

gap> m6 := PermAutomorphismAsXModMorphism(X3, e6);;

gap> Display(m6);

Morphism of crossed modules :-

: Source = [c3->s3] with generating sets:

[(1,2,3)(4,6,5)]

[(4,5,6), (2,3)(5,6)]

38

XMod 39

: Range = Source

: Source Homomorphism maps source generators to:

[(1,3,2)(4,5,6)]

: Range Homomorphism maps range generators to:

[(4,6,5), (2,3)(4,5)]

6.1.2 WhiteheadXMod

. WhiteheadXMod(xmod) (attribute)

. LueXMod(xmod) (attribute)

. NorrieXMod(xmod) (attribute)

. ActorXMod(xmod) (attribute)

. AutomorphismPermGroup(xmod) (attribute)

An automorphism (s ;r) of X acts on the Whitehead monoid by c(s ;r) = s � c � r�1, and this

determines the action for the actor. In fact the four groups R;S;W;A, the homomorphisms between

them, and the various actions, give �ve crossed modules forming a crossed square:

� X = (¶ : S! R); the initial crossed module, on the left,

� W (X) = (h : S!W); the Whitehead crossed module ofX , at the top,

� N (X) = (a : R! A); the Norrie crossed module ofX , at the bottom,

� Act(X) = (D :W ! A); the actor crossed module ofX , on the right, and

� L (X) = (D�h = a �¶ : S! A); the Lue crossed module ofX , along the top-left to bottom-

right diagonal.

Example

gap> WGX3 := WhiteheadPermGroup(X3);

Group([(1,2,3)(4,5,6), (1,4)(2,6)(3,5)])

gap> WX3 := WhiteheadXMod(X3);;

gap> Display(WX3);

Crossed module Whitehead[c3->s3] :-

: Source group has generators:

[(1,2,3)(4,6,5)]

: Range group has generators:

[(1,2,3)(4,5,6), (1,4)(2,6)(3,5)]

: Boundary homomorphism maps source generators to:

[(1,2,3)(4,5,6)]

: Action homomorphism maps range generators to automorphisms:

(1,2,3)(4,5,6) --> { source gens --> [(1,2,3)(4,6,5)] }

(1,4)(2,6)(3,5) --> { source gens --> [(1,3,2)(4,5,6)] }

These 2 automorphisms generate the group of automorphisms.

gap> LX3 := LueXMod(X3);;

gap> Display(LX3);

Crossed module Lue[c3->s3] :-

: Source group has generators:

[(1,2,3)(4,6,5)]

XMod 40

: Range group has generators:

[(5,7,6), (1,2)(3,4)(6,7)]

: Boundary homomorphism maps source generators to:

[(5,7,6)]

: Action homomorphism maps range generators to automorphisms:

(5,7,6) --> { source gens --> [(1,2,3)(4,6,5)] }

(1,2)(3,4)(6,7) --> { source gens --> [(1,3,2)(4,5,6)] }

These 2 automorphisms generate the group of automorphisms.

gap> NX3 := NorrieXMod(X3);;

gap> Display(NX3);

Crossed module Norrie[c3->s3] :-

: Source group has generators:

[(4,5,6), (2,3)(5,6)]

: Range group has generators:

[(5,7,6), (1,2)(3,4)(6,7)]

: Boundary homomorphism maps source generators to:

[(5,6,7), (1,2)(3,4)(6,7)]

: Action homomorphism maps range generators to automorphisms:

(5,7,6) --> { source gens --> [(4,5,6), (2,3)(4,5)] }

(1,2)(3,4)(6,7) --> { source gens --> [(4,6,5), (2,3)(5,6)] }

These 2 automorphisms generate the group of automorphisms.

gap> AX3 := ActorXMod(X3);;

gap> Display(AX3);

Crossed module Actor[c3->s3] :-

: Source group has generators:

[(1,2,3)(4,5,6), (1,4)(2,6)(3,5)]

: Range group has generators:

[(5,7,6), (1,2)(3,4)(6,7)]

: Boundary homomorphism maps source generators to:

[(5,7,6), (1,2)(3,4)(6,7)]

: Action homomorphism maps range generators to automorphisms:

(5,7,6) --> { source gens --> [(1,2,3)(4,5,6), (1,6)(2,5)(3,4)] }

(1,2)(3,4)(6,7) --> { source gens --> [(1,3,2)(4,6,5), (1,4)(2,6)(3,5)] }

These 2 automorphisms generate the group of automorphisms.

gap> IAX3 := InnerActorXMod(X3);;

gap> Display(IAX3);

Crossed module InnerActor[c3->s3] :-

: Source group has generators:

[(1,2,3)(4,5,6)]

: Range group has generators:

[(5,6,7), (1,2)(3,4)(6,7)]

: Boundary homomorphism maps source generators to:

[(5,7,6)]

: Action homomorphism maps range generators to automorphisms:

(5,6,7) --> { source gens --> [(1,2,3)(4,5,6)] }

(1,2)(3,4)(6,7) --> { source gens --> [(1,3,2)(4,6,5)] }

These 2 automorphisms generate the group of automorphisms.

XMod 41

6.1.3 XModCentre

. XModCentre(xmod) (attribute)

. InnerActorXMod(xmod) (attribute)

. InnerMorphism(xmod) (attribute)

Pairs of boundaries or identity mappings provide six morphisms of crossed modules. In particular,

the boundaries of W (X) and N (X) form the inner morphism of X , mapping source elements

to principal derivations and range elements to inner automorphisms. The image of X under this

morphism is the inner actor ofX , while the kernel is the centre ofX . In the example which follows,

the inner morphism of X3=(c3->s3), from Chapter 5, is an inclusion of crossed modules.

Note that we appear to have de�ned two sorts of centre for a crossed module: XModCentre here,

and CentreXMod (4.1.7) in the chapter on isoclinism. We suspect that these two de�nitions give the

same answer, but this remains to be resolved.

