

under development

StxxL Tutorial

for STxxL 1.1

Roman Dementiev

under development

CONTENTS Dementiev June 4, 200811

Contents

1 Introduction 1

2 Prerequisites 3

3 Installation 5

4 A Starting Example 7
41 STLCode e 7
42 GoinglLarge —USe®™XXLo v v i 10

5 Design ofSTXXL 13

6 STL-User Layer 15
6.1 VecCtor 15
6.2 Stacks 21
6.3 PriorityQueue 27
6.4 SrxxL Algorithms o 30
6.5 Sorting. 31
6.6 SortedOrderChecking 33
6.7 SortingUsingIntegerKeys 33
6.8 Other SxxL Algorithms 36

7 Pipelined/Stream Interfaces 45
7.1 Preliminaries 45
7.2 Nodelnterface 45
7.3 Scheduling 45
7.4 File Nodes streamify ~ andmaterialize 45
7.5 StreamingNodes 45
7.6 SortingNodes 45
7.7 A Pipelined Version of the Billing Application. 45

8 Internals a7
8.1 Block ManagementLayer. 47
8.2 I/OPrimitivesLayer 47
8.3 Utilities 47

9 Miscellaneous 49

9.1 SrxxL CompileFlags 49

Introduction Dementiev June 4, 200d.

Chapter 1

Introduction

There exist many application that have to process data deithvean not fit into
the main memory of a computer, but external memory (e.g. k). The examples
are Geographic Information Systems, Internet and telecomication billing systems,
Information Retrieval systems manipulating terabytesaid

The most of engineering efforts have been spent on desigigagithms which
work on data thatompletelyresides in the main memory. The algorithms assume
that the execution time of any memory access s8all constant (1-20 ns). But it
is no more true when an application needs to access extearabny (EM). Because
of the mechanical nature of the position seeking routingralom hard disk access
takes about 3—20 ms. This is abdub00 000longer than a main memory access.
Since the I/Os are apparently the major bottleneck of apptios that handle large
data sets, they minimize the number of performed 1/0Os. A neasuare of program
performance is becoming sound — the 1/O complexity.

Vitter and Shriver [8] came up with a model for designing I/fBagent algorithms.
In order to amortize the high cost of a random disk ackessternal data loaded in
contiguous chunks of siZ8. To increase bandwidth external memory algorithms use
multiple parallel disks. The algorithms try in each 1/0O stemsferD blocks between
the main memory and disks (one block per each disk).

I/0 efficient algorithms have been developed for many probdmains, includ-
ing fundamental ones like sorting [], graph algorithms {liry processing [], compu-
tational geometry [].

However there is the ever increasing gap between theoreticeveau of external
memory algorithms and their use in practice. Several EMvegi library projects
(LEDA-SM [2] and TPIE [1]) attempted to reduce this gap. Tludfer frameworks
which aim to speed up the process of implementing I/O efficdgorithms giving a
high level abstraction away the details of how I/O is perfednimplementations of
many EM algorithms and data structures are offered as well.

Those projects are excellent proofs of EM paradigm, but lsame drawbacks
whichimpedetheir practical use.

Therefore we started to develog8xL library, which tries to avoid those obsta-
cles. The objectives of XL project (distinguishing it from other libraries):

IModern disks after locating the position of the data on théase can deliver the contiguous data
blocks at speed 50-60 MB/s. For example with the seek time $0IMMB can be read or written in
10 + 1000 x 1/50 = 30 ms, 1 byte —in 10.02 ms.

2 Introduction

e Make the library able to handle problemsrefl world size(up to dozens of
terabytes).

e Offer transparentsupport of parallel disks. This feature although announced
has not been implemented in any library.

e Implementparallel disk algorithms. LEDA-SM and TPIE libraries offer only
implementations of single disk EM algorithms.

e Use computer resources more efficientlyrx@L allows transparendverlap-
ping of I/O and computation in many algorithms and data strusture

e Care about constant factors in I/O volume. A unique libragtéire“pipelin-
ing” canhalf the number of I/Os performed by an algorithm.

e Care about thnternal work improve the in-memory algorithms. Having many
disks can hide the latency and increase the I/O bandwidthjrgernal work
becomes a bottleneck.

e Care about operating system overheads. Wdauffered disk access avoid
superfluous copying of data.

e Shortendevelopment timgsroviding well known interface for EM algorithms
and data structures. We provide STL-compafititgerfaces for our implemen-
tations.

2STL — Standard Template Library [7] is freely available &by of algorithms and data structures deliv-
ered with almost any C++ compiler.

Prerequisites Dementiev June 4, 20083

Chapter 2

Prerequisites

The intended audience of this tutorial are developers @arehers who develop ap-
plications or implement algorithms processing large data which do not fit into the
main memory of a computer. They must have basic knowleddeeitheory of exter-
nal memory computing and have working knowledge of C++ andxarerience with
programming using STL. Familiarity with key concepts of ggo programming and
C++ template mechanism is assumed.

Prerequisites

Installation

Chapter 3

Installation

See the $xXL home pagstxxl.sourceforge.net
tion for your compiler and operating system.

Dementiev June 4, 2005

for the installation instruc-

Installation

A Starting Example Dementiev June 4, 2004

Chapter 4

A Starting Example

Let us start with a toy but pretty relevant problem: the phoak billing problem.
You are given a sequence of event records. Each record hae atamp (time when
the event had happened), type of event ('call begin’ or 'eatl’), the callers number,
and the destination number. The event sequence is timeeatdeyour task is to
generate a bill for each subscriber that includes cost ohaflcalls. The solution
is uncomplicated: sort the records by the callers numbenceSthe sort brings all
records of a subscriber together, s@anthe sorted result computing and summing up
the costs of all calls of a particular subscriber. The pharaganies record up to 300
million transactions per day. AT&T billing system Gecko [#8s to process databases
with about 60 billion records, occupying 2.6 terabytes.t@aly this volume can not
be sorted in the main memory of a single compht@herefore we need to sort those
huge data sets out-of-memory. Now we show how 8. can be useful here, since it
can handle large volumes I/O efficiently.

4.1 STL Code

If you are familiar with STL your themain function of bill generation program will
probably look like this:

int main(i nt argc, char * argv[])

if(argc < 4) /] check if all paraneters are given

{ /1 in the conmand |ine
print_usage(argv[0]);
return O;

}

/1 open file with the event |og

std::fstream in(argv[1],std::ios::in);

/1 create a vector of log entries to read in
std::vector<LogEntry> v;

/1l read the input file and push the records
/1 into the vector
std::copy(std::istream_iterator<LogEntry>(in),

1Except may be in the main memory of an expensiMpecomputer.

8 A Starting Example

std::istream_iterator<LogEntry>(),
std::back_inserter(v));
/1 sort records by callers nunber
std::sort(v.begin(),v.end(),SortByCaller());
/1 open bill file for output
std::fstream out(argv[3],std::ios::out);
/1 scan the vector and output bills
std::for_each(v.begin(),v.end(),ProduceBill(out));
return O;

To complete the code we need to define the log entry dataltggEntry , input
operator>> for LogEntry , comparison functoSortByCaller , unary functor
ProduceBills used for computing bills, and thgrint _usage function.

