
Geometric Tools Engine Version 4.5
Installation Manual and Release Notes

David Eberly, Geometric Tools
Document Version 4.5.0
January 12, 2020

Contents

1 Introduction 2

1.1 License . 2

1.2 Copying the Distribution to Your Machine . 3

2 Development on Microsoft Windows 3

2.1 Environment Variables . 4

2.2 Compiling the Source Code . 4

2.3 Automatic Generation of Project and Solution Files . 5

2.4 Running the Samples . 5

2.5 Microsoft Visual Studio Custom Visualizers . 5

2.6 Falling Back to Direct3D 10 . 6

2.7 Falling Back to Direct3D 9 . 6

3 Development on Linux 7

3.1 Environment Variables . 7

3.2 Dependencies on Other Packages . 7

3.3 Compiling the Source Code . 7

3.4 Support for OpenGL via Proprietary Drivers . 8

3.5 Running the Samples . 8

4 Accessing the OpenGL Driver Information 8

1

https://www.geometrictools.com

1 Introduction

You are about to install the Geometric Tools Engine 4.5. The source code consists of

• a header-only mathematics library,

• a graphics library for DirectX 11 or OpenGL 4.5 on Microsoft Windows,

• a graphics library for OpenGL 4.5 on Linux,

• a GPU-based mathematics library (not fully featured yet),

• an application library that was written for the sample applications.

The Linux distribution will typically require you to install the graphics card manufacturer’s proprietary
driver in order to use the graphics engine, because Linux tends to ship with the Nouveau Open Source
graphics drivers that are not yet running OpenGL 4.5 (if they do, the performance is usually substandard).
Visit the Geometric Tools website for updates, bug fixes, known problems, new features and other materials.

1.1 License

The Geometric Tools Engine uses the Boost License, listed next.

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization

obtaining a copy of the software and accompanying documentation covered by

this license (the Software) to use, reproduce, display, distribute,

execute, and transmit the Software, and to prepare derivative works of the

Software, and to permit third-parties to whom the Software is furnished to

do so, all subject to the following:

The copyright notices in the Software and this entire statement, including

the above license grant, this restriction and the following disclaimer,

must be included in all copies of the Software, in whole or in part, and

all derivative works of the Software, unless such copies or derivative

works are solely in the form of machine-executable object code generated by

a source language processor.

THE SOFTWARE IS PROVIDED ‘‘AS IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT

SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE

FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

2

https://www.geometrictools.com
http://www.boost.org/LICENSE_1_0.txt

1.2 Copying the Distribution to Your Machine

Unzip the distribution to a folder of your choice. The top-level folder of the distribution is GeometricTools

and the subfolder for the distribution is named GTE. Some of the folder hierarchy is shown next.

Geomet r i cToo l s
GTE // Root f o l d e r f o r Geometr i c Too l s Engine , s e t GTE PATH to he r e .

App l i c a t i o n s // Plat form−i ndependen t i n t e r f a c e s f o r the samples .
GLX // Plat form−dependent code f o r L inux GLX a p p l i c a t i o n s .
MSW // Plat form−dependent code f o r M i c r o s o f t Windows a p p l i c a t i o n s .

Graph i c s // Plat form−i ndependen t g r a p h i c s f i l e s .
DX11 // DX11−s p e c i f i c g r a p h i c s f i l e s .
GL4 // Plat form−i ndependen t OpenGL−s p e c i f i c g r a p h i c s f i l e s .

GL // The s t anda rd OpenGL heade r f i l e s suppo r t ed by the eng i n e .
GLX // L inux GLX g r a p h i c s f i l e s .
WGL // M i c r o s o f t Windows WGL g r a p h i c s f i l e s .

Mathematics // The bu lk o f the eng i n e c o n s i s t s o f mathemat ics suppo r t .
GPU // GPU−based imp l ementa t i on f o r mathemat ics a l g o r i t hm s .