Example

gap> IMX3 := InnerMorphism(X3);;

gap> Display(IMX3);

Morphism of crossed modules :-

: Source = [c3->s3] with generating sets:

[(1,2,3)(4,6,5)]

[(4,5,6), (2,3)(5,6)]

: Range = Actor[c3->s3] with generating sets:

[(1,2,3)(4,5,6), (1,4)(2,6)(3,5)]

[(5,7,6), (1,2)(3,4)(6,7)]

: Source Homomorphism maps source generators to:

[(1,2,3)(4,5,6)]

: Range Homomorphism maps range generators to:

[(5,6,7), (1,2)(3,4)(6,7)]

gap> IsInjective(IMX3);

true

gap> ZX3 := XModCentre(X3);

[Group(())->Group(())]

Chapter 7

Induced constructions

7.1 Induced crossed modules

7.1.1 InducedXMod

. InducedXMod(args) (function)

. InducedCat1(args) (function)

. IsInducedXMod(xmod) (property)

. MorphismOfInducedXMod(xmod) (attribute)

A morphism of crossed modules (s ;r) :X1 !X2 factors uniquely through an induced crossed

module r�X1 = (d : r�S1 ! R2). Similarly, a morphism of cat1-groups factors through an induced

cat1-group. Calculation of induced crossed modules of X also provides an algebraic means of de-

termining the homotopy 2-type of homotopy pushouts of the classifying space of X . For more

background from algebraic topology see references in [BH78], [BW95], [BW96]. Induced crossed

modules and induced cat1-groups also provide the building blocks for constructing pushouts in the

categories XMod and Cat1.

Data for the cases of algebraic interest is provided by a conjugation crossed module X = (¶ :

S! R) and a homomorphism i from R to a third group Q. (It is hoped to implement more general

cases in due course.) The output from the calculation is a crossed module i�X = (d : i�S ! Q)
together with a morphism of crossed modulesX ! i�X . When i is a surjection with kernel K then

i�S = [S;K] (see [BH78]). When i is an inclusion the induced crossed module may be calculated

using a copower construction [BW95] or, in the case when R is normal in Q, as a coproduct of crossed

modules ([BW96], but not yet implemented). When i is neither a surjection nor an inclusion, i is

factored as the composite of the surjection onto the image and the inclusion of the image inQ, and then

the composite induced crossed module is constructed. These constructions use Tietze transformation

routines in the library �le tietze.gi.

As a �rst, surjective example, we take for X the normal inclusion crossed module of a4 in s4,

and for i the surjection from s4 to s3 with kernel k4. The induced crossed module is isomorphic to

X3.
Example

gap> s4gens := GeneratorsOfGroup(s4);

[(1,2), (2,3), (3,4)]

gap> a4gens := GeneratorsOfGroup(a4);

[(1,2,3), (2,3,4)]

42

XMod 43

gap> s3b := Group((5,6),(6,7));; SetName(s3b, "s3b");

gap> epi := GroupHomomorphismByImages(s4, s3b, s4gens, [(5,6),(6,7),(5,6)]);;

gap> X4 := XModByNormalSubgroup(s4, a4);;

gap> indX4 := SurjectiveInducedXMod(X4, epi);

[a4/ker->s3b]

gap> Display(indX4);

Crossed module [a4/ker->s3b] :-

: Source group a4/ker has generators:

[(1,3,2), (1,2,3)]

: Range group s3b has generators:

[(5,6), (6,7)]

: Boundary homomorphism maps source generators to:

[(5,6,7), (5,7,6)]

: Action homomorphism maps range generators to automorphisms:

(5,6) --> { source gens --> [(1,2,3), (1,3,2)] }

(6,7) --> { source gens --> [(1,2,3), (1,3,2)] }

These 2 automorphisms generate the group of automorphisms.

gap> morX4 := MorphismOfInducedXMod(indX4);

[[a4->s4] => [a4/ker->s3b]]

For a second, injective example we take forX a conjugation crossed module.

Example

gap> d8 := Subgroup(d16, [b1^2, b2]); SetName(d8, "d8");

Group([(11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16)])

gap> c4 := Subgroup(d8, [b1^2]); SetName(c4, "c4");

Group([(11,13,15,17)(12,14,16,18)])

gap> Y16 := XModByNormalSubgroup(d16, d8);

[d8->d16]

gap> Y8 := SubXMod(Y16, c4, d8);

[c4->d8]

gap> inc8 := InclusionMorphism2dDomains(Y16, Y8);

[[c4->d8] => [d8->d16]]

gap> incd8 := RangeHom(inc8);;

gap> indY8 := InducedXMod(Y8, incd8);

#I induced group has Size: 16

#I factor 2 is abelian with invariants: [4, 4]

i*([c4->d8])

gap> morY8 := MorphismOfInducedXMod(indY8);

[[c4->d8] => i*([c4->d8])]

For a third example we take the identity mapping on s3c as boundary, and the inclusion of s3c in s4

as i . The induced group is a general linear group GL(2,3).

Example

gap> s3c := Subgroup(s4, [(2,3), (3,4)]);;

gap> SetName(s3c, "s3c");

XMod 44

gap> indXs3c := InducedXMod(s4, s3c, s3c);

#I induced group has Size: 48

i*([s3c->s3c])

gap> StructureDescription(indXs3c);

["GL(2,3)", "S4"]

7.1.2 AllInducedXMods

. AllInducedXMods(Q) (operation)

This function calculates all the induced crossed modules InducedXMod(Q, P, M), where P

runs over all conjugacy classes of subgroups of Q and M runs over all non-trivial subgroups of P.

Chapter 8

Crossed squares and their morphisms

Crossed squares were introduced by Guin-Waléry and Loday (see, for example, [BL87]) as funda-

mental crossed squares of commutative squares of spaces, but are also of purely algebraic interest.

We denote by [n] the set f1;2; : : : ;ng. We use the n= 2 version of the de�nition of crossed n-cube as

given by Ellis and Steiner [ES87].

A crossed squareS consists of the following:

� Groups SJ for each of the four subsets J � [2];

� a commutative diagram of group homomorphisms:

¶̈1 : S[2] ! Sf2g; ¶̈2 : S[2] ! Sf1g; �¶1 : Sf1g ! S /0; �¶2 : Sf2g ! S /0;

� actions of S /0 on Sf1g;Sf2g and S[2] which determine actions of Sf1g on Sf2g and S[2] via
�¶1 and

actions of Sf2g on Sf1g and S[2] via
�¶2 ;

� a function � : Sf1g�Sf2g ! S[2].