#i ncl ude <algorithm> /1l for STL std::sort

#i ncl ude <vector> // for STL std::vector
#i ncl ude <fstream> [/l for std::fstream
#i ncl ude <limits>

#i ncl ude <ctime> /1l for tine_t type

#define CT_PER_MIN 2// subscribers pay 2 cent per mnute

struct LogEntry // the event |og data structure

{
long long int from;, // callers nunber (64 bit integer)
Il ong | ong int to; /1 destination nunber (64 bit int)
time_t timestamp; I/ time of event
int event; /1l event type 1 - call started
11 2 - call ended
I3

/1 input operator used for reading fromthe file
std:istream & operat or >> (std:istream & i,
LogEntry & entry)

{
i >> entry.from;
i >> entry.to;
i >> entry.timestamp;
i >> entry.event;
return i

}

struct SortByCaller /] conparison function

{

bool operator() (const LogEntry & a,
const LogEntry & b) const
{

return afrom < b.from ||

(a.from == b.from && a.timestamp < b.timestamp) ||
(a.from == b.from && a.timestamp == b.timestamp &&
a.event < b.event);
}
stati c LogEntry min_value()
{
LogEntry dummy;
dummy.from = (std::numeric_limits< I ong | ong i nt>:min)();
return dummy;
}
stati c LogEntry max_value()
{
LogEntry dummy;
dummy.from = (std::numeric_limits< I ong | ong i nt>:max)();
return dummy;

}
}

/1 unary function used for producing the bills
struct ProduceBill

{
std::ostream & out; /1l stream for outputting
/1 the bills
unsi ghed sum; /1 current subscribers debit
LogEntry last; /1l the last record

ProduceBill(std::ostream & o_):out(o_),sum(0)

{
last.from = -1;
}
voi d operator () (const LogEntry & e)
{
i f (last.from == e.from)
{

/1l either the |ast event was 'call started’
/1l and current event is 'call ended or the
/1 last event was 'call ended and current

/1l event is 'call started

assert((lastevent == 1 && e.event == 2) ||
(last.event == 2 && e.event == 1));
i f(e.event == 2) /1 call ended

sum += CT_PER_MIN
(e.timestamp - last.timestamp)/60;
}
el se i f(last.from != -1)
{
// must be 'call ended’
assert(last.event == 2);
/!l must be 'call started
assert(e.event == 1);

10 A Starting Example

/1 output the total sum
out << last.from <<"; _'<< (sum/100)<<" _EUR'
<< (sum%100)<< " _ct'<< std::endl;

sum = 0; // reset the sum

}

last = e€;

voi d print_usage(const char * program)

{
std::cout << "Usage: _"<<program<<
" _lodfile _main_pbillfile" << std::endl;
std::cout <<" _logfile __-_file _name_ of _the _input"
<< std::endl;
std::cout <<" main ., - _memory_to _use_(in _MB)"
<< std::endl;
std::cout <<" _billfile - _file _name_of _the _output"
<< std::endl;
}

measure the running time for in-core and out-of-core cas@tyhe I/O ineffi-
ciency of the code

4.2 Going Large — UseSTXXL

In order to make the program I/O efficient we will replace thE_Snternal memory
data structures and algorithms by thein&L counterparts. The changes are under-
lined.

#include <stxxl . h>
/!l the rest of the code renains the sane
int main(i nt argc, char * argv[])

{
if(argc < 4) [/ check if all parameters are given
/1 in the conmand |ine
print_usage(argv[0]);
return O;
}

/1 open file with the event |og

std::fstream in(argv[1],std::ios::in);

/1l create a vector of log entries to read in

stxxl _::vector<LogEntry> v;

/1 read the input file and push the records

/1 into the vector

std::copy(std::istream_iterator<LogEntry>(in),
std::istream_iterator<LogEntry>(),
std::back_inserter(v));

/1 bound the main nmenory consunption by M

11

/1 during sorting

const unsi gned M = atol(argv[2]) * 1024 1024,
/1 sort records by callers nunber

stxxl ::sort(v.begin(),v.end(),SortByCaller(),

/1 open bill file for output

std::fstream out(argv[3],std::ios::out);

/1 scan the vector and output bills

/1l the | ast paraneter tells how many buffers
/1l to use for overlapping I/O and conputation
stxxl ::for_each(v.begin(),v.end(),ProduceBill(out),2
return O;

As you note the changes are minimal. Only the namespacesoamne memory
specific parameters had to be changed.
To compile the $xxL billing program you may use the followingakefile

all: phonebills

path to stxxl.mk file

from your stxxl installation
include “/stxxl/stxxl.mk

phonebills: phonebills.cpp
$(STXXL_CXX) -c phonebills.cpp $(STXXL_CPPFLAGS)
$(STXXL_CXX) phonebills.o -0 phonebills.bin $(STXXL_LDL
clean:
rm -f phonebills.bin phonebills.o

Do not forget to configure you external memory space in.ftgxl . You can
copy theconfig _example (Windows:config _example _win)from the SrxxL
installation directory, and adapt it to your configuration.

IBS)

12

A Starting Example

Design of SxxL Dementiev June 4, 200d. 3

Chapter 5

Design of STXXL

StxXL is a layered library. There are three layers (see Fig. 5.1 [dwest layer,
Asynchronous I/O primitives laydrides the details of how I/Os are done. In partic-
ular, the layer provides abstraction fasynchronousead and write operations on a
file. The completion status of I/O operations is is facilitatgd/® requestbjects re-
turned by read and write file operations. The layer has séirpdementations of file
access for Linux. The fastest one is basedead andwrite system calls which
operate directly on user space memory pagéeko support asynchrony the current
Linux implementation of the layer uses standattiread library. Porting S xxL
library to a different platform (for example Windows) inw&s only reimplementing
the Asynchronous I/O primitives layer using native file esxmethods and/or native
multithreading mechanisris

STL-user layer E[Streaming layer E

i . vector, stack, set : . ‘

Containers: 1G>0 e0s: map Pipelined sorting,
Algorithms: sort, for_each, merge zero-1/O scanning

| &

Block management layer R

-
X
>< typed block, block manager, buffered streams,
5 L block prefetcher, buffered block writer

Asynchronous I/O primitives layer

.
files, I/O requests, disk queues,
completion handlers

Figure 5.1: The $xxL library structure

The middle layerBlock management lay@rovides a programming interface sim-
ulating theparallel disk model. The layer provides abstraction for a fundanieata:
cept in the external memory algorithm design — block of elets.e Block manager

10.DIRECT option when opening a file.
2Porting SrxxL to Windows platform is not finished yet.

14 Design of I xxL

implements block allocation/deallocation allowing setdrlock-to-disk assignment
strategies: striping, randomized striping, randomizeding, etc. The block man-
agement layer provides implementationpafrallel disk buffered writing and optimal
prefetching [5], and block caching. The implementatioresfatly asynchronous and
designed to explicitly support overlapping of I1/0O and cottaion.

The top of SxxL consists of two modules (see Fig. 5.1). STL-user layer imple
ments the functionality and interfaces of the STL librarjieTlayer provides external
memory sorting, external memory stack, external memongrityi queue, etc. which
have (almost) the same interfaces (including syntax an@ésgas) as their STL coun-
terparts.

The Streaming layerprovides efficient support for external memory algorithms
with mostly sequential/O pattern, i.e. scan, sort, merge, etc. A user algorithm, i
plemented using this module can save many 3/OFhe win is due to an efficient
interface, that couples the input and the output of the #@lyois-components (scans,
sorts, etc.). The output from an algorithm is directly fetbianother algorithm as the
input, without the need to store it on the disk.

3The doubling algorithm for external memory suffix array constion implemented with this module
requires only ¥3 of I1/Os which must be performed by an implementation th&susonventional data
structures and algorithms (fronT&xL STL-user layer, or LEDA-SM, or TPIE).

STL-User Layer Dementiev June 4, 200d.5

Chapter 6

STL-User Layer

STXXL library was designed to ease the access to external menguoyitaims and
data structures for a programmer. We decided to equip oukeimentations obut-of-
memorydata structure and algorithms with well known generic ifatees ofinternal
memorydata structures and algorithms from the Standard Templataty. Currently
we have implementation of the following data structures(Ih- terminologycontain-
ers):. vector , stack , priority _queue . We have implemented arallel disk
sorter which have syntax of STéort [3]. Ourksort is a specialized implemen-
tation ofsort which efficiently sorts elements with integer kéySTxxL currently
provides several implementations of scanning algorithgemérate , for _each,
find) optimized for external memory. However, it is possibletftwsome constant
factor degradation in the performance) to apply internaimogy scanning algorithms
from STL to SrxXL containers, since™XL containers have iterator based interface.