Samples // Sample a p p l i c a t i o n s to i l l u s t r a t e p a r t s o f the code .
Data // A sma l l number o f data f i l e s f o r the samples .
Di s t ance // Samples f o r d i s t a n c e a l g o r i t hm s .
Geomet r i c s // Samples f o r computa t i ona l geometry .
Graph i c s // Samples f o r g r a p h i c s .
Imag i c s // Samples f o r 2D and 3D image p r o c e s s i n g .
I n t e r s e c t i o n // Samples f o r i n t e r s e c t i o n a l g o r i t hm s .
Mathematics // Samples f o r mathemat i ca l a l g o r i t hm s and nume r i c a l methods .
Phy s i c s // Samples f o r 2D and 3D ph y s i c s .
SceneGraphs // Samples f o r scene−graph−based 3D g r a p h i c s .

Tools // S e v e r a l c on v en i e n t t o o l s .
BitmapFontCreator // Genera te . h / . cpp f i l e to r e p r e s e n t a g r a p h i c s f o n t .
Gene ra t eApp rox imat i on s // Genera te minimax app rox ima t i on s to s t anda rd f u n c t i o n s .
GenerateOpenGLWrapper // Crea te OpenGL 4 .5 suppo r t from ARB header f i l e r s .
Gene r a t eP r o j e c t // Genera te MSVS 2015/2017/2019 vcxp ro j , s l n , h , cpp f o r a p p l i c a t i o n s .
P r e c i s i o n C a l c u l a t o r // A s imp l e t e s t b e d f o r computing b i t s needed f o r r a t i o n a l a r i t hm e t i c .

The Samples subfolders are many. Listing them here would make the displayed hierarchy difficult to read.
The projects all use paths relative to GTE and they do not rely on the top-level directory being located at
the root of a hard drive. An environment variable GTE4 PATH is used to locate data files required by the
application. How you set an environment variable depends on the operating system and/or shell you are
using.

2 Development on Microsoft Windows

The code is maintained currently on an Intel-based computer with Microsoft Windows 10, Version 1903
using Microsoft Visual Studio 2015, 2017 and 2019. Microsoft Visual Studio 2013 and previous versions are
no longer supported because they are past their Microsoft-deemed product life cycles.

As of GTEngine 4.5, the Intel C++ compilers with version 17, 18 and 19 are supported. These are shipped
in Intel Parallel Studio XE 2017 (for compiler version 17), 2018 (for compiler version 18), 2019 (for compiler
version 19.0) and 2020 (for compiler version 19.1). Once installed, you can select the Intel compiler by
right-clicking on the solution folder. The pop-up menu has an item Intel Compiler. Select that item to see
a submenu that allows you to select Visual C++, Intel C++ or gcc.

3

2.1 Environment Variables

Create an environment variable named GTE4 PATH that stores the absolute directory path to the folder
GeometricTools/GTE. For example, if you unzipped the distribution to the root of the C drive, you would set
GTE4 PATH to C:/GeometricTools/GTE.

2.2 Compiling the Source Code

Microsoft Visual Studio 2015 is Version 14 (Platform Toolset v140) of the compiler, Microsoft Visual Studio
2017 is Version 15 (Platform Toolset v141) of the compiler and Microsoft Visual Studio 2019 is Version 16
(Platform Toolset v142) of the compiler. The solution, project and filter names have embedded in them v14,
v15 or v16; that is, all three versions of the compiler are supported. The solution, project and filter files are
in the root folder GeometricTools/GTE and are named

• GTMathematics.{v14,v15,v16}.{sln,vcxproj,vcxproj.filters}

• GTGraphics.{v14,v15,v16}.{sln,vcxproj,vcxproj.filters}

• GTMathematicsGPU.{v14,v15,v16}.{sln,vcxproj,vcxproj.filters}

• GTGraphicsDX11.{v14,v15,v16}.{sln,vcxproj,vcxproj.filters}

• GTGraphicsGL45.{v14,v15,v16}.{sln,vcxproj,vcxproj.filters}

• GTApplicationsDX11.{v14,v15,v16}.{sln,vcxproj,vcxproj.filters}

• GTApplicationsGL45.{v14,v15,v16}.{sln,vcxproj,vcxproj.filters}

• GTBuildAllDX11.{v14,v15,v16}.sln

• GTBuildAllGL45.{v14,v15,v16}.sln

• GTBuildAll.{v14,v15,v16}.sln

The GTMathematics library is header-only, so no output is produced by building these projects. The GT-