The following axioms must be satis�ed for all l 2 S[2]; m;m1;m2 2 Sf1g; n;n1;n2 2 Sf2g; p 2 S /0:

� the homomorphisms ¶̈1; ¶̈2 preserve the action of S /0 ;

� each of the upper, left-hand, lower, and right-hand sides of the square,

S̈1 = (¶̈1 : S[2] ! Sf2g);S̈2 = (¶̈2 : S[2] ! Sf1g); �S1 = (�¶1 : Sf1g ! S /0); �S2 = (�¶2 : Sf2g ! S /0);

and the diagonal

S12 = (¶12 := �¶1¶̈2 = �¶2¶̈1 : S[2] ! S /0)

are crossed modules (with actions via S /0);

� � is a crossed pairing:

� (m1m2�n) = (m1�n)m2 (m2�n),

� (m�n1n2) = (m�n2) (m�n1)
n2 ,

� (m�n)p = (mp�np);

� ¶̈1(m�n) = (n�1)m n and ¶̈2(m�n) = m�1 mn,

45

XMod 46

� (m� ¶̈1l) = (l�1)m l and (¶̈2l�n) = l�1 ln.

Note that the actions of Sf1g on Sf2g and Sf2g on Sf1g via S /0 are compatible since

m1
(nm) = m1

�¶2(n
m) = m1

m�1(�¶2n)m = ((m1
m�1

)n)m:

(A precrossed square is a similar structure which satis�es some subset of these axioms.)

[More needed here.]

8.1 Constructions for crossed squares

Analogously to the data structure used for crossed modules, crossed squares are implemented as

3d-groups. When times allows, cat2-groups will also be implemented, with conversion between the

two types of structure. Some standard constructions of crossed squares are listed below. At present,

a limited number of constructions are implemented. Morphisms of crossed squares have also been

implemented, though there is a lot still to be done.

8.1.1 CrossedSquare

. CrossedSquare(args) (function)

. CrossedSquareByNormalSubgroups(P, N, M, L) (operation)

. ActorCrossedSquare(X0) (operation)

. Transpose3dGroup(S0) (attribute)

. Name(S0) (attribute)

Here are some standard examples of crossed squares.

� If M;N are normal subgroups of a group P, and L = M \N, then the four inclusions, L !
N; L!M; M! P; N! P, together with the actions of P onM;N and L given by conjugation,

form a crossed square with crossed pairing

� : M�N !M\N; (m;n) 7! [m;n] = m�1n�1mn = (n�1)mn = m�1mn :

This construction is implemented as CrossedSquareByNormalSubgroups(P,N,M,L);.

� The actorA (X0) of a crossed moduleX0 has been described in Chapter 5. The crossed pairing

is given by

� : R�W ! S; (r;c) 7! cr :

This is implemented as ActorCrossedSquare(X0);.

� The transpose ofS is the crossed square �S obtained by interchanging Sf1g with Sf2g, ¶̈1 with

¶̈2, and �¶1 with �¶2. The crossed pairing is given by

�� : Sf2g�Sf1g ! S[2]; (n;m) 7! n ��m := (m�n)�1 :

Example

gap> d20 := DihedralGroup(IsPermGroup, 20);;

gap> gend20 := GeneratorsOfGroup(d20);

[(1,2,3,4,5,6,7,8,9,10), (2,10)(3,9)(4,8)(5,7)]

XMod 47

gap> p1 := gend20[1];; p2 := gend20[2];; p12 := p1*p2;

(1,10)(2,9)(3,8)(4,7)(5,6)

gap> d10a := Subgroup(d20, [p1^2, p2]);;

gap> d10b := Subgroup(d20, [p1^2, p12]);;

gap> c5d := Subgroup(d20, [p1^2]);;

gap> SetName(d20, "d20"); SetName(d10a, "d10a");

gap> SetName(d10b, "d10b"); SetName(c5d, "c5d");

gap> XSconj := CrossedSquareByNormalSubgroups(d20, d10b, d10a, c5d);

[c5d -> d10b]

[| |]

[d10a -> d20]

gap> Name(XSconj);

"[c5d->d10b,d10a->d20]"

gap> XStrans := Transpose3dGroup(XSconj);

[c5d -> d10a]

[| |]

[d10b -> d20]

gap> X20 := XModByNormalSubgroup(d20, d10a);

[d10a->d20]

gap> XSact := ActorCrossedSquare(X20);

crossed square with:

up = Whitehead[d10a->d20]

left = [d10a->d20]

down = Norrie[d10a->d20]

right = Actor[d10a->d20]

8.1.2 CentralQuotient

. CentralQuotient(X0) (attribute)

The central quotient of a crossed moduleX = (¶ : S! R) is the crossed square where:

� the left crossed module isX ;

� the right crossed module is the quotientX =Z(X) (see CentreXMod (4.1.7));

� the top and bottom homomorphisms are the natural homomorphisms onto the quotient groups;

� the crossed pairing � : (R�F) ! S, where F = Fix(X ;S;R), is the displacement element

�(r;Fs) = hr;si= (s�1)rs (see Displacement (4.1.3) and section 4.3).

This is the special case of an intended function CrossedSquareByCentralExtension which has not

yet been implemented. In the example Xn7 E X24, constructed in section 4.1.

Example

gap> pos7 := Position(ids, [[12,2], [24,5]]);;

gap> Xn7 := nsx[pos7];

[Group([f2, f3, f4])->Group([f1, f2, f4, f5])]

gap> IdGroup(CentreXMod(Xn7));

XMod 48

[[4, 1], [4, 1]]

gap> CQXn7 := CentralQuotient(Xn7);

crossed square with:

up = [Group([f2, f3, f4])->Group([f1])]

left = [Group([f2, f3, f4])->Group([f1, f2, f4, f5])]

down = [Group([f1, f2, f4, f5])->Group([f1, f2])]

right = [Group([f1])->Group([f1, f2])]

gap> IdGroup(CQXn7);

[[[12, 2], [3, 1]], [[24, 5], [6, 1]]]

8.1.3 IsCrossedSquare

. IsCrossedSquare(obj) (property)

. Is3dObject(obj) (property)

. IsPerm3dObject(obj) (property)

. IsPc3dObject(obj) (property)

. IsFp3dObject(obj) (property)

. IsPreCrossedSquare(obj) (property)

These are the basic properties for 3d-groups, and crossed squares in particular.