STXXL has a restriction that the data types stored in the contairar not have
pointers or references to other elements of external mecmmainers. The reason is
that those pointers/references get invalidated when thekblcontaining the elements
they point/refer to are written on the disks.

6.1 \ector

External memory vector (arraytxxl::vector is a data structure that supports
random access to elements. The semantics of the basic rsetfsigix|::vector

is kept to compatible with STistd::vector . Table 6.1 shows the internal work

and the 1/0 worst case complexity of thexI::vector

ksort is not STL compatible, it extends the syntax of STL.

Table 6.1: Running times of the basic operationst&kl::vector
| | int. work | 1/O (worst case)|

random access 0o(1) o1
insertion attheend O(1) o1
removal at the end| 0O(1) o(1)

16 STL-User Layer

6.1.1 The Architecture ofst xxI : : vect or

Thestxxl::vector is organized as a collection of blocks residing on the exern
storage media (parallel disks). Access to the externakislecorganized through the
fully associativecachewhich consist of some fixed amount of in-memory pa&g@$e
schema obtxxl::vector is depicted in the Fig. 6.1. When accessing an element
the implementation adtxxl::vector access methodp (| operatorpush _back ,
etc.) first checks whether the page to which the requestedesiebelongs is in the
vector’s cache. If it is the case the reference to the eleiinethie cache is returned.
Otherwise the page is brought into the catHéthere was no free space in the cache,
then some page is to be written out. Vector maintaipagerobject, that tells which
page to kick out. $xxL provides LRU and random paging strategies. The most effi-
cient and default one is LRU. For each page vector maintaimditty flag, which is

set whemon-constanteference to one of the page’s elements was returned. Tiye dir
flag is cleared each time when the page is read into the catigepdrpose of the flag

is to track whether any element of the page is modified anéfbes the page needs
to be written to the disk(s) when it has to be evicted from thehe.

t |

AT

cache\\\ page\\# page 8 “free \ pagé 5

Figure 6.1: The schema stxxl::vector that consists of ten external memory
pages and has a cache with the capacity of four pages. Thediise page is mapped
to external page 1, the second page is mapped to externaBpagd the fourth cache

page is mapped to page 5. The third page is not assigned toxéama memory

page.

In the worst case scenario when vector elements are redigfwin the random
order each access takesxdlocks per_pagel/Os. The factortwo shows up here
because one has to write the replaced from cache page anthesaglquired one).
However the scanning of the array costs aboii I/Os using constant vector iterators
or const reference to the vectofread-only access). Using non-const vector access
methods leads to 2 n/B 1/Os because every page becomes dirty when returning a
non const reference. If one needs only to sequentially veléenents to the vector
in n/B I/Os the currently fastest methodssxxl::generate (see section 6.8.1).
Sequential writing to an untouched before vegwmralone adding elements at the end
of the vectof leads also to/B I/Os.

Example of use

2The page is a collection of consecutive blocks. The numbbtamks in the page is constant.

3If the page of the element has not been touched so far, tipsistkipped. To keep an eye on such
situations there is a special flag for each page.

“nis the number of elements to read or write.

SFor example writing in the vector that has been created usittpr(size _type n) constructor.

6Usingvoid push _back(const T&) method.

17

stxxl::vector<

int> V;

V.push_back(3);

assert(V.size()

== 1 && V.capacity() >=

1 && V[0] ==

3);

6.1.2 stxxl:: VECTORGENERATOR

Besides the type of the elemestsxl::vector

has many other template param-

eters (block size, number of blocks per page, pager clas$, & make the configu-
ration of the vector type easiem8xL provides special type generator template meta
programs for its containers.

The program fostxxl::vector

Example of use

is calledstxx|::VECTOR _GENERATOR

t ypedef stxxl::VECTOR_GENERATOR<i nt >::result vector_type;
vector_type V;

V.push_back(3);

assert(V.size()

== 1 && V.capacity() >=

1 && V[0] == 3);

Table 6.2: Template parameters siixxl::VECTOR _GENERATORom left to
right.
| parameter| description | defaultvalue | recommended valug
Tp element type
PgSz number of blocks in g 4 >D
page
Pages number of pages in the 8 >2
cache
BIkSize. | block sizeB in bytes 2x1024x 1024 larger is better
AllocStr_ | parallel disk assignment RC RC
strategy (Table 6.3)
Pager paging strategy (Ta Iru Iru
ble 6.4)
Table 6.3: Supported parallel disk assignment strategies.
| strategy | identifier |
striping striping
simple randomized SR
fully randomized FR
randomized cycling RC
Notes:

e All blocks of a page are read and written from/to disks togetiherefore to
increase the 1/0 bandwidth, it is recommended to set the Pg&ameter to
multiple of D.

18 STL-User Layer

Table 6.4: Supported paging strategies.
| strategy | identifier |

random | random

least recently used Iru

Since there are defaults for the last five of the parameteis,not necessary to
specify them allExamples:

e VECTORGENERATOR<double>:iresult ~ — external vector oflouble’s
with four blocks per page, the cache with eight pages, 2 MBkdpRandom
Allocation and Iru cache replacement strategy

¢ VECTORGENERATOR<double,8>::result — external vector oflouble’s
, with eight blocks per page, the cache with eight pages, 2 MB blocks, &and
Allocation and Iru cache replacement strategy

¢ VECTORGENERATOR<double,8,2,524288,SR>::result — external
vector of double's, with eight blocks per page, the cache withvo pages,
512 KB blocks, Simple Randomizedallocation and Iru cache replacement
strategy

6.1.3 Internal Memory Consumption ofst xx| : : vect or

The cache obtxxl::vector largely dominates in its internal memory consump-
tion. Other members consume very small fractiorstéxl::vector S memory
even when the vector size is large. Therefore, the interreahory consumption of
stxxl::vector can be estimated #&kSize x Pages x PgSz bytes.

6.1.4 Members ofst xx| : : vect or

See Tables 6.5 and 6.6.
Notes:

a) In opposite to STLstxxl::vector s iterators do not get invalidated when
the vector is resized or reallocated.

b) Dereferencing a non-const iterator makes the page oflémeant to which the
iterator points tadirty. This causes the page to be written back to the disks(s)
when the page is to be kicked off from the cache (additiondaewfOs). If you
do not want this behavior, use const iterators instead. pkam

|
vector_type V;

/1 ... fill the vector here
vector_type:iterator iter = V.begin();

// ... advance the iterator
a = xiter, /] causes wite |/GCs,

19

Table 6.5: Members dftxxl::vector .Part1.
| member | description |
value _type The type of object, Tp stored in
the vector.
pointer Pointerto Tp.
reference Reference to Tp
const _reference Const reference to Tp
size _type An unsigned 64-bitintegral type.
iterator Iterator used to iterate through |a

vector. See notes a,b.

const _iterator

Const iterator used to iterate
through a vector. See notes a,b.

block _type

type of the block used in disk
memory transfers

iterator begin()

Returns an iterator pointing to the
beginning of the vector. See notgs
a,b.

iterator end()

[©)

Returns an iterator pointing to th
end of the vector. See notes a,b.

const _iterator begin() const

Returns a consterator pointing to
the beginning of the vector. See
notes a,b.

const _iterator end() const

Returns a consterator pointing to
the end of the vector. See notes ajb.

size _type size() const

Returns the size of the vector.

size _type capacity() const

Number of elements for whichx-
ternal memory has been allocated.
capacity() is always greate
than or equal tgize()

bool empty() const

true if the vector’s size is 0.

reference

Returns (the reference to) the n’th

operator[](size _type n) element. See note c.
const _reference Returns (the const reference to) the
operatorf](size type n) n'th element. See note c.

const

/] although *iter is not changed
vector_type:.const_iterator citer = V.begin();

// ... advance the iterator

a = =citer; /1 read-only access, causes no wite |1/ Cs

x citer = b;

/1 does not conpile, citer is const

c) Non consf -] operator makes the page of the elemeinty. This causes the
page to be written back to the disks(s) when the page is todke@dioff from
the cache (additional write 1/0s). If you do not want this &ebr, use const
[-] operator. For that you need to access the vector via a cdiesenee to it.