Graphics library contains the graphics-API-independent graphics classes and depends on GTMathematics. The
GTMathematicsGPU library contains GPU-based implementations and depends on GTMathematics and GT-

Graphics; it does not have much in it yet, but as CPU-based algorithms are ported to the GPU, the library
will be populated with these implementations. The GTGraphicsDX11 library adds DirectX 11 support (for
Microsoft Windows) and the GTGraphicsGL45 library adds OpenGL 4.5 support (for Microsoft Windows via
WGL and for Linux via GLX). The GTApplicationsDX11 library provides common files for all samples plus
DX11-specific code. The GTApplicationsGL45 library has the same common files but also had GL45-specific
code. The build-all solutions allow you to build everything with one press of the build button. One solution
is for DX11 builds, one solution is for GL45 builds, and the last solution builds everything. WARNING: If
you use build-all, the disk storage requirements are large.

4

2.3 Automatic Generation of Project and Solution Files

Creating a new Microsoft Visual Studio project and manually setting its properties to match those of the
current sample applications is tedious. A tool is provided to generate a skeleton project, solution and source
files, namely, GeometricTools/GTE/Tools/GenerateProject. You must specify whether the project is for a console
application (c), a 2D windowed application (w2) or a 3D windowed application (w3). You must also specify
a nesting level relative to the GeometricTools/GTE folder. For example, suppose you want to create a new
3D windowed project in the folder, GeometricTools/GTE/Samples/Graphics/MySample for a sample application.
Copy GenerateProject.exe to that folder, and in a command window opened in that folder, execute

Gene r a t eP r o j e c t w3 3 MySample

The application type is specified by w3, which leads to generation of skeleton source code files for a 3D
windowed application. The number 3 indicates the nesting of the MySample folder relative to the GTE folder.
The tool creates solution files, project files and filter files for all three supported compilers. It also creates
three source files: MySampleWindow3.h, MySampleWindow3.cpp and MySampleMain.cpp. You can open a solution,
compile the project, and run the application (although it does nothing until you add your own code).

If you want the generated files to live in a folder outside the GTE hierarchy, you will need to modify the
include path in the projects to $(GTE4 PATH)/.. You will also need to delete the GTE projects from the
Required folder of the solution and re-add them so that the correct path occurs. This is necessary because
the Microsoft Visual Studio reference system is used to link in the GTE libraries.

Also, it is not necessary to copy GenerateProject.exe to the project folder. If the executable can be found via
the PATH statement, just execute it in any folder of your choosing and then copy the generated files to your
project folder.

2.4 Running the Samples

You can run the samples from within the Microsoft Visual Studio development environment. Samples that
access data files use the GTE4 PATH environment variable to locate those files; code is in place to assert
when the environment variable is not set. If you run from Microsoft Windows, presumably double-clicking
an executable via Windows Explorer, the environment variable is still necessary.

Many of the samples compile HLSL shaders at run time. This requires having D3Dcompiler *.dll in your path,
where * is the version number of the shader compiler. You might have to modify your PATH environment
variable to include the path. With latest Windows, the DLL should be in a Windows Kit bin folder.

2.5 Microsoft Visual Studio Custom Visualizers

A file has been added, GeometricTools/GTE/gtengine.natvis, that provides a native visualizer for the Vector and
Matrix classes. Copy this to

C:/Users/YOURLOGIN/Documents/Visual Studio <VERSION>/Visualizers

where <VERSION> is one of 2015, 2017 or 2019. More visualizers will be added over time. Feel free to
suggest GTE classes for which you want specialized visualization during debugging.

5

2.6 Falling Back to Direct3D 10

For Microsoft Windows machines, the default settings for GTE are to use Direct3D 11.0 or later for rendering
and to compile the shaders for the built-in effects (such as Texture2Effect and VertexColorEffect) using Shader
Model 5. These settings are also used when compiling shaders that are part of the sample application or those
you write yourself. If you do not have graphics hardware recent enough to support the default configuration,
it is possible to modify the start-up code in the sample applications to fall back to Direct3D 10.0 (Shader
Model 4.0) or Direct3D 10.1 (Shader Model 4.1).