8.1.4 Up2dGroup

. Up2dGroup(XS) (attribute)

. Left2dGroup(XS) (attribute)

. Down2dGroup(XS) (attribute)

. Right2dGroup(XS) (attribute)

. DiagonalAction(XS) (attribute)

. XPairing(XS) (attribute)

. ImageElmXPairing(XS, pair) (operation)

In this implementation the attributes used in the construction of a crossed square XS are the four

crossed modules (2d-groups) on the sides of the square; the diagonal action of P on L; and the crossed

pairing.

The GAP development team have suggested that crossed pairings should be implemented as a

special case of BinaryMappings � a structure which does not yet exist in GAP. As a temporary

measure, crossed pairings have been implemented using Mapping2ArgumentsByFunction.

Example

gap> Up2dGroup(XSconj);

[c5d->d10b]

gap> Right2dGroup(XSact);

Actor[d10a->d20]

gap> xpconj := XPairing(XSconj);;

gap> ImageElmXPairing(xpconj, [p2, p12]);

(1,9,7,5,3)(2,10,8,6,4)

gap> diag := DiagonalAction(XSact);

XMod 49

[(1,3,5,2,4)(6,10,14,8,12)(7,11,15,9,13), (1,2,5,4)(6,8,14,12)(7,11,13,9)

] ->

[(1,3,5,2,4)(6,10,14,8,12)(7,11,15,9,13), (1,2,5,4)(6,8,14,12)(7,11,13,9)

] -> [^(1,3,5,7,9)(2,4,6,8,10), ^(1,2,5,4)(3,8)(6,7,10,9)]

8.2 Morphisms of crossed squares

This section describes an initial implementation of morphisms of (pre-)crossed squares.

8.2.1 Source

. Source(map) (attribute)

. Range(map) (attribute)

. Up2dMorphism(map) (attribute)

. Left2dMorphism(map) (attribute)

. Down2dMorphism(map) (attribute)

. Right2dMorphism(map) (attribute)

Morphisms of 3dObjects are implemented as 3dMappings. These have a pair of 3d-groups

as source and range, together with four 2d-morphisms mapping between the four pairs of crossed

modules on the four sides of the squares. These functions return fail when invalid data is supplied.

8.2.2 IsCrossedSquareMorphism

. IsCrossedSquareMorphism(map) (property)

. IsPreCrossedSquareMorphism(map) (property)

. IsBijective(mor) (property)

. IsEndomorphism3dObject(mor) (property)

. IsAutomorphism3dObject(mor) (property)

A morphism mor between two pre-crossed squares S1 and S2 consists of four crossed

module morphisms Up2dMorphism(mor), mapping the Up2dGroup of S1 to that of S2,

Left2dMorphism(mor), Down2dMorphism(mor) and Right2dMorphism(mor). These four

morphisms are required to commute with the four boundary maps and to preserve the rest of the struc-

ture. The current version of IsCrossedSquareMorphism does not perform all the required checks.

Example

gap> ad20 := GroupHomomorphismByImages(d20, d20, [p1,p2], [p1,p2^p1]);;

gap> ad10a := GroupHomomorphismByImages(d10a, d10a, [p1^2,p2], [p1^2,p2^p1]);;

gap> ad10b := GroupHomomorphismByImages(d10b, d10b, [p1^2,p12], [p1^2,p12^p1]);;

gap> idc5d := IdentityMapping(c5d);;

gap> upconj := Up2dGroup(XSconj);;

gap> leftconj := Left2dGroup(XSconj);;

gap> downconj := Down2dGroup(XSconj);;

gap> rightconj := Right2dGroup(XSconj);;

gap> up := XModMorphismByHoms(upconj, upconj, idc5d, ad10b);

[[c5d->d10b] => [c5d->d10b]]

XMod 50

gap> left := XModMorphismByHoms(leftconj, leftconj, idc5d, ad10a);

[[c5d->d10a] => [c5d->d10a]]

gap> down := XModMorphismByHoms(downconj, downconj, ad10a, ad20);

[[d10a->d20] => [d10a->d20]]

gap> right := XModMorphismByHoms(rightconj, rightconj, ad10b, ad20);

[[d10b->d20] => [d10b->d20]]

gap> autoconj := CrossedSquareMorphism(XSconj, XSconj, up, left, right, down);;

gap> ord := Order(autoconj);;

gap> Display(autoconj);

Morphism of crossed squares :-

: Source = [c5d->d10b,d10a->d20]

: Range = [c5d->d10b,d10a->d20]

: order = 5

: up-left: [[(1, 3, 5, 7, 9)(2, 4, 6, 8,10)],

[(1, 3, 5, 7, 9)(2, 4, 6, 8,10)]]

: up-right:

[[(1, 3, 5, 7, 9)(2, 4, 6, 8,10), (1,10)(2, 9)(3, 8)(4, 7)(5, 6)],

[(1, 3, 5, 7, 9)(2, 4, 6, 8,10), (1, 2)(3,10)(4, 9)(5, 8)(6, 7)]]

: down-left:

[[(1, 3, 5, 7, 9)(2, 4, 6, 8,10), (2,10)(3, 9)(4, 8)(5, 7)],

[(1, 3, 5, 7, 9)(2, 4, 6, 8,10), (1, 3)(4,10)(5, 9)(6, 8)]]

: down-right:

[[(1, 2, 3, 4, 5, 6, 7, 8, 9,10), (2,10)(3, 9)(4, 8)(5, 7)],

[(1, 2, 3, 4, 5, 6, 7, 8, 9,10), (1, 3)(4,10)(5, 9)(6, 8)]]

gap> KnownPropertiesOfObject(autoconj);

["CanEasilyCompareElements", "CanEasilySortElements", "IsTotal",

"IsSingleValued", "IsInjective", "IsSurjective", "IsPreCrossedSquareMorphism",

"IsCrossedSquareMorphism", "IsEndomorphism3dDomain"]

gap> IsAutomorphism3dDomain(autoconj);

true

Chapter 9

Crossed modules of groupoids

9.1 Constructions for crossed modules of groupoids

A typical example of a crossed module X over a groupoid has for its range a connected groupoid.