Example:

20 STL-User Layer
Table 6.6: Members oftxxl::vector . Part 2.
| member | description |
vector() Creates an empty vector.

vector(size _type n)

Creates a vector with n elements.

vector(const vector&)

Not yet implemented

“vector()

The destructor.

void reserve(size _type n)

If n is less than or equal to
capacity() , this call has no ef{
fect. Otherwise, it is a request
for allocation of additionaéxternal
memory. If the request is success-
ful, then capacity() is greater
than or equal to n; otherwise,
capacity() is unchanged. In ei
ther casesize() is unchanged.

reference front()

Returns (the reference to) the first
element. See note c.

const _reference front()
const

Returns (the const reference to) the
first element. See note c.

reference back()

Returns (the reference to) the last
element. See note c.

const _reference back() const

Returns (the const reference to) the
last element. See note c.

void push _back(const T&)

Inserts a new element at the end.

void pop _back()

Removes the last element.

eX-

void clear() Erases all of the elements and degl
locates all external memory that
vector occupied.

void flush() Flushes the cache pages to the
ternal memory.

vector (file * from) Create the vector from the file. The

construction causes no 1/O.

vector_type V;

/1 fill the vector

a = V[index];

a = CV[index];
CV[index] = b;

/1 read-
/1 does

/] causes wite I/ GCs,
/1 al though V[index]

const vector_type & CV =V,

here

is not changed

reference to V
can cause no wite |/ GCs
CV i s const

/] const
only access,
not conpil e,

This issue also concerfront()

andback() methods.

21

6.2 Stacks

Stacks provide only restricted subset of sequence opagtinsertion, removal, and
inspection of the element at the top of the stack. Stacks destn first out” (LIFO)
data structures: the element at the top of a stack is the @ienmds most recently
added. Stacks does not allow iteration through its elements

Thel/O efficientstack is perhaps the simplest external memory data steucline
basic variant of EM stack keeps the toplements in the main memory buffer, where
k < 2B. If the buffers get empty on a removal call, one block is bifetifgom the disk
to the buffers. Therefore at leaBtremovals are required to make one 1/O reading a
block. Insertions cause no I/Os until the internal buffegsfgll. In this case to make
space the firsB elements are written to the disk. Thus a block write happeg o
after at leasB insertions. If we choose the unit of disk transfer to be a iplgtof DB
(we denote it as page, set the stack buffer size td2pages, and evenly assign the
blocks of a page to disks we obtain the running times showiers.7.

Table 6.7: Amortized running times of the basic operatidnstxx!::stack
| | int. work | 1/O (amortized)|]

insertion attheend O(1) 0(1/DB)

removal at the end| O(1) 0(1/DB)

StxXL has several implementations of the external memory staelkch Emple-
mentation is specialized for a certain access pattern:

e TheNormal stack 6txxl::normal _stack) is a general purpose imple-
mentation which is the best if the access pattern to the s$aak irregular mix
of push’es and pop’s, i.e. the stack grows and shrinks withaertain rule.

e TheGrow-Shrink stack is a stack that is optimized for an access pattern where
the insertions are (almost) not intermixed with the remsyahd/or vice versa,
the removals are (almost) not intermixed with the insedioin other words
the stack first grows to its maximal size, then it shrinksntitemight again
grow, then shrink, and so forth, i.e. the pattermmshi pop’i)", wherek € N,
1< j <k, andij, rj arelarge.

e The Grow-Shrink2 stack is a “grow-shrink” stack that allows the use of com-
mon prefetch and write buffer pools. The pools are shareddsst several
“grow-shrink” stacks.

e TheMigrating stack is a stack that migrates from internal memory to exern
when its size exceeds a certain threshold.

6.2.1 stxxl::norml_stack

The stxxl::normal _stack is a general purpose implementation of the external
memory stack. The stack has two pages, the size of the padedkshis a configu-
ration constant and can be given as a template parameteinipthementation of the
methods follows the description given in Section 6.2.

22 STL-User Layer

Internal Memory Consumption of st xx| : : nor mal_st ack

The cache obktxxl::normal _stack largely dominates in its internal memory
consumption. Other members consume very small fractistwad::normal _stack s
memory even when the stack size is large. Therefore, thengtenemory con-
sumption ofstxxl::normal _stack can be estimated as>2BlkSize x PgSz
bytes, wheralkSize is the block size an&gSz is the page size in blocks (see Sec-
tion 6.2.5).

Members ofst xxI : : nor mal_st ack

See Table 6.8.
Table 6.8: Members dftxxl::normal _stack .
| member | description |

value _type The type of object, Tp stored in
the vector.

size _type An unsigned 64-bftintegral type.

block _type type of the block used in disk+
memory transfers

bool empty() const Returns true if the stack corn-
tains no elements, and false other-
wise. S.empty() is equivalent to
S.size() ==

size _type size() const Returns the number of elements
contained in the stack.

value _type& top() Returns a mutable reference to the
element at the top of the stack. Pre-
condition:empty() is false.

const value _type& top() Returns a const reference to the el-

const ement at the top of the stack. Pre-
condition:empty() is false.

void push(const value _type& Inserts x at the top of the stack.

X) Postconditions: size() will be
incremented by 1, antbp() will
be equal to x.

void pop() Removes the element at the top |of
the stack. Preconditiorempty()
is false. Postcondition: size() will
be decremented by 1.

normal _stack() he default constructor. Creates an
empty stack.

template <class stack _type> The copy constructor. Accepts any

normal _stack(const stack _type stack concepdata type.

& stack .)

“normal _stack() The destructor.

The running times of the push/pop stack operations are givéable 6.7. Other

23

operations except copy construction perform constantriatevork and no 1/Os.

6.2.2 stxxl::growshrinkstack

Thestxxl::grow _shrink _stack stack specialization is optimized for an access
pattern where the insertions are (almost) not intermixet thie removals, and/or vice
versa, the removals are (almost) not intermixed with therimsns. In other words
the stack first grows to its maximal size, then it shrinksntitemight again grow,
then shrink, and so forth, i.e. the pattern jsusti popi)¥, wherek € N, 1 < j <Kk,
andij, rj arelarge. The implementation efficiently exploits the knowledge loé t
access pattern that allovpsefetchingthe blocks beforehand while the stack shrinks
and buffered writingwhile the stack grows. Therefore tlwerlappingof 1/0 and
computation is possible.

Internal Memory Consumption of st xx| : : gr owshri nk_st ack

The cache o$txxl::grow _shrink _stack largely dominatesin its internal mem-
ory consumption. Other members consume very small fractistxxl::grow _shrink
memory even when the stack size is large. Therefore, thenmtenemory consump-
tion of stxxl::grow _shrink _stack can be estimated asx2BlkSize x PgSz
bytes, whera@lkSize is the block size an&gSz is the page size in blocks (see Sec-
tion 6.2.5).

Members ofst xxI : : growshri nk_st ack

Thestxxl::grow _shrink _stack hasthe same set of members assitx&l::normal
(see Table 6.8). The running timesstkxl::grow _shrink _stack arethe same
asstxxl::normal _stack except that when the stack switches from growing to
shrinking (or from shrinking to growinggSz I/Os can be spent additionally in the
worst casé.

6.2.3 stxxl::growshrinkstack2

Thestxxl::grow _shrink _stack2 is optimized for the same kind of access pat-
tern asstxxl::grow _shrink _stack . The difference is that each instance of
stxxl::grow _shrink _stack uses an own internal buffer to overlap 1/0Os and
computation, bustxxl::grow _shrink _stack2 is able to share the buffers from
the pool used by several stacks.