Open the graphics sample named VertexColoring. The main function has the block of code

Window : : Parameter s pa ramete r s (L”VertexCo lor ingWindow ” , 0 , 0 , 512 , 512) ;
auto window = TheWindowSystem . Create<VertexColor ingWindow>(pa ramete r s) ;
TheWindowSystem . MessagePump (window , TheWindowSystem .DEFAULT ACTION) ;
TheWindowSystem . Des t roy (window) ;

All the 2D and 3D windowed applications have similar blocks of code. The Window::Parameters structure
has a member named featureLevel that defaults to D3D FEATURE LEVEL 11 0. The general list of values from
which you can choose is

enum D3D FEATURE LEVEL
{

D3D FEATURE LEVEL 9 1 = 0x9100 , // 4 0 l e v e l 9 1
D3D FEATURE LEVEL 9 2 = 0x9200 , // 4 0 l e v e l 9 1
D3D FEATURE LEVEL 9 3 = 0x9300 , // 4 0 l e v e l 9 3
D3D FEATURE LEVEL 10 0 = 0xa000 , // 4 0
D3D FEATURE LEVEL 10 1 = 0xa100 , // 4 1
D3D FEATURE LEVEL 11 0 = 0xb000 , // 5 0
D3D FEATURE LEVEL 11 1 = 0xb100 // 5 1

}
D3D FEATURE LEVEL ;

The enumeration is found in d3dcommon.h. If you have a graphics card that supports at most Direct3D 10.0,
then modify the main code to

Window : : Parameter s pa ramete r s (L”VertexCo lor ingWindow ” , 0 , 0 , 512 , 512) ;
#i f d e f i n e d (GTE USE DIRECTX)

pa ramete r s . f e a t u r e L e v e l = D3D FEATURE LEVEL 10 0 ;
#end i f

auto window = TheWindowSystem . Create<VertexColor ingWindow>(pa ramete r s) ;
TheWindowSystem . MessagePump (window , TheWindowSystem .DEFAULT ACTION) ;
TheWindowSystem . Des t roy (window) ;

Comments were added after the enumerates to indicate what to assign to HLSLProgramFactory::defaultVersion.

For non-windowed applications, the DX11Engine constructors allow you to specify directly the feature level.

2.7 Falling Back to Direct3D 9

This is not really possible, because GTE uses constant buffers and other concepts without equivalent DX9
representations. The best you can do is specify one of the feature levels mentioned in the previous section
for which LEVEL 9 is part of the name. Note that there is no shader profile with name 4 0 level 9 2. If you
set the version string to “3 0”, the D3DReflect call will fail with HRESULT 0x8876086C, which is not listed
in winerror.h. This is the code for the obsolete D3DERR INVALIDCALL. The HLSL assembly instructions for
Shader Model 3 do not contain constant buffer register assignments (because they did not exist then).

6

3 Development on Linux

The GTE source code and sample applications have been tested on Ubuntu 18.04 and on Fedora 31. As
mentioned previously, your graphics driver must be capable of OpenGL 4.5.

3.1 Environment Variables

Create an environment variable named GTE4 PATH that stores the absolute directory path to the folder
GeometricTools/GTE. For example, if you use a bash shell, you would define the environment variable in the
file .bashrc by adding the line

GTE4 PATH=/home/YOURLOGIN/Geomet r i cToo l s /GTE ; expor t GTE4 PATH

The actual path depends on YOURLOGIN and where you copied the GTE distribution. The .bashrc file is
processed when you login; however, if you modify it after logging in, you may process it by executing

s ou r c e . ba sh r c

from a terminal window whose active directory is your home folder. For other versions of Linux or other
shells, consult your user’s guide on how to create an environment variable.

3.2 Dependencies on Other Packages

Each of the five supported flavors of Linux was installed from Live distributions. GTE depends on devel-
opment packages for X11, OpenGL, GLX and libpng. The latter package is used for a simple reader/writer of
PNG files for the sample applications. Use the package manager for your Linux distribution to install the
aforementioned dependencies.