This is a direct product of a group with a complete graph, and we call the vertices of the graph the

objects of the crossed module. The source of X is a totally disconnected groupoid, with the same

objects. The boundary morphism is constant on objects. For details and other references see [AW10].

9.1.1 DiscreteNormalPreXModWithObjects

. DiscreteNormalPreXModWithObjects(gpd, gp) (operation)

. PreXModWithObjectsObj(obs, bdy, act) (operation)

The next stage of development of this package will be to implement constuctions of crossed mod-

ules over groupoids. This will require further developments in the Gpd package. The following ex-

ample is all that can be shown at the moment. More was achieved in an earlier version, but produces

errors in GAP 4.7.

Example

gap> Ga4 := SinglePieceGroupoid(a4, [-9,-8,-7]);;

gap> Display(Ga4);

single piece groupoid:

objects: [-9, -8, -7]

group: a4 = <[(1,2,3), (2,3,4)]>

gap> GeneratorsOfGroup(k4);

[(1,2)(3,4), (1,3)(2,4)]

gap> PXO := DiscreteNormalPreXModWithObjects(Ga4, k4);

homogeneous, discrete groupoid with:

group: k4 = <[(1,2)(3,4), (1,3)(2,4)]> >

objects: [-9, -8, -7]

#I now need to be able to test: ok := IsXMod(PM);

<semigroup>

gap> Source(PXO);

perm homogeneous, discrete groupoid: < k4, [-9, -8, -7] >

51

Chapter 10

Utility functions

By a utility function we mean a GAP function which is

� needed by other functions in this package,

� not (as far as we know) provided by the standard GAP library,

� more suitable for inclusion in the main library than in this package.

Sections on Printing Lists andDistinct and Common Representativeswere moved to theUtils package

with version 2.56.

10.1 Inclusion and Restriction Mappings

These functions have been moved to the gpd package, but are still documented here.

10.1.1 InclusionMappingGroups

. InclusionMappingGroups(G, H) (operation)

. MappingToOne(G, H) (operation)

This set of utilities concerns mappings. The map incd8 is the inclusion of d8 in d16 used in

Section 3.4. MappingToOne(G,H) maps the whole of G to the identity element in H.

Example

gap> Print(incd8, "\n");

[(11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15)] ->

[(11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15)]

gap> imd8 := Image(incd8);;

gap> MappingToOne(c4, imd8);

[(11,13,15,17)(12,14,16,18)] -> [()]

52

XMod 53

10.1.2 InnerAutomorphismsByNormalSubgroup

. InnerAutomorphismsByNormalSubgroup(G, N) (operation)

. IsGroupOfAutomorphisms(A) (property)

Inner automorphisms of a group G by the elements of a normal subgroup N are calculated with the

�rst of these functions, usually with G = N.

Example

gap> autd8 := AutomorphismGroup(d8);;

gap> innd8 := InnerAutomorphismsByNormalSubgroup(d8, d8);;

gap> GeneratorsOfGroup(innd8);

[^(1,2,3,4), ^(1,3)]

gap> IsGroupOfAutomorphisms(innd8);

true

10.2 Abelian Modules

10.2.1 AbelianModuleObject

. AbelianModuleObject(grp, act) (operation)

. IsAbelianModule(obj) (property)

. AbelianModuleGroup(obj) (attribute)

. AbelianModuleAction(obj) (attribute)

An abelian module is an abelian group together with a group action. These are used by the crossed

module constructor XModByAbelianModule.

The resulting Xabmod is isomorphic to the output from XModByAutomorphismGroup(k4);.

Example

gap> x := (6,7)(8,9);; y := (6,8)(7,9);; z := (6,9)(7,8);;

gap> k4a := Group(x, y);; SetName(k4a, "k4a");

gap> gens3a := [(1,2), (2,3)];;

gap> s3a := Group(gens3a);; SetName(s3a, "s3a");

gap> alpha := GroupHomomorphismByImages(k4a, k4a, [x,y], [y,x]);;

gap> beta := GroupHomomorphismByImages(k4a, k4a, [x,y], [x,z]);;

gap> auta := Group(alpha, beta);;

gap> acta := GroupHomomorphismByImages(s3a, auta, gens3a, [alpha,beta]);;

gap> abmod := AbelianModuleObject(k4a, acta);;

gap> Xabmod := XModByAbelianModule(abmod);

[k4a->s3a]

gap> Display(Xabmod);

Crossed module [k4a->s3a] :-

: Source group k4a has generators:

[(6,7)(8,9), (6,8)(7,9)]

: Range group s3a has generators:

[(1,2), (2,3)]

: Boundary homomorphism maps source generators to:

XMod 54

[(), ()]

: Action homomorphism maps range generators to automorphisms:

(1,2) --> { source gens --> [(6,8)(7,9), (6,7)(8,9)] }

(2,3) --> { source gens --> [(6,7)(8,9), (6,9)(7,8)] }

These 2 automorphisms generate the group of automorphisms.

Chapter 11

Development history

This chapter, which contains details of the major changes to the package as it develops, was �rst

created in April 2002. Details of the changes from XMod 1 to XMod 2.001 are far from complete.

Starting with version 2.009 the �le CHANGES lists the minor changes as well as the more fundamental

ones.

The inspiration for this package was the need, in the mid-1990's, to calculate induced crossed

modules (see [BW95], [BW96], [BW03]). GAP was chosen over other computational group theory

systems because the code was freely available, and it was possible to modify the Tietze transformation

code so as to record the images of the original generators of a presentation as words in the simpli�ed

presentation. (These modi�cations are now a standard part of the Tietze transformation package in

GAP.)

11.1 Changes from version to version

11.1.1 Version 1 for GAP 3

The �rst version of XMod became an accepted package for GAP 3.4.3 in December 1996.