Internal Memory Consumption of st xxI : : gr owshri nk.st ack?2

Not counting the memory consumption of the shared blocks fitee pools, the stack
alone consumes aboBtkSize bytes!®

9This is for the single disk setting, if the page is perfectijped over parallel disk the number of I/Os
is PgSz/D.
101t has the cache that consists of only a single block.

_stack s

_stack

24 STL-User Layer

Members ofst xx| : : growshri nkst ack2

The stxxl::grow _shrink _stack2 has almost the same set of members as the
stxxl::normal _stack (Table 6.8), except that it does not have the default con-
structor. Thestxxl::grow shrink _stack2 requires prefetch and write pool
objects (see Sections 8.1.1 and 8.1.2 for the documenfatidime pool classes) to be
specified in the creation time. The new members are liste@lners.9.

Table 6.9: New members stxxl::grow _shrink _stack2 .

| member | description |
grow _shrink _stack2 Constructs stack, that will usg
(prefetch _pool< p_pool _ for prefetching and
block _type > & p _pool _ w_pool _ for buffered writing.
write _pool< block _type prefetch _aggressiveness
> &wpool _, unsigned parameter tells how many blocks
prefetch _aggressiveness=0) from the prefetch pool the stack is
allowed to use.
void set _prefetch _aggr Sets level of prefetch aggressive-
(unsigned new _p) ness (number of blocks from the
prefetch pool used for prefetching).
unsigned get _prefetch _aggr () Returns the number of blocks used
const for prefetching.
6.2.4 stxxl::m gratingstack
The stxxl::migrating _stack is a stack that migrates from internal memory

to external when its size exceeds a certain threshold (e plarameter). The im-
plementation of internal and external memory stacks carriigrary and given as a
template parameters.

Internal Memory Consumption of st xx| : : m gr ati ngst ack

The stxxl::migrating _stack memory consumption depends on the memory
consumption of the stack implementations given as templatameters. The the cur-
rent state is internal (external), tiexxl::migrating _stack consumes almost
exactly the same space as internal (external) memory stagleientatiort!

Members ofst xx| : : mi grati ngst ack

Thestxxl::migrating _stack extendsthe member setsikxl::normal _stack
(Table 6.8). The new members are listed in Table 6.10.

1The stxxl::migrating _stack needs only few pointers to maintain the switching from ingr
to external memory implementations.

25

Table 6.10: New members sfxxl::migrating _stack .
| member | description |

bool internal () const Returns true if the current img
plementation is internal, otherwise
false.

bool external () const Returns true if the current img
plementation is external, otherwige
false.

6.2.5 stxxl:: STACKGENERATOR

To provide an easy way to choose and configurestix&l::stack implementa-
tions SrxxL offers a template meta program callettx|::STACK _GENERATOR
See Table 6.11.

Example:

t ypedef stxxl::STACK_GENERATOR< i nt >::iresult stack_type;

i nt main()
{
stack_type S;
S.push(8);
S.push(7);
S.push(4);
assert(S.size() == 3);

assert(S.top() == 4);
S.pop();

assert(S.top() == 7);
S.pop();

assert(S.top() == 8);
S.pop();

assert(S.empty();

Example for st xxI : : gr owshri nk.st ack2:
|

t ypedef STACK_GENERATOR~t ,external,grow_shrink2>::result stack_type;
t ypedef stack_type::block_type block_type;

stxxl::prefetch_pool p_pool(10); /1 10 read buffers
stxxl::write_pool w_pool(6); /1 6 wite buffers
stack_type S(p_pool,w_pool,0); /1 no read buffers used

for(long I ong i=0;i < max_value;++i)

26 STL-User Layer

Table 6.11: Template parametersofxl::STACK _GENERATOfRom left to right.

| parameter | description | default value | recommended valug
ValTp element type
Externality tells whether the vector is inter- external
nal, external, or migrating (Tat
ble 6.12)
Behavior choosesexternal implementa- normal
tion (Table 6.13)
BlocksPerPage defines how many blocks has 4 >D

one page of internal cache of an
externalimplementation
BIkSz external block size in bytes 2x1024x 1024 larger is better
IntStackTp type of internal stack (used far std::stack<ValTp>
the migrating stack)
MigrCritSize threshold value for numi 2 x BlocksPerPage BlkSz
ber of elements when
migrating _stack migrates
to the external memory

AllocStr parallel disk assignment strat- RC RC
egy (Table 6.3)
SzTp size type off _t off _t

Table 6.12: The Externality parameter.
| identifier | comment |

internal chooses IntStackTp implementation
external | external container, implementation is chosen ac-
cording to the Behavior parameter
migrating | migrates from internal implementation given by
IntStackTp parameter to external implementatjon
given by Behavior parameter when size exceeds
MigrCritSize

S.push(i);

S.set_prefetch_aggressiveness(5);

/* give a hint that we are going to
shrink the stack from now on,
al ways prefetch 5 buffers
bef or ehand =/

for(long | ong i=0; i< max_value;++i)
S.pop();

S.set_prefetch_aggressiveness(0);
/1 stop prefetching

27

Table 6.13: The Behavior parameter.

| identifier | comment |
normal conservative version, implemented n
stxxl::normal _stack

grow_shrink | choosestxxl::grow _shrink _stack
grow_shrink2 | choosestxxl::grow _shrink _stack2

6.3 Priority Queue

A priority queue is a data structure that provides a regdaubset of container func-
tionality: it provides insertion of elements, and inspestand removal of the top
element. It is guaranteed that the top element is the lagjestent in the priority
gueue, where the function obje€mp is used for comparisons. Priority queue does
not allow iteration through its elements.

STXXL priority queue is an external memory implementation of [6he differ-
ence to the original design is that the last merge groups tespsorted sequences in
the external memory. The running timessbxl::priority _queue data struc-
ture is given in Table 6.14. The theoretic guarantees on Bfopmance are given
only for a single disk setting, however the queue also perfowell in practice for
multi-disk configuration.

Table 6.14: Amortized running times of the basic operatioms
stxxl::priority —queue in terms of | = the number of performed opera-
tions.
| | int. work | 1/O (amortized)|]
insertion| O(logl) 0(1/B)
deletion | O(logl) 0(1/B)

6.3.1 Members ofst xx| : : priorityqueue
See Table 6.15.

6.3.2 st xxl:: PRI ORI TYQUEUE GENERATOR

Since thestxxl::priority _queue has many setup parameters (internal mem-
ory buffer sizes, arity of mergers, number of internal anteexal memory merger
groups, etc.) which are difficult to guessTXL provides a helper meta template
program that searches for the optimum settings for user ddmaThe program is
called stxxl::PRIORITY _QUEUEGENERATQORThe parameter of the program
are givenin Table 6.16.

Notes:

a) If Cmp(x,y) is true, then x is smaller than y. The element returned by
Q.top() is the largest element in the priority queue. That is, it lesgrop-
erty that, for every other element x in the priority queGeap(Q.top(), X)

28

STL-User Layer

b)

d

~

is false.Cmp must also providenin _value method, that returns value of type
Tp-_thatis smaller than any element of the queue x Grap(Cmp_.min _value(),x))
is always true.

Example, a comparison object for priority queue whasp() returns the
smallestcontained integer:

struct CmplintGreater
{
bool operator () (const int & a, const int & b)
{ return a<b; }
i nt min_value() const
{ return (std:numeric_limits< i nt>:max)(); }

I8

Example, a comparison object for priority queue whesp() returns the
largestcontained integer:

struct CmpintLess: public std:less< int>
{
i nt min_value() const
{ return (std:numeric_limits< i nt>:min)(); }

h

Note thatCmp must define the Strict Weak Ordering.

Example: if you are sure that priority queue contains neenban one million
elements any time, then the right parameter for yod 000001024 = 976.

Try to play with the Tuneparameter if the your code does not compile (larger
than default value 6 might help). The reason that the code doecompile

is that no suitable internal parameters were found for givel_ and MaxS.

It might also happen that given IntMs too small for given Max$ try larger
values.