3.3 Compiling the Source Code

The make files to build the GTE libraries are GeometricTools/GTE/makegraphics.gte, GeometricTools/GTE/make-

mathematicsgpu.gte and GeometricTools/Gte/makeapplications.gte. Both static and shared library builds are sup-
ported. From a terminal window execute

make CFG=c o n f i g u r a t i o n −f makegraph ic s . g te
make CFG=c o n f i g u r a t i o n −f makemathematicsgpu . g te
make CFG=c o n f i g u r a t i o n −f mak e app l i c a t i o n s . g te

where configuration is Debug or Release for static libraries and is DebugDynamic or ReleaseDynamic for shared
libraries. If you prefer, you can use the Bash shell script

. / m a k e l i b r a r i e s . sh c o n f i g u r a t i o n

The file attributes for the script need to be set before running the script the first time,

chmod a+x ma k e l i b r a r i e s . sh

so that the script is executable.

You can build all samples by changing directory to GeometricTools/GTE/Samples and executing

7

make CFG=c o n f i g u r a t i o n −f makea l l s amp l e s . g te

If you want to build a single sample application, change directory to the sample folder. For example, change
directory to GeometricTools/GTE/Samples/Graphics/VertexColoring and execute

make CFG=c o n f i g u r a t i o n APP=Ve r t e xCo l o r i n g −f . . / . . / makesample . g te

3.4 Support for OpenGL via Proprietary Drivers

Many of the Linux distributions ship with Nouveau as the default graphics driver. If the driver does not
support OpenGL 4.5 or later, the sample applications will terminate with a message OpenGL 4.5 is required.
To execute the samples, You should install the proprietary drivers for your graphics hardware. How you
install these drivers depends on the Linux distribution.

GTE uses a minimum of GLX functions in order to create windows that allow OpenGL accelerated rendering.
All functions are included in the GLX packages for Linux, so there is no need for GLX extensions.

3.5 Running the Samples

For the static library builds, you can simply open a terminal window and change directory to the project di-
rectory. For example, if you built the static release library and the Graphics/BlendedTerrain sample application,
the application can be launched by executing ./BlendedTerrain.Release

For shared library builds, the libraries are stored in GeometricTools/GTE/lib. A simple way to launch the
application is the following. Suppose you have a terminal window open and you have changed directory
to Samples/Graphics/BlendedTerrain and that you have built the shared release versions of the engine and
application. Execute the following

LD LIBRARY PATH=$GTE4 PATH/ l i b /Re leaseDynamic . / B l endedTe r r a i n . Re l e a s e

4 Accessing the OpenGL Driver Information

This section is applicable both to Microsoft Windows and to Linux.

The GL45Engine code is designed to allow you to write to disk information about the OpenGL driver. Ex-
tending the example for VertexColoring described in the previous sections, modify the main code

Window : : Parameter s pa ramete r s (L”VertexCo lor ingWindow ” , 0 , 0 , 512 , 512) ;
#i f d e f i n e d (GTE USE OPENGL)

pa ramete r s . d e v i c eC r e a t i o n F l a g s = 1 ;
#end i f

auto window = TheWindowSystem . Create<VertexColor ingWindow>(pa ramete r s) ;
TheWindowSystem . MessagePump (window , TheWindowSystem .DEFAULT ACTION) ;
TheWindowSystem . Des t roy (window) ;

For now the only device creation flags for OpenGL are the default 0 or 1, the latter causing the OpenGL
driver information to be written to a file named OpenGLDriverInfo.txt. The first several lines of the file show
the vendor, the renderer (graphics card model and related) and the OpenGL version supported by the driver.
The remaining lines list supported OpenGL extensions.

8

	1 Introduction
	1.1 License
	1.2 Copying the Distribution to Your Machine

	2 Development on Microsoft Windows
	2.1 Environment Variables
	2.2 Compiling the Source Code
	2.3 Automatic Generation of Project and Solution Files
	2.4 Running the Samples
	2.5 Microsoft Visual Studio Custom Visualizers
	2.6 Falling Back to Direct3D 10
	2.7 Falling Back to Direct3D 9

	3 Development on Linux
	3.1 Environment Variables
	3.2 Dependencies on Other Packages
	3.3 Compiling the Source Code
	3.4 Support for OpenGL via Proprietary Drivers
	3.5 Running the Samples

	4 Accessing the OpenGL Driver Information