11.1.2 Version 2

Conversion of XMod 1 fromGAP 3.4.3 to the newGAP syntax began soon afterGAP 4 was released,

and had a lengthy gestation. The new GAP syntax encouraged a re-naming of many of the function

names. An early decision was to introduce generic categories 2dDomain for (pre-)crossed modules

and (pre-)cat1-groups, and 2dMapping for the various types of morphism. In 2.009 3dDomain was

used for crossed squares and cat2-groups, and 3dMapping for their morphisms. A generic name for

derivations and sections is also required, and Up2dMapping is currently used.

11.1.3 Version 2.001 for GAP 4

This was the �rst version of XMod forGAP 4, completed in April 2002 in time for the release ofGAP

4.3. Functions for actors and induced crossed modules were not included, nor many of the functions

for derivations and sections, for example InnerDerivation.

55

XMod 56

11.1.4 Induced crossed modules

During May 2002 converted the code for induced crossed modules. (Induced cat1-groups may be

converted one day.)

11.1.5 Versions 2.002 � 2.006

Version 2.004 of April 14th 2004 added the Cat1Select functionality of version 1 to the Cat1 func-

tion.

A signi�cant addition in Version 2.005 was the conversion of the actor crossed module func-

tions from the 3.4.4 version. This included AutomorphismPermGroup for a crossed module,

WhiteheadXMod, NorrieXMod, LueXMod, ActorXMod, Centre of a crossed module, InnerMorphism

and InnerActorXMod.

11.1.6 Versions 2.007 � 2.010

These versions contain changes made between September 2004 and October 2007.

� Added basic functions for crossed squares, considered as 3dObjects with crossed pairings,

and their morphisms. Groups with two normal subgroups, and the actor of a crossed module,

provide standard examples of crossed squares. (Cat2-groups are not yet implemented.)

� Converted the documentation to the format of the GAPDoc package.

� Improved AutomorphismPermGroup for crossed modules, and introduced a special method for

conjugation crossed modules.

� Substantial revisons made to XModByCentralExtension, NorrieXMod, LueXMod, ActorXMod,

and InclusionInducedXModByCopower.

� Version 2.010, of October 2007, was timed to coincide with the release of GAP 4.4.10, and

included a change of �lenames; and correct �le protection codes.

11.2 Versions for GAP [4.5 .. 4.8]

Version 2.19, released on 9th June 2012, included the following changes:

� The �le makedocrel.g was copied, with appropriate changes, from GAPDoc, and now pro-

vides the correct way to update the documentation.

� The �rst functions for crossed modules of groupoids were introduced.

� A GNU General Public License declaration was added.

11.2.1 AllCat1s

Version 2.21 contained major changes to the Cat1Select operation: the list CAT1_LIST of cat1-

structures in the data �le cat1data.g was changed from permutation groups to pc-groups, with

the generators of subgroups; images of the tail map; and images of the head map being given as

ExtRepOfObj of words in the generators.

XMod 57

The AllCat1s function was reintroduced from the GAP3 version, and renamed as the operation

AllCat1sBasic.

In version 2.25 the data in cat1data.g was extended from groups of size up to 48 to groups of

size up to 70. In particular, the 267 groups of size 64 give rise to a total of 1275 cat1-groups. The

authors are indebted to Van Luyen Le in Galway for pointing out a number of errors in the version of

this list distributed with version 2.24 of this package.

11.2.2 Versions 2.43 - 2.56

Version 2.43, released on 11th November 2015, included the following changes:

� The material on isoclinism in Chapter 4 was added.

� The package webpage has moved to http://pages.bangor.ac.uk/~mas023/chda/.

� A GitHub repository was started at: https://github.com/gap-packages/xmod.

� The section on Distinct and Common Representatives was moved to the Utils package.

11.2.3 Latest Version

The latest version, 2.59, was released on 21st March 2017.

11.3 What needs doing next?

� Speed up the calculation of Whitehead groups.

� Add more functions for 3dObjects and implement cat2-groups.

� Improve interaction with the package Gpd implementing the group groupoid version of a

crossed module, and adding more functions for crossed modules of groupoids.

� Add interaction with IdRel (and possibly XRes and natp) .

� Need InverseGeneralMapping for morphisms and more features for FpXMods, PcXMods, etc.

� Implement actions of a crossed module.

� Implement FreeXMods and an operation Isomorphism2dDomains.

� Allow the construction of a group of morphisms of crossed modules.

� Complete the conversion from Version 1 of the calculation of sections using EndoClasses.

� More crossed square constructions:

� If M;N are ordinary P-modules and A is an arbitrary abelian group on which P acts triv-

ially, then there is a crossed square with sides

0 : A! N; 0 : A!M; 0 :M! P; 0 : N ! P:

http://pages.bangor.ac.uk/~mas023/chda/
https://github.com/gap-packages/xmod

XMod 58

� For a group L, the automorphism crossed module Act L = (i : L! Aut L) splits to form

the square with (i1 : L! Inn L) on two sides, and (i2 : Inn L! Aut L) on the other two

sides, where i1 maps l 2 L to the inner automorphism bl : L! L; l0 7! l�1l0l, and i2 is the

inclusion of Inn L in Aut L. The actions are standard, and the crossed pairing is

� : Inn L� Inn L! L; (bl;bl0) 7! [l; l0] :

� Improve the interaction with the HAP package.

References

[Alp97] M. Alp. GAP, crossed modules, cat1-groups: applications of computational group theory.