PRIORITY_QUEUEGENERATORearches for 7 configuration parameters of
stxxl::priority _queue that both minimize internal memory consump-
tion of the priority queue to match IntMand maximize the performance of
priority queue operations. Actual memory consumption rimghslightly larger
(usestxxl::priority _queue::mem _cons() method to track it), since
the search assumes rather optimistic schedule of pushi&gapes for the
estimation of the maximum memory consumption. To keep &aheanory re-
guirements low, increase the value of Maxtarameter.

For the functioning, a priority queue object requires awls of blocks (See
the constructor opriority ~ _queue). To construct $xxL block pools you
need the block type that is used by priority queue. Block’®e sind hence
it's type is generated by tHeRIORITY _QUEUEGENERATOR compile type
from IntM_, MaxS_andsizeof(Tp) and it can not be given directly by the
user as a template parameter. The block type can be accessed a
PRIORITY_QUEUEGENERATOR<parameters>::result::block type .

29

Example:

struct Cmp
{
bool operator () (const int & a,
const int & b) const
{ return a>b; }
i nt min_value() const

{ return (std:numeric_limits< i nt>:max)(); }
h
t ypedef stxxl::PRIORITY_QUEUE_GENERATOR< i nt,
Cmp,
/* use 64 MB on main nenory =*/ 64+ 10241024,
/+* 1 billion itens at nost =/ 10241024

>:result pg_type;
t ypedef pqg_type::block_type block type;

int main() {
/1 use 10 bl ock read and wite pools
/1l for enable overlapping of 1/0 and
/1 conputation
stxxl::prefetch_pool<block_type> p_pool(10);
stxxl::write_pool<block_type> w_pool(10);

pa_type Q(p_pool,w_pool);
Q.push(1);
Q.push(4);
Q.push(2);
Q.push(8);
Q.push(5);
Q.push(7);

assert(Q.size() == 6);

assert(Q.top() == 8);
Q.pop();

assert(Q.top() == 7);
Q.pop();

assert(Q.top() == 5);
Q.pop();

assert(Q.top() == 4);
Q.pop();

assert(Q.top() == 2);
Q.pop();

assert(Q.top() == 1);
Q.pop();

30 STL-User Layer

assert(Q.empty());
}

6.3.3 Internal Memory Consumption ofst xx| : : pri ori t yqueue

Internal memory consumption aftxxl::priority _queue is bounded by the
IntM_ parameter in most situations.

6.4 STxXL Algorithms

Iterators ofstxxl::vector are STL compatiblestxxl::vector::iterator
is a model of Random Access Iterator concept from STL. Tloeeet is possible to
use thestxxl::vector iterator ranges with STL algorithms. However such use

is not 1/O efficient if an algorithm accesses the sequenceamdom order. For such
kind of algorithms SxxL provides I/O efficient implementations described in this
chapter (Sections 6.5-6.7). If an algorithm does only a oam constant number
of scans) of a sequence (or sequences) the implementatibnals STL algorithm

is nevertheless I/O efficient. However one can save confatdrs in /O volume
and internal work if the the access pattern is known (redg-onwrite-only scan
for example). This knowledge is used im&L specialized implementations of STL
algorithms (Section 6.8).

Example: STL Algorithms Running on STXXL containers

t ypedef stxxl::VECTOR_GENERATOR<I nt >:result vector_type;

/'l Replace every nunmber in an array with its negative.
const int N = 1000000000;

vector_type A(N);

std::iota(A.begin(), A.end(), 1);

std::transform(A, A+N, A, negate< doubl e>());

/1 Calculate the sumof two vectors,
/1 storing the result in a third vector.

const int N = 1000000000;
vector_type VI1(N);
vector_type V2(N);
vector_type V3(N);

std::iota(V1.begin(), Vi.end(), 1);
std::fill(V2.begin(), V2.end(), 75);

assert(V2.size() >= Vl.size() &&
V3.size() >= VLl.size());
std::transform(V1.begin(),
V1.end(),
V2.begin(),

31

V3.begin(),
plus< i nt>());

6.5 Sorting

stxxl::sort is an external memory equivalent to S§td::sort . The design
and implementation of the algorithm is described in detajBi.

Prototype
|
tenpl ate < typenane Extlterator_,
t ypename StrictWeakOrdering_
>
voi d sort (Extlterator_ first,
Extlterator_ last,
StrictWeakOrdering_ cmp,
unsi gned M
)
Description
stxxl::sort sorts the elements in [first, last) into ascending order,mimegthat if
i andj are any two valid iterators in [first, last) such thaprecedes , thenx | is not
less tharxi . Note: asstd::sort , Stxxl::sort is not guaranteed to be stable.

That is, suppose thati andxj are equivalent: neither one is less than the other. It
is not guaranteed that the relative order of these two elésngill be preserved by
stxxl::sort

The order is defined by themp parameter. The sorter’s internal memory con-
sumption is bounded biyibytes.

Requirements on Types

e Extlterator _is a model of External Random Access lterator
e Extlterator _is mutable.
e StrictWeakOrdering _is a model of Strict Weak Ordering and must pro-

vide min and max values for the elements in the input:
— maxvalue method that returns an object thastsictly greaterthan all
other objects of user type according to the given ordering.
— min _value method that returns an object thastsictly lessthan all other
objects of user type according to the given ordering.

Example: a comparison object for ordering integer elements in therdiog
order

13In STXXL currently onlystxxl::vector provides iterators that are models of External Random
Access lterator.

32 STL-User Layer

struct CmplintLess: publi c std::less< int>
{
static int min_value() const
{ return (std::numeric_limits< i nt>:min)(); }
static int max_value() const
{ return (std::numeric_limits< i nt>:max)(); }
I3
Example: a comparison object for ordering integer elements in theeleding
order
|
struct CmpintGreater: publ i c std::greater< i nt>
{
i nt min_value() const
{ return (std:numeric_limits< i nt>:max)(); }
int max_value() const
{ return (std::numeric_limits< i nt>:min)(); }
I3
Note, that according to trexxl::sort requirementsnin _value andmax.value
can notbe present in the input sequence.
e Extlterator _'svalue type is convertible tStrictWeakOrdering ’sar-
gument type.

Preconditions

[first, last) is a valid range.

Complexity

e Internal work: O(NlogN), where
N = (last— first)- sizeof(Extlterator ~wvalue _type) .

e 1/O complexity:(2N/DB)(1+ [logy,g(2N/M)]) I/Os

stxxl::sort chooses the block size (parameBrequal to the block size of
the container, the last and first iterators pointing to (stgxl::vector 's block
size).

The second term in the 1/0 complexity accounts for the mefggesps of the ex-
ternal memory sorting algorithm [3]. Avoiding multiple nggr phases speeds up the
sorting. In practice one should choose the block 8z the container to be sorted
such that there is only one merge phase neefledy g(2N/M)]) = 1. This is possi-
ble forM > DB andN < M?/2DB. But still this restriction gives a freedom to choose
a variety of blocks sizes. The study [3] has shown that ogdtBrfar sorting lies in the
range[M?2/(4N),3M?/(8N)]. With such choice of the parameters tiexl::sort
always performs ¥ /DB I/Os.

Internal Memory Consumption

Thestxxl::sort consumes slightly more thavi bytes of internal memory.

33

External Memory Consumption

Thestxxl::sort is not in-place. It requires abolt bytes of external memory to
store the sorted runs during the sorting process [3]. Afterdorting this memory is
freed.

Example
I
struct MyCmp: publi c std:less< int>// ascendi ng
{ /1 order
static int min_value() const
{ return (std::numeric_limits< i nt>:min)(); }
static int max_value() const
{ return (std::numeric_limits< i nt>:max)(); }
b
t ypedef stxxl::VECTOR_GENERATOR<I nt >:result vec_type;
vec_type V,
/1 ... fill here the vector with sonme val ues
| *

Sort in ascending order
use 512 MB of nmin nenory

*

/

stxxl::sort(V.begin(),V.end(),MyCmp(),512 * 1024 = 1024);
/'l sorted

6.6 Sorted Order Checking

STXXL gives an ability to automatically check the order in the omtpf StxxL 14
sorters and intermediate results of sorting (the order anteta information in the
sorted runs). The check is switched on if the source codetharibrary are compiled
with the option-DSTXXL_CHECKORDERN _SORTSand the optiorDNDEBUGs
not used. For details see thempiler.make file in the SrxxL tar ball. Note, that
the checking routines require more internal work as welldditionalN /DB 1/Os to
read the sorted runs. Therefore for the final non-debug @ersf a user application
on should switch this option off.

6.7 Sorting Using Integer Keys

stxxl::ksort is a specialization of external memory sorting optimizedrézords
having integer keys.

Prototype

14This checker checks thetxxl::sort , Stxxl::ksort (Section 6.7), and the pipelined sorter
from Section 7.6.

34

STL-User Layer

tenpl at e < typenane Extlterator >

voi d ksort (Extlterator_ first,
Extlterator_ last,
unsi gned M

)

tenpl ate < typenane Extlterator_,

voi d ksort (Extlterator_ first,
Extlterator_ last,
KeyExtractor_ keyobj,

t ypenanme KeyExtractor_>

unsi gned M
)
Description
stxxl::ksort sorts the elements in [first, last) into ascending order,mmggthat
if i andj are any two valid iterators in [first, last) such thaprecede$, then*j is
not less thami . Note: asstd::sort andstxxl::sort , stxxl::ksort is not

guaranteed to be stable. That is, suppose#hatndx| are equivalent: neither one
is less than the other. It is not guaranteed that the relatider of these two elements

will be preserved bgtxxl::ksort
The two versions ostxxl::ksort

differ in how they define whether one el-

ement is less than another. The first version assumes thatehents havkey()

member function that returns an integral key (32 or 64 bg)well as the minimum

and the maximum element values. The second version compbjests extracting

the keys usindgceyobj object, that is in turn provides min and max element values.
The sorter’s internal memory consumption is bounded/ytes.

Requirements on Types

e Extlterator _is a model of External Random Access Iterator

e Extlterator _is mutable.

e KeyExtractor _mustimplemenbperator () that extracts the key of an
element and provide min and max values for the elements imfhe:

— key _type typedef for the type of the keys.

— maxvalue method that returns an object thastsictly greaterthan all
other keys of the elements in the input.

— min _value method that returns an object thastsictly lessthan all other
keys of the elements in the input.

Example: a key extractor object for ordering elements having 64 hitger

keys:

15In STXXL currently onlystxxl::vector
Access lterator.

provides iterators that are models of External Random

35

struct MyType
{
typedef unsigned | ong | ongkey_type;
key_type _key;
char _data[32];
MyType() {}
} MyType(key_type __key):_key(__key) {}
struct GetKey
{
t ypedef MyType::key type key_type;
key type operator() (const MyType & obj)
{ return obj._key; }
MyType min_value() const
{ return MyType(
(std::numeric_limits<key_type>::min)()); }
MyType max_value() const
{ return MyType(
(std::numeric_limits<key_type>::max)()); }
3
Note, that according to thexxl::sort requirementsnin _value andmaxvalue

can notbe present in the input sequence.

e Extlterator _'s value type is convertible t&eyExtractor _'s argument
type.

e Extlterator _'s value type has a typedkéy _type .

e For the first version oftxxl::ksort Extlterator _'s value type must

have thekey() function that returns the key value of the element, and the

min _value() andmaxvalue() member functions that return minimum
and maximum element values respectively. Example:

|
struct MyType
{

typedef unsigned | ong | ongkey_type;

key type _key;

char _data[32];

MyType() {}

MyType(key_type __key):_key(__key) {}

key type key() { return _key; }

MyType min_value() const

{ return MyType(
(std::numeric_limits<key_type>::min)()); }

MyType max_value() const

{ return MyType(
(std::numeric_limits<key_type>::max)()); }

36 STL-User Layer

Preconditions

The same as fastxxl::sort (section 6.5).
Complexity
The same as fatxxl::sort (Section 6.5).

Internal Memory Consumption

The same as fatxxl::sort (Section 6.5)

External Memory Consumption

The same as fastxxl::sort (Section 6.5).

Example

struct MyType
{
typedef unsigned | ong | ongkey_type;
key_type _key;
char _data[32];
MyType() {}
MyType(key_type __key):_key(__key) {}
key type key() { return obj._key; }
static MyType min_value() const
{ return MyType(
(std::numeric_limits<key_type>::min)()); }
static MyType max_value() const
{ return MyType(
(std::numeric_limits<key_type>::max)()); }

I3
t ypedef stxxl::VECTOR_GENERATOR<MyType>::iresult vec_type;

vec_type V;
/[l ... fill here the vector with sone val ues

| *
Sort in ascending order
use 512 MB of main nmenory

*/
stxxl::ksort(V.begin(),V.end(),512 * 1024 » 1024);
/1 sorted

6.8 Other STxXL Algorithms

STxXL offers several specializations of STL algorithms $bxx|::vector iter-
ators. The algorithms while accessing the elements bypessdctor’s cache and

37

access the vector’s blocks directly. Another improvemenihat algorithms from this
chapter are able to overlap I/O and computation. With steh8dL algorithms the
overlapping is not possible. This measures save constatairéaboth in 1/0 volume
and internal work.

6.8.1 stxxl::generate

The semantics of the algorithm is equivalent to the STd::generate

Prototype

t enpl at e<t ypenane Extlterator, t ypenanme Generator>
voi d generate (Extlterator first,

Extlterator last,

Generator gen,

i nt nbuffers

Description

Generate assigns the result of invokgen, a function object that takes no arguments,
to each element in the range [first, last). To overlap I/0 aydputatiombuffers

are used (a value at led3tis recommended). The size of the buffers is derived from
the container that is pointed by the iterators.

Requirements on types

e Extlterator is a model of External Random Access lterator.
e Extlterator is mutable.
e Generator is a model of STL Generator.

e Generator 'sresult type is convertible tBxtlterator 's value type.

Preconditions

[first, last) is a valid range.

Complexity

e Internal work is linear.

e External work: close t?tN/DB I/Os (write-only).

38 STL-User Layer

Example

/1 Fill a vector with random nunbers, using the

/1 standard C library function rand.

t ypedef stxxl::VECTOR_GENERATOR<i nt >::result vector_type;
vector_type V(some_size);

/1 use 20 buffer bl ocks

stxxl::generate(V.begin(), V.end(), rand, 20);

6.8.2 stxxl::for_each

The semantics of the algorithm is equivalent to the STd::for _each.

Prototype

t enpl at e<t ypenamne Extlterator, t ypename UnaryFunction>
UnaryFunction for_each (Extlterator first,

Extlterator last,

UnaryFunction f,

i nt nbuffers

Description

stxxl::for _each applies the function objeftto each element in the range [first,
last);f 's return value, if any, is ignored. Applications are penfiad in forward order,
i.e. from first to laststxxl::for _each returns the function object after it has been
applied to each element. To overlap I/0 and computatimrffers are used (a value
at leastD is recommended). The size of the buffers is derived from trgainer that

is pointed by the iterators.

Requirements on types

e Extlterator is a model of External Random Access lterator.
e UnaryFunction is a model of STL Unary Function.

e UnaryFunction does not apply any non-constant operations through its ar-
gument.

e Extlterator 's value type is convertible ttynaryFunction ’s argument
type.

Preconditions

[first, last) is a valid range.

39

Complexity
e Internal work is linear.

e External work: close ttN/DB I/Os (read-only).