Ph.{d}.~thesis, University of Wales, Bangor, 1997. 2

[AW00] M. Alp and C. D. Wensley. Enumeration of cat1-groups of low order. Int. J. Algebra and

Computation, 10:407�424, 2000. 5, 34

[AW10] M. Alp and C. D. Wensley. Automorphisms and homotopies of groupoids and crossed

modules. Applied Categorical Structures, 18:473�495, 2010. 51

[BH78] R. Brown and P. J. Higgins. On the connection between the second relative homotopy group

and some related spaces. Proc. London Math. Soc., 36:193�212, 1978. 5, 42

[BHS11] R. Brown, P. J. Higgins, and R. Sivera. Nonabelian algrebraic topology, volume 15 of

Tracts in Mathematics. European Mathematical Society, 2011. 6

[BL87] R. Brown and J. .L. Loday. Van kampen theorems for diagram of spaces. Topology, 26:311�

335, 1987. 45

[Bro82] R. Brown. Higher-dimensional group theory. In R. Brown and T. L. Thickstun, editors,

Low-dimensional topology, volume 48 of London Math. Soc. Lecture Note Series, pages

215�238. Cambridge University Press, 1982. 6

[BW95] R. Brown and C. D. Wensley. On �nite induced crossed modules, and the homotopy 2-type

of mapping cones. Theory and Applications of Categories, 1:54�71, 1995. 5, 42, 55

[BW96] R. Brown and C. D. Wensley. Computing crossed modules induced by an inclusion of

a normal subgroup, with applications to homotopy 2-types. Theory and Applications of

Categories, 2:3�16, 1996. 5, 42, 55

[BW03] R. Brown and C. D.Wensley. Computation and homotopical applications of induced crossed

modules. J. Symbolic Computation, 35:59�72, 2003. 55

[Ell84] G. Ellis. Crossed modules and their higher dimensional analogues. Ph.{d}.~thesis, Uni-

versity of Wales, Bangor, 1984. 5

[ES87] G. Ellis and R. Steiner. Higher dimensional crossed modules and the homotopy groups of

(n+1)-ads. J. Pure and Appl. Algebra, 46:117�136, 1987. 45

[Gil90] N. D. Gilbert. Derivations, automorphisms and crossed modules. Comm. in Algebra,

18:2703�2734, 1990. 5

59

XMod 60

[Hor14] M. Horn. GitHubPagesForGAP - Template for easily using GitHub Pages within

GAP packages (Version 0.1), 2014. GAP package, https://github.com/fingolfin/

GitHubPagesForGAP/. 2

[IOU16] E. Ilgaz, A. Odabas, and E. O. Uslu. Isoclinism of crossed modules. J. Symb. Comput.,

pages 1�17, 2016. http://dx.doi.org/10.1016/j.jsc.2015.08.006. 2, 5, 24

[JNO90] R. James, M. F. Newman, and E. A. O'Brien. The groups of order 128. J. Algebra, 129:136�

158, 1990. 24, 31

[LN12] F. Lübeck and M. Neunhöffer. GAPDoc (Version 1.5.1). RWTH Aachen, 2012. GAP pack-

age, http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html. 2

[Lod82] J. L. Loday. Spaces with �nitely many non-trivial homotopy groups. J. App. Algebra,

24:179�202, 1982. 5, 13

[Moo01] E. J. Moore. Graphs of Groups: Word Computations and Free Crossed Resolutions.

Ph.{d}.~thesis, University of Wales, Bangor, 2001. 6

[Nor87] K. J. Norrie. Crossed modules and analogues of group theorems. Ph.{d}.~thesis, King's

College, University of London, 1987. 5, 26, 28, 38

[Nor90] K. J. Norrie. Actions and automorphisms of crossed modules. Bull. Soc. Math. France,

118:129�146, 1990. 5, 38

[Whi48] J. H. C. Whitehead. On operators in relative homotopy groups. Ann. of Math., 49:610�640,

1948. 5, 33

[Whi49] J. H. C. Whitehead. Combinatorial homotopy II. Bull. Amer. Math. Soc., 55:453�496, 1949.

5

https://github.com/fingolfin/GitHubPagesForGAP/
https://github.com/fingolfin/GitHubPagesForGAP/
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/index.html