Example

tenpl at e<cl ass T> struct print :
publ i ¢ unary_function<T, voi d>
{
print(ostream& out) : os(out), count(0) {}
void operator() (T x) { os << X <<
ostream& 0s;
i nt count;

’ ’

.y ++count; }

I3
t ypedef stxxl::VECTOR_GENERATOR<Ii nt >::result vector_type;
i nt main()

{
vector_type A(N);
/1 fill Awth sonme val ues
/1

print< i nt> P = stxxl::for_each(A.begin(), A.end(),
print< i nt >(cout));
cout << endl << P.count << " _objects _printed." << endl;

6.8.3 stxxl::for.each.m

stxxl::for —each _mis a mutatingversion of stxxl::for -each, i.e. the re-
striction that Unary Function f can not apply any non-constgperations through its
argument does not exist.

Prototype

t enpl at e<t ypenane Extlterator, t ypename UnaryFunction>
UnaryFunction for_each (Extlterator first,

Extlterator last,

UnaryFunction f,

i nt nbuffers

Description

stxxl::for _each applies the function objeftto each element in the range [first,
last);f 's return value, if any, is ignored. Applications are penfiad in forward order,
i.e. from first to last. stxxl::for _each returns the function object after it has

40 STL-User Layer

been applied to each element. To overlap I/O and computabaffers are used
(a value at least2 is recommended). The size of the buffers is derived from the
container that is pointed by the iterators.

Requirements on types
o Extlterator is a model of External Random Access Iterator.
e UnaryFunction is a model of STL Unary Function.
e Extlterator 's value type is convertible ttnaryFunction ’'s argument

type.

Preconditions

[first, last) is a valid range.

Complexity

e Internal work is linear.

e External work: close tol2/DB I/Os (read and write).

Example

struct AddX
{ .
int x
AddX(i nt x): x(x) {4
void operator() (int & val)
{ val += x; }

I3

t ypedef stxxl::VECTOR_GENERATORK<I nt >:result vector_type;
i nt main()

{
vector_type A(N);
/1 fill Awth sone val ues
/1

// Add 5 to each value in the vector
stxxl::for_each(A.begin(), A.end(), AddX(5));

6.84 stxxl::find

The semantics of the algorithm is equivalent to the STd::find

41

Prototype
|

t enpl at e< t ypenane Extlterator,
t ypenanme EqualityComparable>
Extlterator find (Extlterator first,
Extlterator last,
const EqualityComparable & value,
int nbuffers

Description

Returns the first iteratdr in the range [first, last) such that == value . Returns
last if no such iterator exists. To overlap I/O and compotatibuffers are used (a
value at leash is recommended). The size of the buffers is derived from tmgainer
that is pointed by the iterators.

Requirements on types
a) EqualityComparable is a model of STL EqualityComparable concept.
b) Extlterator is a model of External Random Access Iterator.
¢) Equality is defined between objects of typgualityComparable and ob-

jects ofExtlterator 's value type.

Preconditions

[first, last) is a valid range.

Complexity
e Internal work is linear.
e External work: close t?tN/DB I/Os (read-only).

Example

t ypedef stxxl::VECTOR_GENERATOR<Ii nt >::result vector_type;

vector_type V;
/1 fill the vector

[/ find 7 inV
vector_type:iterator result = find(V.begin(), V.end(), 7);
i f(result !'= V.end())
std::cout << “Found at position "<<
(result - V.begin()) << std::endl;

42 STL-User Layer

el se
std::cout << “Not found” << std::endl;

43

Table 6.15: Members dftxxl::priority _queue .
| member | description |
value _type The type of object, Tp stored in
the vector.
size _type An unsigned 64-bit integral type.
block _type type of the block used in disk

memory transfers

priority _queue(

prefetch _pool<block _type>&
p-pool _,

write _pool<block _type>&
w_pool)

Creates an empty priority queu
Prefetch poolp_pool _ and write
pools w_pool _ will be used for
overlapping of 1/0O and computg
tion during external memory merg

ing (see Sections 8.1.1 and 8.1.

for the documentation for the pog
classes).

bool empty() const

Returns true if the
priority _queue contains

no elements, and false otherwige.

S.empty() is equivalent to
S.size() ==

size _type size() const

Returns the number of el
ements contained in th
priority _queue.

const value _type& top()
const

Returns a const reference

the element at the top of th
priority _queue. The ele-
ment at the top is guaranteg
to be the largest element in th
priority queue, as determined K
the comparison functionCmp.
That is, for every other elemer
X in the priority _queue,
Cmp(Q.top(), x) is false.
Preconditionempty() is false.

[0

2l

—

void push(const value type&

X)

Inserts X into the
priority ~ _queue. Postcondi-
tion: size() will be incremented
by 1.

void pop()

Removes the element at the t
of the priority _queue, that
is, the largest element in th
priority _queue . Precondition:

empty() is false. Postcondition
size() will be decremented by 1|

bp

unsigned mem _cons () const

Returns number of bytes consum
by the priority _queue in the
internal memory not including thg
pools.

“priority _queue()

The destructor. Deallocates all o
cupied internal and external men
ory.

44 STL-User Layer

Table 6.16: Template parameters stikxl::PRIORITY _QUEUESENERATOR
from left to right.

| parameter| description | default value| recommended valug¢
Tp- element type
Cmp the comparison type used to de-

termine whether one element |s
smaller than another elemen

—

See note a.

IntM_ upper limit for internal memory larges is better
consumption in bytes

MaxS. upper limit for number of ele-

ments contained in the priority
gueue (in units of 1024 items).
See note b.
Tune a tuning parameter. See note ¢. 6

Pipelined/Stream Interfaces Dementiev June 4, 2006+D

Chapter 7

Pipelined/Stream Interfaces

7.1 Preliminaries

7.2 Node Interface

7.3 Scheduling

7.4 File Nodes -streamify and materialize
7.5 Streaming Nodes

7.6 Sorting Nodes

7.6.1 Runs Creator —stxxl::stream::runs _Creator
7.6.2 Specializations o$txxl::stream::runs _Creator
7.6.3 Runs Merger —stxxl::stream::runs _merger

7.6.4 A Combination: stxxl::stream::sort

7.7 A Pipelined Version of the Billing Application

46

Pipelined/Stream Interfaces

Internals

Chapter 8

Internals

8.1 Block Management Layer

8.1.1 stxxl::prefetchpool
8.1.2 stxxl::witepool

8.2 1/O Primitives Layer
8.3 Utilities

Dementiev June 4, 20047

48

Internals

Miscellaneous Dementiev June 4, 200649

Chapter 9

Miscellaneous

9.1 StxXL Compile Flags

50

Miscellaneous

BIBLIOGRAPHY Dementiev June 4, 200D 1

Bibliography

[1] L. Arge, O. Procopiuc, and J. S. Vitter. Implementing4é@icient Data Structures
Using TPIE. In10th European Symposium on Algorithms (ES8Jume 2461 of
LNCS pages 88-100. Springer, 2002.

[2] A. Crauser and K. Mehlhorn. LEDA-SM, extending LEDA tacemdary memory.
In 3rd International Workshop on Algorithmic Engineering (BjAvolume 1668
of LNCS pages 228-242, 1999.

[3] R. Dementiev and P. Sanders. Asynchronous parallelsbsting. In15th ACM
Symposium on Parallelism in Algorithms and Architectupeges 138—-148, San
Diego, 2003.

[4] Andrew Hume.Handbook of massive data sethapter Billing in the large, pages
895 - 909. Kluwer Academic Publishers, 2002.

[5] D. A. Hutchinson, P. Sanders, and J. S. Vitter. Dualityween prefetching and
queued writing with parallel disks. Iath European Symposium on Algorithms
(ESA) number 2161 in LNCS, pages 62—73. Springer, 2001.

[6] Peter Sanders. Fast priority queues for cached menf@ Journal of Experi-
mental Algorithmics5, 2000.

[7] A. A. Stepanov and M. Lee. The Standard Template Librargchnical Report
X3J16/94-0095, WG21/N0482, Silicon Graphics Inc., Het\atckard Laborato-
ries, 1994,

[8] J. S. Vitter and E. A. M. Shriver. Algorithms for parallelemory, I/11. Algorith-
mica, 12(2/3):110-169, 1994.