Index

2d-domain, 8

2d-domain with objects, 51

2d-group, 8

2d-mapping, 19

3d-group, 45

3d-mapping, 49

abelian module, 53

AbelianModuleAction, 53

AbelianModuleGroup, 53

AbelianModuleObject, 53

actor, 38

ActorCrossedSquare, 46

ActorXMod, 39

AllCat1sBasic, 17

AllDerivations, 35

AllInducedXMods, 44

AllSections, 35

AllStemGroupFamilies, 30

AllStemGroupIds, 30

AllXMods, 29

AllXModsUpToIsomorphism, 29

AreIsoclinicDomains, 30, 31

AutoGroup, 9

AutomorphismPermGroup, 38, 39

Boundary, 9, 13

Cat1, 13

cat1-group, 13

Cat1ByPeifferQuotient, 13

Cat1Morphism, 21

Cat1MorphismByHoms, 21

Cat1OfXMod, 15

Cat1Select, 16

cat2-group, 45

Centralizer, 27

CentralQuotient, 27, 47

CentreXMod, 27

CommutatorSubXMod, 26

CompositeDerivation, 36

CompositeSection, 36

CompositionMorphism, 22

CrossActionSubgroup, 26

crossed module, 8, 45

crossed module morphism, 19

crossed module of groupoids, 51

crossed module over a groupoid, 51

crossed pairing, 45

crossed square, 39

crossed square morphism, 49

CrossedSquare, 46

CrossedSquareByNormalSubgroups, 46

derivation, of crossed module, 33

DerivationByImages, 33

DerivationBySection, 34

DerivedSubXMod, 26

DiagonalAction, 48

DirectProduct, 8

DiscreteNormalPreXModWithObjects, 51

Displacement, 25

DisplacementSubgroup, 25

display a 2d-group, 9

display a 2d-mapping, 20

Down2dGroup, 48

Down2dMorphism, 49

ExternalSetXMod, 9

FactorXMod, 24

FixedPointSubgroupXMod, 26

GeneratingAutomorphisms, 38

HeadMap, 13

IdentityMapping, 20, 21

IdGroup, 9, 18

ImageElmXPairing, 48

ImagesList, 35

61

XMod 62

ImagesTable, 35

inclusion mapping, 52

InclusionMappingGroups, 52

InclusionMorphism2dDomains, 20, 21

induced crossed module, 42

InducedCat1, 42

InducedXMod, 42

InfoXMod, 6

InnerActorXMod, 41

InnerAutomorphismCat1, 21

InnerAutomorphismsByNormalSubgroup, 53

InnerAutomorphismXMod, 20

InnerMorphism, 41

IntersectionSubXMods, 25

Is2dDomain, 10

Is2dGroup, 10

Is3dObject, 48

IsAbelian2dGroup, 27

IsAbelianModule, 53

IsAbelianModule2dGroup, 10

IsAspherical2dGroup, 27

IsAutomorphism3dObject, 49

IsAutomorphismGroup2dGroup, 10

IsBijective, 20, 49

IsCat1, 15

IsCat1Morphism, 21

IsCentralExtension2dGroup, 10

IsCrossedSquare, 48

IsCrossedSquareMorphism, 49

IsDerivation, 33

IsEndo2dMapping, 20

IsEndomorphism3dObject, 49

IsEndomorphismPreCat1, 15

IsFaithful2dGroup, 28

IsFp2dGroup, 10

IsFp3dObject, 48

IsGroupOfAutomorphisms, 53

IsIdentityCat1, 15

IsInducedXMod, 42

IsInjective, 19

IsNilpotent2dGroup, 28

IsNormal for crossed modules, 11

IsNormalSubgroup2dGroup, 10

IsoclinicMiddleLength, 31, 32

IsoclinicRank, 31, 32

IsoclinicStemDomain, 30, 32

Isoclinism, 30, 31

IsomorphismPc2dGroup, 20

IsomorphismPerm2dGroup, 20

IsomorphismXMods, 29

IsPc2dGroup, 10

IsPc3dObject, 48

IsPerm2dGroup, 10

IsPerm3dObject, 48

IsPreCat1Morphism, 21

IsPreCrossedSquare, 48

IsPreCrossedSquareMorphism, 49

IsPreXCat1, 15

IsPreXMod, 10

IsPreXModMorphism, 19

IsSection, 33

IsSimplyConnected2dGroup, 27

IsSingleValued, 20

IsStemDomain, 30, 32

IsSurjective, 19

IsTotal, 20

IsTrivialAction2dGroup, 10

IsUp2dMapping, 33

IsXMod, 10

IsXModMorphism, 19

Kernel, 22

Kernel2dMapping, 22

KernelEmbedding, 13

Left2dGroup, 48

Left2dMorphism, 49

License, 2

LowerCentralSeriesOfXMod, 28

LueXMod, 39

MappingToOne, 52

morphism, 19

morphism of 2d-group, 19

morphism of 3d-group, 49

MorphismOfInducedXMod, 42

Name, 9, 13, 46

NaturalMorphismByNormalSubXMod, 24

NilpotencyClass2dGroup, 28

Normalizer, 27

NormalSubXMods, 11

NorrieXMod, 39

operations on morphisms, 22

XMod 63

order of a 2d-automorphism, 20

Peiffer subgroup, 12

PeifferSubgroup, 12

PermAutomorphismAsXModMorphism, 38

pre-crossed module, 12

PreCat1ByEndomorphisms, 13

PreCat1ByNormalSubgroup, 13

PreCat1ByTailHeadEmbedding, 13

PreCat1Morphism, 21

PreCat1MorphismByHoms, 21

PreCat1OfPreXMod, 15

PreXModByBoundaryAndAction, 12

PreXModMorphism, 20

PreXModMorphismByHoms, 20

PreXModOfPreCat1, 15

PreXModWithObjectsObj, 51

Range, 9, 13, 19, 49

RangeEmbedding, 13

RangeHom, 19

regular derivation, 33

RegularDerivations, 35

RegularSections, 35

restriction mapping, 52

Reverse, 13

Right2dGroup, 48

Right2dMorphism, 49

section, of cat1-group, 33

SectionByDerivation, 34

SectionByImages, 34

selection of a small cat1-group, 16

Size, 9, 13

SmallerDegreePerm2dDomain, 21

Source, 9, 13, 19, 49

SourceHom, 19

StabilizerSubgroupXMod, 26

StructureDescription, 18

SubPreXMod, 12

SubXMod, 11

TailMap, 13

Transpose3dGroup, 46

TrivialSubXMod, 11

up 2d-mapping of 2d-group, 33

Up2dGroup, 48

Up2dMorphism, 49

UpGeneratorImages, 36

UpImagePositions, 36

version 1 for GAP 3, 55

version 2.001 for GAP 4, 55

Whitehead group, 33

Whitehead monoid, 33

Whitehead multiplication, 33

WhiteheadGroupTable, 36

WhiteheadMonoidTable, 36

WhiteheadPermGroup, 36

WhiteheadTransMonoid, 36

WhiteheadXMod, 39

XMod, 8

XModAction, 9

XModByAbelianModule, 8

XModByAutomorphismGroup, 8

XModByBoundaryAndAction, 8

XModByCentralExtension, 8

XModByGroupOfAutomorphisms, 8

XModByInnerAutomorphismGroup, 8

XModByNormalSubgroup, 8

XModByPeifferQuotient, 12

XModByTrivialAction, 8

XModCentre, 41

XModMorphism, 20

XModMorphismByHoms, 20

XModOfCat1, 15

XPairing, 48

	Introduction
	2d-groups : crossed modules and cat1-groups
	Constructions for crossed modules
	Properties of crossed modules
	Pre-crossed modules
	Cat1-groups and pre-cat1-groups
	Properties of cat1-groups
	Selection of a small cat1-group
	More functions for crossed modules and cat1-groups

	2d-mappings
	Morphisms of 2d-groups
	Morphisms of pre-crossed modules
	Morphisms of pre-cat1-groups
	Operations on morphisms

	Isoclinism of groups and crossed modules
	More operations for crossed modules
	Isoclinism for groups
	Isoclinism for crossed modules

	Derivations and Sections
	Whitehead Multiplication
	Whitehead Groups and Monoids

	Actors of 2d-groups
	Actor of a crossed module

	Induced constructions
	Induced crossed modules

	Crossed squares and their morphisms
	Constructions for crossed squares
	Morphisms of crossed squares

	Crossed modules of groupoids
	Constructions for crossed modules of groupoids

	Utility functions
	Inclusion and Restriction Mappings
	Abelian Modules

	Development history
	Changes from version to version
	Versions for GAP [4.5 .. 4.8]
	What needs doing next?

	References

